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Conformal Prediction:
A Gentle Introduction
Anastasios N. Angelopoulos1 and Stephen Bates2

1University of California, Berkeley, USA; angelopoulos@berkeley.edu
2University of California, Berkeley, USA; stephenbates@berkeley.edu

ABSTRACT

Black-box machine learning models are now routinely used
in high-risk settings, like medical diagnostics, which demand
uncertainty quantification to avoid consequential model fail-
ures. Conformal prediction (a.k.a. conformal inference) is
a user-friendly paradigm for creating statistically rigorous
uncertainty sets/intervals for the predictions of such models.
Critically, the sets are valid in a distribution-free sense: they
possess explicit, non-asymptotic guarantees even without
distributional assumptions or model assumptions. One can
use conformal prediction with any pre-trained model, such
as a neural network, to produce sets that are guaranteed
to contain the ground truth with a user-specified proba-
bility, such as 90%. It is easy-to-understand, easy-to-use,
and general, applying naturally to problems arising in the
fields of computer vision, natural language processing, deep
reinforcement learning, and so on.

This hands-on introduction is aimed to provide the reader a
working understanding of conformal prediction and related
distribution-free uncertainty quantification techniques with
one self-contained document. We lead the reader through
practical theory for and examples of conformal prediction

Anastasios N. Angelopoulos and Stephen Bates (2023), “Conformal Prediction: A
Gentle Introduction”, Foundations and Trends® in Machine Learning: Vol. 16, No. 4,
pp 494–591. DOI: 10.1561/2200000101.
©2023 A. N. Angelopoulos and S. Bates
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2

and describe its extensions to complex machine learning
tasks involving structured outputs, distribution shift, time-
series, outliers, models that abstain, and more. Throughout,
there are many explanatory illustrations, examples, and
code samples in Python. With each code sample comes a
Jupyter notebook implementing the method on a real-data
example; the notebooks can be accessed and easily run by
following the code footnotes./

/https://github.com/aangelopoulos/conformal-prediction
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1
Conformal Prediction

Conformal prediction [72], [88], [116], also known as conformal inference,
is a straightforward way to generate prediction sets for any model. We
will introduce it with a short, pragmatic image classification example,
and follow up in later paragraphs with a general explanation.

The high-level outline of conformal prediction is as follows. First, we
begin with a fitted predicted model (such as a neural network classifier)
which we will call f̂ . Then, we create prediction sets (a set of possible
labels) for this classifier using a small amount of additional calibration
data—we will sometimes call this the calibration step.

Formally, suppose we have images as input and they each contain
one of K classes. We begin with a classifier that outputs estimated
probabilities (softmax scores) for each class: f̂(x) ∈ [0, 1]K . Then, we
reserve a moderate number (e.g., 500) of fresh i.i.d. pairs of images
and classes unseen during training, (X1, Y1), . . . , (Xn, Yn), for use as
calibration data. Using f̂ and the calibration data, we seek to construct
a prediction set of possible labels C(Xtest) ⊂ {1, . . . , K} that is valid in
the following sense:

1 − α ≤ P(Ytest ∈ C(Xtest)) ≤ 1 − α + 1
n + 1 , (1.1)

3
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4 Conformal Prediction

where (Xtest, Ytest) is a fresh test point from the same distribution, and
α ∈ [0, 1] is a user-chosen error rate. In words, the probability that the
prediction set contains the correct label is almost exactly 1 − α; we
call this property marginal coverage, since the probability is marginal
(averaged) over the randomness in the calibration and test points. See
Figure 1.1 for examples of prediction sets on the Imagenet dataset.

Figure 1.1: Prediction set examples on Imagenet. We show three progressively
more difficult examples of the class fox squirrel and the prediction sets (i.e.,
C(Xtest)) generated by conformal prediction.

To construct C from f̂ and the calibration data, we will perform
a simple calibration step that requires only a few lines of code; see
the bottom panel of Figure 1.2. We now describe the calibration step
in more detail, introducing some terms that will be helpful later on.
First, we set the conformal score si = 1 − f̂(Xi)Yi to be one minus the
softmax output of the true class. The score is high when the softmax
output of the true class is low, i.e., when the model is badly wrong.
Next comes the critical step: define q̂ to be the ⌈(n + 1)(1 − α)⌉/n

empirical quantile of s1, ..., sn, where ⌈·⌉ is the ceiling function (q̂ is
essentially the 1 − α quantile, but with a small correction). Finally, for
a new test data point (where Xtest is known but Ytest is not), create a
prediction set C(Xtest) = {y : f̂(Xtest)y ≥ 1− q̂} that includes all classes
with a high enough softmax output (see Figure 1.2). Remarkably, this
algorithm gives prediction sets that are guaranteed to satisfy (1.1), no
matter what (possibly incorrect) model is used or what the (unknown)
distribution of the data is.

Full text available at: http://dx.doi.org/10.1561/2200000101
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(2) get quantile (3) construct
prediction set

# 1: get conformal scores. n = calib_Y.shape[0]
cal_smx = model(calib_X).softmax(dim=1).numpy()
cal_scores = 1-cal_smx[np.arange(n),cal_labels]
# 2: get adjusted quantile
q_level = np.ceil((n+1)*(1-alpha))/n
qhat = np.quantile(cal_scores, q_level, method='higher')
val_smx = model(val_X).softmax(dim=1).numpy()
prediction_sets = val_smx >= (1-qhat) # 3: form prediction sets

Figure 1.2: Illustration of conformal prediction with Python code./

Remarks

Let us think about the interpretation of C. The function C is set-valued—
it takes in an image, and it outputs a set of classes as in Figure 1.1.
The model’s softmax outputs help to generate the set. This method
constructs a different output set adaptively to each particular input.
The sets become larger when the model is uncertain or the image is
intrinsically hard. This is a property we want, because the size of the set
gives you an indicator of the model’s certainty. Furthermore, C(Xtest)
can be interpreted as a set of plausible classes that the image Xtest could
be assigned to. Finally, C is valid, meaning it satisfies (1.1).1 These
properties of C translate naturally to other machine learning problems,
like regression, as we will see.

