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ABSTRACT

Decision-making systems based on AI and machine learn-
ing have been used throughout a wide range of real-world
scenarios, including healthcare, law enforcement, education,
and finance. It is no longer far-fetched to envision a future
where autonomous systems will drive entire business deci-
sions and, more broadly, support large-scale decision-making
infrastructure to solve society’s most challenging problems.
Issues of unfairness and discrimination are pervasive when
decisions are being made by humans, and remain (or are po-
tentially amplified) when decisions are made using machines
with little transparency, accountability, and fairness. In this
monograph, we introduce a framework for causal fairness
analysis with the intent of filling in this gap, i.e., under-
standing, modeling, and possibly solving issues of fairness
in decision-making settings.

The main insight of our approach will be to link the quan-
tification of the disparities present in the observed data
with the underlying, often unobserved, collection of causal
mechanisms that generate the disparity in the first place,

Drago Plečko and Elias Bareinboim (2024), “Causal Fairness Analysis: A Causal 
Toolkit for Fair Machine Learning”, Foundations and Trends® in Machine Learning: 
Vol. 17, No. 3, pp 304–589. DOI: 10.1561/2200000106.
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a challenge we call the Fundamental Problem of Causal
Fairness Analysis (FPCFA). In order to solve the FPCFA,
we study the problem of decomposing variations and em-
pirical measures of fairness that attribute such variations
to structural mechanisms and different units of the popu-
lation. Our effort culminates in the Fairness Map, the first
systematic attempt to organize and explain the relationship
between various criteria found in the literature. Finally, we
study which causal assumptions are minimally needed for
performing causal fairness analysis and propose the Fair-
ness Cookbook, which allows one to assess the existence of
disparate impact and disparate treatment.
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1
Introduction

As society transitions to an AI-based economy, an increasing number of
decisions that were once made by humans are now delegated to auto-
mated systems, and this trend will likely accelerate in the coming years.
Automated systems may exhibit discrimination based on gender, race,
religion, or other sensitive attributes, so considerations about fairness
in AI are an emergent discussion across the globe. The European Union,
for instance, recently passed sweeping regulations putting substantial
constraints over automated decision-making and AI systems (Commis-
sion, 2021). While we believe it is evident that a novel legal framework
is needed to organize and regulate this new, emerging economy, it is
less clear, however, that the proper scientific understanding and tools
for designing such regulations are currently available. Even though one
may surmise that issues of unfairness in AI are a recent development,
the problem’s origins can be traced to long before the advent of AI and
the prominence these systems have reached in the last years. This is
perhaps best witnessed by the civil rights movements of the twentieth
century. Interestingly, Martin Luther King Jr. spoke of having a dream
that his children “will one day live in a nation where they will not be
judged by the color of their skin, but by the content of their character.”

3
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4 Introduction

So little could he have anticipated that machine algorithms would one
day use race for making decisions, and that the issues of unfairness in
AI would be legislated under Title VII of the Civil Rights Act of 1964
(Act, 1964), which he advocated and fought for (Oppenheimer, 1994;
Kotz, 2005).

The critical challenge underlying fairness in AI systems lies in the fact
that biases in decision-making exist in the real world from which various
datasets are collected. Perhaps not surprisingly, a dataset collected from
a biased reality will contain aspects of this bias as an imprint. In this
context, algorithms are tools that may replicate or potentially even
amplify the biases that exist in reality in the first place. As automated
systems are a priori oblivious to ethical considerations, deploying and
using them blindly could lead to the perpetuation of unfairness in the
future.

More pessimistic analysts take this observation as a prelude to
doomsday, which, in their opinion, suggests that we should be extremely
wary and defensive against any AI. We believe a degree of caution is
necessary, of course, but take a more positive perspective and consider
this transition to a more AI-based society as a unique opportunity
to improve the current state of affairs. While human decision-makers
are hard to change, even when aware of their own biases, AI systems
may be less brittle and more flexible. Still, one of the requirements to
realize the AI’s potential is a new mathematical framework that allows
the description and assessment of legal notions of discrimination in a
formal way. This situation is somewhat unique in the context of AI
because a new definition of “ground truth” is required. The decision-
making system cannot rely purely on learning from the data, which
is contaminated with unwanted bias. It is currently unclear how to
formulate the ideal inferential target1 that could help bring about a
fair world when deployed. This degree of flexibility in deciding the new
ground truth also emphasizes the importance of normative work in this
context.2

1We believe this explains the vast number of fairness criteria described in the
literature, which we will detail later on in the monograph.

2One way of seeing this point a bit more formally goes as follows. We first
consider the current version of the world, say π, and note that it generates a
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In this monograph, we build on two legal doctrines applied to large
bodies of cases throughout the US and the EU known as disparate
treatment and disparate impact (Barocas and Selbst, 2016). One of
our goals will be to develop a framework for causal fairness analysis
grounded in these doctrines and translate them into exact mathematical
language amenable to AI optimization. The disparate treatment doctrine
enforces the equality of treatment of different groups, prohibiting the
use of the protected attribute (e.g., race) in the decision process