/https://github.com/aangelopoulos/conformal-prediction/blob/main/
notebooks/imagenet-smallest-sets.ipynb

1Due to the discreteness of Y , a small modification involving tie-breaking is
needed to additionally satisfy the upper bound (see Angelopoulos et al. [6] for details;
this randomization is usually ignored in practice). We will henceforth ignore such
tie-breaking.
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6 Conformal Prediction

With an eye towards generalization, let us review in detail what
happened in our classification problem. To begin, we were handed a
model that had an inbuilt, but heuristic, notion of uncertainty: softmax
outputs. The softmax outputs attempted to measure the conditional
probability of each class; in other words, the jth entry of the softmax
vector estimated P(Y = j | X = x), the probability of class j con-
ditionally on an input image x. However, we had no guarantee that
the softmax outputs were any good; they may have been arbitrarily
overfit or otherwise untrustworthy. Therefore, instead of taking the
softmax outputs at face value, we used the holdout set to adjust for
their deficiencies.

The holdout set contained n ≈ 500 fresh data points that the model
never saw during training, which allowed us to get an honest appraisal of
its performance. The adjustment involved computing conformal scores,
which grow when the model is uncertain, but are not valid prediction
intervals on their own. In our case, the conformal score was one minus
the softmax output of the true class, but in general, the score can be any
function of x and y. We then took q̂ to be roughly the 1 − α quantile of
the scores. In this case, the quantile had a simple interpretation—when
setting α = 0.1, at least 90% of ground truth softmax outputs are
guaranteed to be above the level 1 − q̂ (we prove this rigorously in
Appendix D). Taking advantage of this fact, at test-time, we got the
softmax outputs of a new image Xtest and collected all classes with
outputs above 1 − q̂ into a prediction set C(Xtest). Since the softmax
output of the new true class Ytest is guaranteed to be above 1 − q̂ with
probability at least 90%, we finally got the guarantee in Eq. (1.1).

1.1 Instructions for Conformal Prediction

As we said during the summary, conformal prediction is not specific
to softmax outputs or classification problems. In fact, conformal pre-
diction can be seen as a method for taking any heuristic notion of
uncertainty from any model and converting it to a rigorous one
(see the diagram in Figure 1.3). Conformal prediction does not care if
the underlying prediction problem is discrete/continuous or classifica-
tion/regression.

Full text available at: http://dx.doi.org/10.1561/2200000101



1.1. Instructions for Conformal Prediction 7

Heuristic
uncertainty
(per input)

Rigorous
uncertainty
(per input)

conformal
prediction

Figure 1.3: Conformal prediction converts heuristic notions of uncertainty
into rigorous ones.

We next outline conformal prediction for a general input x and
output y (not necessarily discrete).

1. Identify a heuristic notion of uncertainty using the pre-trained
model.

2. Define the score function s(x, y) ∈ R. (Larger scores encode worse
agreement between x and y).

3. Compute q̂ as the ⌈(n+1)(1−α)⌉
n quantile of the calibration scores

s1 = s(X1, Y1), ..., sn = s(Xn, Yn).

4. Use this quantile to form the prediction sets for new examples:

C(Xtest) = {y : s(Xtest, y) ≤ q̂} . (1.2)

As before, these sets satisfy the validity property in (1.1), for any (possi-
bly uninformative) score function and (possibly unknown) distribution
of the data. We formally state the coverage guarantee next.

Theorem 1.1 (Conformal coverage guarantee; Vovk, Gammerman, and
Saunders [117]). Suppose (Xi, Yi)i=1,...,n and (Xtest, Ytest) are i.i.d. and
define q̂ as in step 3 above and C(Xtest) as in step 4 above. Then the
following holds:

P
(
Ytest ∈ C(Xtest)

)
≥ 1 − α.

See Appendix D for a proof and a statement that includes the
upper bound in (1.1). We note that the above is only a special case of
conformal prediction, called split conformal prediction. This is the most
widely-used version of conformal prediction, and it will be our primary
focus. To complete the picture, we describe conformal prediction in full
generality later in Section 6 and give an overview of the literature in
Section 7.

Full text available at: http://dx.doi.org/10.1561/2200000101



8 Conformal Prediction

Choice of Score Function

Upon first glance, this seems too good to be true, and a skeptical reader
might ask the following question:

How is it possible to construct a statistically valid prediction set even if
the heuristic notion of uncertainty of the underlying model is arbitrarily

bad?

Let’s give some intuition to supplement the mathematical under-
standing from the proof in Appendix D. Roughly, if the scores si

correctly rank the inputs from lowest to highest magnitude of model
error, then the resulting sets will be smaller for easy inputs and bigger
for hard ones. If the scores are bad, in the sense that they do not
approximate this ranking, then the sets will be useless. For example, if
the scores are random noise, then the sets will contain a random sample
of the label space, where that random sample is large enough to provide
valid marginal coverage. This illustrates an important underlying fact
about conformal prediction: although the guarantee always holds, the
usefulness of the prediction sets is primarily determined by
the score function. This should be no surprise—the score function
incorporates almost all the information we know about our problem
and data, including the underlying model itself. For example, the main
difference between applying conformal prediction on classification prob-
lems versus regression problems is the choice of score. There are also
many possible score functions for a single underlying model, which have
different properties. Therefore, constructing the right score function is
an important engineering choice. We will next show a few examples of
good score functions.

Full text available at: http://dx.doi.org/10.1561/2200000101
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A
Distribution-Free Control of General Risks

Figure A.1: Object detection with simultaneous distribution-free guaran-
tees on the expected intersection-over-union, recall, and coverage rate.

For many prediction tasks, the relevant notion of reliability is not
coverage. Indeed, many applications have problem-specific performance
metrics—from false-discovery rate to fairness—that directly encode the
soundness of a prediction. In Section 4.3, we saw how to control the
expectation of monotone loss functions using conformal risk control.
Here, we generalize further to control any risk and multiple risks in a
distribution-free way without retraining the model. As an example, in
instance segmentation, we are given an image and asked to identify all

62
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63

objects in the image, segment them, and classify them. All three of these
sub-tasks have their own risks: recall, intersection-over-union (IOU),
and coverage respectively. These risks can be automatically controlled
using distribution-free statistics, as we preview in Figure A.1.

We first re-introduce the theory of risk control below, then give a
list of illustrative examples. As in conformal risk control, we start with
a pretrained model f̂ . The model also has a parameter λ, which we
are free to choose. We use f̂(x) and λ to form our prediction, Tλ(x),
which may be a set or some other object. For example, when performing
regression, λ could threshold the estimated probability density, as in
Figure A.2.

Figure A.2: A family of prediction sets produced by thresholding an estimated
probability density.

We then define a notion of risk R(λ). The risk function measures
the quality of Tλ according to the user. The goal of risk control is to
use our calibration set to pick a parameter λ̂ so that the risk is small
with high probability. In formal terms, for a user-defined risk tolerance
α and error rate δ, we seek to ensure

P
(
R
(
λ̂
)

< α
)

≥ 1 − δ, (A.1)

where the probability is taken over the calibration data used to pick λ̂.
Note that this guarantee is high-probability, unlike that in Section 4.3,
which is in expectation. We will soon introduce a distribution-free
technique called Learn then Test (LTT) for finding λ̂ that satisfy (A.1).
Below we include two example applications of risk control which would
be impossible with conformal prediction and conformal risk control.

• Multi-label Classification with FDR Control: In this setting, Xtest
is an image and Ytest is a subset of K classes contained in the

Full text available at: http://dx.doi.org/10.1561/2200000101



64 Distribution-Free Control of General Risks

image. Our model f̂ gives us the probability each of the K classes
is contained in the image. We will include a class in our estimate of
y if f̂k > λ — i.e., the parameter λ thresholds the estimated prob-
abilities. We seek to find the λ̂s that guarantees our predicted set
of labels is sufficiently reliable as measured by the false-discovery
rate (FDR) risk R(λ̂).

• Simultaneous Guarantees on OOD Detection and Coverage: For
each input Xtest with true class Ytest, we want to decide if it is
out-of-distribution. If so, we will flag it as such. Otherwise, we
want to output a prediction set that contains the true class with
90% probability. In this case, we have two models: OOD(x), which
tells us how OOD the input is, and f̂(x), which gives the estimated
probability that the input comes from each of K classes. In this
case, λ has two coordinates, and we also have two risks. The first
coordinate λ1 tells us where to threshold OOD(x) such that the
fraction of false alarms R1 is controlled. The second coordinate λ2
tells us how many classes to include in the prediction set to control
the miscoverage R2 among points identified as in-distribution. We
will find λ̂s that control both R1(λ̂) and R2(λ̂) jointly.

We will describe each of these examples in detail in Appendix B.
Many more worked examples, including the object detection example in
Figure A.1, are available in the cited literature on risk control [2], [10].
First, however, we will introduce the general method of risk control via
Learn then Test.

A.1 Instructions for Learn then Test

First, we will describe the formal setting of risk control. We introduce
notation and the risk-control property in Definition A.1. Then, we
describe the calibration algorithm.

Formal Notation for Error Control

Let (Xi, Yi)i=1,...,n be an independent and identically distributed (i.i.d.)
set of variables, where the features Xi take values in X and the responses

Full text available at: http://dx.doi.org/10.1561/2200000101



A.1. Instructions for Learn then Test 65

Yi take values in Y . The researcher starts with a pre-trained predictive
model f̂ . We show how to subsequently create predictors from f̂ that
control a risk, regardless of the quality of the initial model fit or the
distribution of the data.

Next, let Tλ : X → Y ′ be a function with parameter λ that maps
a feature to a prediction (Y ′ can be any space, including the space of
responses Y or prediction sets 2Y). This function Tλ would typically be
constructed from the predictive model, f̂ , as in our earlier regression
example. We further assume λ takes values in a (possibly multidimen-
sional) discrete set Λ. If Λ is not naturally discrete, we usually discretize
it finely. For example, Λ could be the set {0, 0.001, 0.002, ..., 0.999, 1}.

We then allow the user to choose a risk for the predictor Tλ. This
risk can be any function of Tλ, but often we take the risk function to
be the expected value of a loss function,

R(Tλ) = E

L
(
Tλ(Xtest), Ytest

)︸ ︷︷ ︸
Loss function

 . (A.2)

The loss function is a deterministic function that is high when Tλ(Xtest)
does badly at predicting Ytest. The risk then averages this loss over the
distribution of (Xtest, Ytest). For example, taking

Rmiscoverage
(
Tλ) = E

[
1 {Ytest /∈ Tλ(Xtest)}

]
= P (Ytest /∈ Tλ(Xtest))

gives us the familiar case of controlling miscoverage.
To aid the reader, we point out some facts about (A.2) that may

not be obvious. The input Tλ to the risk is a function; this makes the
risk a functional (a function of a function). When we plug Tλ into
the risk, we take an expectation of the loss over the randomness in a
single test point. At the end of the process, for a deterministic λ, we
get a deterministic scalar R(Tλ). Henceforth, for ease of notation, we
abbreviate this number as R(λ) := R(Tλ).

Our goal is control the risk in the following sense:

Definition A.1 (Risk control). Let λ̂ be a random variable taking values
in Λ (i.e., the output of an algorithm run on the calibration data).
We say that Tλ̂ is a (α, δ)-risk-controlling prediction (RCP) if, with
probability at least 1 − δ, we have R

(
λ̂
)

≤ α; see Figure A.3.
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In Definition A.1, we plug in a random parameter λ̂ which is chosen
based on our calibration data; therefore, R(λ̂) is random even though
the risk is a deterministic function. The high-probability portion of
Definition A.1 therefore says that λ̂ can only violate risk control if we
receive a bad calibration set; this happens with probability at most δ.
The distribution of the risk over many resamplings of the calibration
data should therefore look as below.

α

risk

#

δ

Figure A.3: The risk distribution of an RCP.

The Learn then Test Procedure

Recalling Definition A.1, our goal is to find a set function whose risk
is less than some user-specified threshold α. To do this, we search
across the collection of functions {Tλ}λ∈Λ and estimate their risk on the
calibration data (X1, Y1), . . . , (Xn, Yn). The output of the procedure
will be a set of λ values which are all guaranteed to control the risk,
Λ̂ ⊆ Λ. The Learn then Test procedure is outlined below.

1. For each λ ∈ Λ, associate the null hypothesis Hλ : R(λ) > α.
Notice that rejecting the Hλ means you selected λ as a point
where the risk is controlled. In Figure A.4, we denote each null
with a blue dot; the yellow dot is highlighted, so we can keep track
of it as we explain the procedure.

0.0 0.5 1.0

0.38 : R(0.38) >

Figure A.4: A grid of null hypotheses.
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2. For each null hypothesis, compute a p-value using a concen-
tration inequality. For example, Hoeffding’s inequality yields
pλ = e−2n(α−R̂(λ))2

+ , where R̂(λ) = 1
n

n∑
i=1

L(Tλ(Xi), Yi); see Fig-
ure A.5. We remind the reader what a p-value is, why it is relevant
to risk control, and point to references with stronger p-values
in A.1.1.

0.0 0.5 1.0
0.0

0.5

1.0

R(
)

0.38 : R(0.38) >

0.0 0.5 1.0
0.0

0.5

1.0

p

0.38 : R(0.38) > /N

Figure A.5: Calculate a p-value for each null.

3. Return Λ̂ = A
(
{pλ}λ∈Λ

)
, where A is an algorithm that controls

the familywise-error rate (FWER). For example, the Bonferroni
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correction yields Λ̂ =
{
λ : pλ < δ

|Λ|
}
; see Figure A.6. We define

the FWER and preview ways to design good FWER-controlling
procedures in Appendix A.1.2. In Figure A.6, nulls with red crosses
through them below have been rejected by the procedure; i.e.,
they all control the risk with high probability.

0.0 0.5 1.0

Figure A.6: Reject the p-values that pass the FWER-control algorithm.
These values of λ simultaneously control the risk.

By following the above procedure, we get the statistical guarantee
in Theorem A.1.

Theorem A.1. The Λ̂ returned by the Learn then Test procedure
satisfies

P

sup
λ̂∈Λ̂

{R(λ̂)} ≤ α

 ≥ 1 − δ.

Thus, selecting any λ̂ ∈ Λ̂, Tλ̂ is an (α, δ)-RCP. See Figure A.7 for an
algorithm.

The LTT procedure decomposes risk control into two subproblems:
computing p-values and combining them with multiple testing. We will
now take a closer look at each of these subproblems.

A.1.1 Crash Course on Generating p-values

What is a p-value, and why is it related to risk control? In
Step 1 of the LTT procedure, we associated a null hypothesis Hλ to
every λ ∈ Λ. When the null hypothesis at λ holds, the risk is not
controlled for that value of the parameter. In this reframing, our task
is to automatically identify points λ where the null hypothesis does not
hold—i.e., to reject the null hypotheses for some subset of λ such that
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#Implementation of LTT.
# Assume access to X, Y where n=X.shape[0]=Y.shape[0]
lambdas = torch.linspace(0,1,N) # Commonly choose N=1000
losses = torch.zeros((n,N)) # Compute the loss function next
for (i,j) in [(i,j) for i in range(n) for j in range(N)]:

prediction_set = T(X[i],lambdas[j]) # T ( ) is problem-dependent
losses[i,j] = get_loss(prediction_set,Y[i]) # Problem-dependent

risk = losses.mean(dim=0)
pvals = torch.exp(-2*n*(torch.relu(alpha-risk)**2)) # Or any p-value
lambda_hat = lambdas[pvals<delta/lambdas.shape[0]]

# Or any FWER-controlling algorithm

Figure A.7: PyTorch code for running Learn then Test.

R(λ) ≤ α. The process of accepting or rejecting a null hypothesis is
called hypothesis testing.

Rejecting the null hypothesis Hλ → the risk is controlled at λ.
Accepting the null hypothesis Hλ → the risk is not controlled at λ.

In order to reject a null hypothesis, we need to have empirical
evidence that at λ, the risk is controlled. We use our calibration data
to summarize this information in the form of a p-value pλ. A p-value
must satisfy the following condition, which we sometimes refer to as
validity or super-uniformity,

∀t ∈ [0, 1], PHλ
(pλ ≤ t) ≤ t,

where PHλ
refers to the probability under the null hypothesis. Parsing

the super-uniformity condition carefully tells us that when pλ is low,
there is evidence against the null hypothesis Hλ. In other words, for a
particular λ, we can reject Hλ if pλ < 5% and expect to be wrong no
more than 5% of the time; see Figure A.8 for a graphical representation.
This process is called testing the hypothesis at level δ, where in the
previous sentence, δ = 5%.
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One of the key ingredients in Learn then Test is a p-value with
distribution-free validity: it is valid under without assumptions on the
data distribution. For example, when working with risk functions that
take values in [0, 1]—like coverage, IOU, FDR, and so on—the easiest
choice of p-value is based on Hoeffding’s inequality:

pHoeffding
λ = e

−2n
(

α−R̂(λ)
)2

+ .

0.0 0.5 1.0

PDFs of p-values

0.0 0.5 1.0
0.0

0.5

1.0
CDFs of p-values

uniform p-value
super-uniform p-value

Figure A.8: PDF and CDF of valid p-values.

More powerful p-values based on tighter concentration bounds are
included in Angelopoulos et al. [2]. In particular, many of the practical
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examples in that reference use a stronger p-value called the Hoeffding-
Bentkus (HB) p-value,

pHB
λ = min

(
exp{−nh1(R̂(λ) ∧ α, α)}, eP

(
Bin(n, α) ≤

⌈
nR̂(λ)

⌉ ))
,

where h1(a, b) = a log
(

a

b

)
+ (1 − a) log

(1 − a

1 − b

)
.

Note that any valid p-value will work—it is fine for the reader to keep
pHoeffding

λ in mind for the rest of this work, with the understanding that
more powerful choices are available.

A.1.2 Crash Course on Familywise-Error Rate Algorithms

If we only had one hypothesis Hλ, we could simply test it at level δ.
However, we have one hypothesis for each λ ∈ Λ, where |Λ| is often
very large (in the millions or more). This causes a problem: the more
hypotheses we test, the higher chance we incorrectly reject at least one
hypothesis. We can formally reason about this with the familywise-error
rate (FWER).

Definition A.2 (familywise-error rate). The familywise-error rate of a
procedure returning Λ̂ is the probability of making at least one false
rejection, i.e.,

FWER
(
Λ̂
)

= P
(
∃λ̂ ∈ Λ̂ : R(λ̂) > α

)
.

As a simple example to show how naively thresholding the p-values at
level δ fails to control FWER, consider the case where all the hypotheses
are null, and we have uniform p-values independently tested at level δ.
The FWER then approaches 1; see below.

If we take Λ̂ = {λ : pλ < δ}, then FWER(Λ̂) = 1 − (1 − δ)|Λ|.

This simple toy analysis exposes a deeper problem: without an intelligent
strategy for combining the information from many p-values together, we
can end up making false rejections with high probability. Our challenge
is to intelligently combine the p-values to avoid this issue of multiplicity
(without assuming the p-values are independent).

This fundamental statistical challenge has led to a decades-long and
continually rich area of research called multiple hypothesis testing. In
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particular, a genre of algorithms called FWER-controlling algorithms
seek to select the largest set of Λ̂ that guarantees FWER(Λ̂) ≤ δ. The
simplest FWER-controlling algorithm is the Bonferroni correction,

Λ̂Bonferroni =
{

λ ∈ Λ : pλ ≤ δ

|Λ|

}
.

Under the hood, the Bonferroni correction simply tests each hypoth-
esis at level δ/|Λ|, so the probability there exists a failed test is no more
than δ by a union bound. It should not be surprising that there exist
improvements on Bonferroni correction.

First, we will discuss one important improvement in the case of a
monotone loss function: fixed-sequence testing. As the name suggests, in
fixed-sequence testing, we construct a sequence of hypotheses {Hλj

}N
j=1

where N = |Λ|, before looking at our calibration data. Usually, we just
sort our hypotheses from most- to least-promising based on information
we knew a-priori. For example, if large values of λ are more likely to
control the risk, {λj}N

j=1 just sorts Λ from greatest to least. Then, we
test the hypotheses sequentially in some fixed order at level δ, including
them in Λ̂ as we go, and stopping when we make our first acceptance,
as we illustrate below in Figure A.9:

Λ̂FST = {λj , j ≤ T}, where T = max
{

t ∈ {1, ..., N} : pλt′ ≤ δ, for all t′ ≤ t
}

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

st
ep

1

2

T

.01 .01 .02 .03 .04 .04 .05 .06 .06 .09
p-value

Figure A.9: An example of fixed-sequence testing with δ = 0.05. Each blue
circle represents a null, and each row a step of the procedure. The nulls with a red
cross have been rejected at that step.

This sequential procedure, despite testing all hypotheses it en-
counters at level δ, still controls the FWER. For monotone and near-
monotone risks, such as the false-discovery rate, it works quite well.
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It is also possible to extend the basic idea of fixed-sequence test-
ing to non-monotone functions, creating powerful and flexible FWER-
controlling procedures using an idea called sequential graphical test-
ing [13]. Good graphical FWER-controlling procedures can be designed
to have high power for particular problems, or alternatively, automat-
ically discovered using data. This topic is given a detailed treatment
in Angelopoulos et al. [2], and we omit it here for simplicity.

We have described a general-purpose pipeline for distribution-free
risk control. It is described in PyTorch code in Figure A.7. Once the
user sets up the problem (i.e., picks Λ, Tλ, and R), the LTT pipeline we
described above automatically produces Λ̂. We now go through three
worked examples which teach the reader how to choose Λ, T and R in
practical circumstances.
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B
Examples of Distribution-Free Risk Control

In this section, we will walk through several examples of distribution-
free risk control applied to practical machine learning problems. The
goal is again to arm the reader with an arsenal of pragmatic prototypes
of distribution-free risk control that work on real problems.

B.1 Multi-label Classification with FDR Control

We begin our sequence of examples with a familiar and fundamental
setup: multi-label classification. Here, the features Xtest can be anything
(e.g. an image), and the label Ytest ⊆ {1, ..., K} must be a set of classes
(e.g. those contained in the image Xtest). We have a pre-trained machine
learning model f̂(x), which gives us an estimated probability f̂(x)k

that class k is in the corresponding set-valued label. We will use these
probabilities to include the estimated most likely classes in our prediction
set,

Tλ(x) =
{
k : f̂(x)k > λ

}
, λ ∈ Λ

where Λ = {0, 0.001, ..., 1} (a discretization of [0, 1]). However, one
question remains: how do we choose λ?

74
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Figure B.1: Examples of multi-label classification with FDR control on
the MS-COCO dataset. Black classes are true positives, blue classes are spurious,
and red classes are missed. The FDR is controlled at level α = 0.1, δ = 0.1.

LTT will allow us to identify values of λ that satisfy a precise
probabilistic guarantee—in this case, a bound on the false-discovery
rate (FDR),

RFDR(λ) = E

1 − |Ytest ∩ Tλ(Xtest)|
|Tλ(Xtest)|︸ ︷︷ ︸

LFDP(Tλ(Xtest),Ytest)

 .

As annotated in the underbrace, the FDR is the expectation of a loss
function, the false-discovery proportion (FDP). The FDP is low when
our prediction set Tλ(Xtest) contains mostly elements from Ytest. In this
sense, the FDR measures the quality of our prediction set: if we have a
low FDR, it means most of the elements in our prediction set are good.
By setting α = 0.1 and δ = 0.1, we desire that

P
[
RFDR(λ̂) > 0.1

]
< 0.1,

where the probability is over the randomness in the calibration set used
to pick λ̂.

Now that we have set up our problem, we can just run the LTT
procedure via the code in Figure B.2. We use fixed-sequence testing
because the FDR is a nearly monotone risk. In practice, we also wish to
use the HB p-value, which is stronger than the simple Hoeffding p-value
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# model is a multi-class neural network, X.shape[0]=Y.shape[0]=n
lambdas = torch.linspace(0,1,N) # N can be taken to inf without penalty
losses = torch.zeros((n,N)) # loss for example i at lambdas[j]
for i in range(n): # In reality we parallelize these loops

sigmoids = model(X[i].unsqueeze(0)).sigmoid().squeeze()
for j in range(N):

T = sigmoids > lambdas[j] # This is the prediction set
set_size = T.float().sum()
if set_size != 0:

losses[i,j] = 1 - (T[Y] == True).float().sum()/set_size
risk = losses.mean(dim=0)
pvals = torch.exp(-2*n*(torch.relu(alpha-risk)**2)) # Or any p-value
# Fixed-sequence test going backwards from lambdas[-1]
below_delta = (pvals <= delta).float()
valid = torch.tensor(

[(below_delta[j:].mean() == 1) for j in range(N)]
)

lambda_hat = lambdas[valid]

Figure B.2: PyTorch code for performing FDR control with LTT.

in Figure B.2. The result of this procedure on the MS-COCO image
dataset is in Figure B.1.

B.2 Simultaneous Guarantees on OOD Detection and Coverage

In our next example, we perform classification with two goals:

1. Flag out-of-distribution (OOD) inputs without too many false
flags.

2. If an input is deemed in-distribution (In-D), output a prediction
set that contains the true class with high probability.

Part of the purpose of this example is to teach the reader how to deal
with multiple risk functions (one of which is a conditional risk) and a
multi-dimensional parameter λ.

Our setup requires two different models. The first, OOD(x), outputs
a scalar that should be larger when the input is OOD. The second,
f̂(x)y, estimates the probability that input x is of class y; for example,
f̂(x) could represent the softmax outputs of a neural net. Similarly, the
construction of Tλ(x) has two substeps, each of which uses a different
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model. In our first substep, when OOD(x) becomes sufficiently large,
exceeding λ1, we flag the example as OOD by outputting ∅. Otherwise,
we essentially use the APS method from Section 2.1 to form prediction
sets. We precisely describe this procedure below:

Tλ(x) =

∅ OOD(x) > λ1

{π1(x), ..., πK(x)} else,

where K = inf{k :
k∑

j=1
f̂(x)πj(x) > λ2} and π(x) sorts f̂(x) from greatest

to least. We usually take Λ = {0, 1/N, 2/N, ..., 1}2, i.e., we discretize the
box [0, 1] × [0, 1] into N2 smaller boxes, with N ≈ 1000. The intuition
of Tλ(x) is very simple. If the example is sufficiently atypical, we give
up. Otherwise, we create a prediction set using a procedure similar to
(but not identical to) conformal prediction; see Figure B.3.

OOD?

{squirrel, chipmunk {

yes

no

O
"I've never seen 

anything like this before!"

"I'm 90% certain this is 
a squirrel or a chipmunk."

Figure B.3: Out-of-distribution detection with prediction sets.

Along the same lines, we control two risk functions simultaneously,

R1(λ) = P (Tλ(Xtest) = ∅) and R2(λ) = P
(
Ytest /∈ Tλ(Xtest)

∣∣ Tλ(Xtest) ̸= ∅
)

The first risk function R1 is the probability of a false flag, and the
second risk function R2 is the coverage conditionally on being deemed
in-distribution. The user must define risk-tolerances for each, so α is a
two-vector, where α1 determines the desired fraction of false flags and
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α2 determines the desired miscoverage rate. Setting α = (0.05, 0.1) will
guarantee that we falsely throw out no more than 5% of in-distribution
data points, and also that among the data points we claim are in-
distribution, we will output a prediction set containing the correct class
with 90% probability. In order to control both risks, we now need to
associate a composite null hypothesis to each λ ∈ Λ. Namely, we choose

Hλ : H(1)
λ or H(2)

λ ,

where Hλ is the union of two intermediate null hypotheses,

H(1)
λ : R1(λ) > α1 and H(2)

λ : R2(λ) > α2.

We summarize our setup in Table B.1.

Table B.1

Goal Null hypothesis Parameter
Few false positives H

(1)
λ : R1(λ) > α1 λ1

Coverage of prediction sets H
(2)
λ : R2(λ) > α2 λ2

Having completed our setup, we can now apply LTT. The presence
of multiple risks creates some wrinkles, which we will now iron out with
the reader. The null hypothesis Hλ has a different structure than the
ones we saw before, but we can use the same tools to test it. To start,
we produce p-values for the intermediate nulls,

p
(1)
λ = e

−2n
(

α1−R̂1(λ)
)2

+ and p
(2)
λ = e

−2n
(

α2−R̂2(λ)
)2

+ ,

where
R̂1(λ) = 1

n

n∑
i=1

1 {Tλ(Xi) = ∅}

and

R̂2(λ) = 1
n

n∑
i=1

1 {Yi /∈ Tλ(Xi), Tλ(Xi) ̸= ∅} − α21 {Tλ(Xi) = ∅} ./

/The second empirical risk, R̂2, looks different from a standard empirical risk
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# ood is an OOD detector, model is classifier with softmax output
lambda1s = torch.linspace(0,1,N) # Usually N ~= 1000
lambda2s = torch.linspace(0,1,N)
losses = torch.zeros((2,n,N,N)) # 2 losses, n data points, N x N lambdas
# The following loop can be massively parallelized (and GPU accelerated)
for (i,j,k) in [

(i,j,k) for i in range(n)
for j in range(N)
for k in range(N)

]:
softmaxes = model(X[i].unsqueeze(0)).softmax(1).squeeze()
cumsum = softmaxes.sort(descending=True)[0].cumsum(0)[Y[i]]
if odd(X) > lambda1s[j]:

losses[0,i,j,k] = 1
continue

losses[1,i,j,k] = int(cumsum > lambda2s[k])
risks = losses.mean(dim=1) # 2 x N x N
risks[1] = risks[1] - alpha2*risks[0]
pval1s = torch.exp(

-2*n*(torch.relu(alpha1-risks[0])**2)
) # Any p-value

pval2s = torch.exp(
-2*n*(torch.relu(alpha2-risks[1])**2)

) # Any p-value
pvals = torch.maximum(pval1s,pval2s)
# Can replace Bonferroni with SGT as in LTT paper
valid = torch.where(pvals <= delta/(N*N))
lambda_hat = [lambda1s[valid[0]], lambda2s[valid[1]]]

Figure B.4: PyTorch code for simultaneously controlling the type-1 error
of OOD detection and prediction set coverage.

Since the maximum of two p-values is also a p-value (you can check this
manually by verifying its super-uniformity), we can form the p-value
for our union null as

pλ = max
(
p

(1)
λ , p

(2)
λ

)
.

In practice, as before, we use the p-values from the HB inequality as
opposed to those from Hoeffding. Then, instead of Bonferroni correction,
we combine them with a less conservative form of sequential graphical
testing; see Angelopoulos et al. [2] for these more mathematical details.

because of the conditioning. In other words, not all of our calibration data points
have nonempty prediction sets; see Section 4 of Angelopoulos et al. [2] to learn more
about this point.
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For the purposes of this development, it suffices to return the Bonferroni
region,

Λ̂ =
{

λ : pλ ≤ δ

|Λ|

}
.

Then, every element of Λ̂ controls both risks simultaneously. See Fig-
ure B.4 for a PyTorch implementation of this procedure.
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C
Concentration Properties of the Empirical

Coverage

We adopt the same notation as Section 3.
The variation in C has three components. First, n is finite. We

analyzed how this leads to fluctuations in the coverage in Section 3.2.
The second source of fluctuations is the finiteness of nval, the size of
the validation set. A small number of validation points can result in
a high-variance estimate of the coverage. This makes the histogram
of the Cj wider than the beta distribution above. However, as we will
now show, Cj has an analytical distribution that allows us to exactly
understand the histogram’s expected properties.

We now examine the distribution of Cj . Because Cj is an average of
indicator functions, it looks like it is a binomially distributed random
variable. This is true conditionally on the calibration data, but not
marginally. This is because the mean of the binomial is beta distributed;
as we showed in the above analysis, E

[
Cj

∣∣{(Xi,j , Yi,j)}n
i=1
]

∼ Beta(n +
1 − l, l), where (Xi,j , Yi,j) is the ith calibration point in the jth trial.
Conveniently, binomial random variables with beta-distributed mean,

Cj ∼ 1
nval

Binom(nval, µ) where µ ∼ Beta(n + 1 − l, l),

81
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are called beta-binomial random variables. We refer to this distribution
as BetaBinom(nval, n + 1 − l, l); its properties, such as moments and
probability mass function, can be found in standard references.

Knowing the analytic form of the Cj allows us to directly plot its
distribution. After a sufficient number of trials R, the histogram of Cj

should converge almost exactly to its analytical PMF (which is only
a function of α, n, and nval). The plot in Figure C.1 shows how the
histograms should look with different values of nval and large R. Code
for producing these plots is also available in the aforementioned Jupyter
notebook.

0.75 0.80 0.85 0.90 0.95 1.00

Distribution of coverage with nval validation points (n = 1000)
nval=100
nval=1000
nval=10000
nval=100000
1

Figure C.1: The distribution of empirical coverage converges to the Beta
distribution in Figure 3.3 as nval grows. However, for small values of nval, the
histogram can have an inflated variance.

The final source of fluctuations is due to the finite number of ex-
periments, R. We have now shown that the Cj are independent beta-
binomial random variables. Unfortunately, the distribution of C—the
mean of R independent beta-binomial random variables—does not have
a closed form. However, we can simulate the distribution easily, and we
visualize it for several realistic choices of R, nval, and n in Figure C.2.

Furthermore, we can analytically reason about the tail properties of
C. Since C is the average of R i.i.d. beta-binomial random variables,
its mean and standard deviation are
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0.896 0.898 0.900 0.902 0.904

Distribution of C with n = 1000, nval = 1000

0.896 0.898 0.900 0.902 0.904

Distribution of C with n = 10000, nval = 10000
R = 100
R = 1000
R = 10000

Figure C.2: The distribution of average empirical coverage over R trials
with n calibration points and nval validation points./

E
(
C
)

= 1 − l

n + 1
and√

Var
(
C
)

=
√

l(n + 1 − l)(n + nval + 1)
nvalR(n + 1)2(n + 2) = O

(
1√

R min(n, nval)

)
.

/https://github.com/aangelopoulos/conformal-prediction/blob/main/
notebooks/correctness_checks.ipynb
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The best way for a practitioner to carefully debug their procedure is
to compute C empirically, and then cross-reference with Figure C.2. We
give code to simulate histograms with any n, R, and nval in the linked
notebook of Figure C.2. If the simulated average empirical coverage
does not align well with the coverage observed on the real data, there
is likely a problem in the conformal implementation.
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D
Theorem and Proof: Coverage Property of

Conformal Prediction

This is a standard proof of validity for split-conformal prediction first
appearing in Papadopoulos et al. [88], but we reproduce it here for
completeness. Let us begin with the lower bound.

Theorem D.1 (Conformal calibration coverage guarantee). Suppose (Xi,

Yi)i=1,...,n and (Xtest, Ytest) are i.i.d. Then define q̂ as

q̂ = inf
{

q : |{i : s(Xi, Yi) ≤ q}|
n

≥ ⌈(n + 1)(1 − α)⌉
n

}
.

and the resulting prediction sets as

C(X) = {y : s(X, y) ≤ q̂} .

Then,
P
(
Ytest ∈ C(Xtest)

)
≥ 1 − α.

This is the same coverage property as (1.1) in the introduction, but
written more formally. As a technical remark, the theorem also holds if
the observations to satisfy the weaker condition of exchangeability; see
Vovk et al. [116]. Below, we prove the lower bound.

Proof of Theorem 1.1. Let si = s(Xi, Yi) for i = 1, . . . , n and stest =
s(Xtest, Ytest). To avoid handling ties, we consider the case where the si
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are distinct with probability 1. See Tibshirani et al. [107] for a proof in
the general case.

Without loss of generality we assume the calibration scores are
sorted so that s1 < · · · < sn. In this case, we have that q̂ = s⌈(n+1)(1−α)⌉
when α ≥ 1

n+1 and q̂ = ∞ otherwise. Note that in the case q̂ = ∞,
C(Xtest) = Y, so the coverage property is trivially satisfied; thus, we
only have to handle the case when α ≥ 1

n+1 . We proceed by noticing
the equality of the two events

{Ytest ∈ C(Xtest)} = {stest ≤ q̂}.

Combining this with the definition of q̂ yields

{Ytest ∈ C(Xtest)} = {stest ≤ s⌈(n+1)(1−α)⌉}.

Now comes the crucial insight. By exchangeability of the variables
(X1, Y1), . . . , (Xtest, Ytest), we have

P (stest ≤ sk) = k

n + 1
for any integer k. In words, stest is equally likely to fall in anywhere be-
tween the calibration points s1, . . . , sn. Note that above, the randomness
is over all variables s1, . . . , sn, stest

From here, we conclude

P (stest ≤ s⌈(n+1)(1−α))⌉) = ⌈(n + 1)(1 − α)⌉
(n + 1) ≥ 1 − α,

which implies the desired result.

Now we will discuss the upper bound. Technically, the upper bound
only holds when the distribution of the conformal score is continuous,
avoiding ties. In practice, however, this condition is not important,
because the user can always add a vanishing amount of random noise
to the score. We will state the theorem now, and defer its proof.

Theorem D.2 (Conformal calibration upper bound). Additionally, if the
scores s1, ..., sn have a continuous joint distribution, then

P
(
Ytest ∈ C(Xtest, Utest, q̂)

)
≤ 1 − α + 1

n + 1 .

Proof. See Theorem 2.2 of Lei et al. [68].
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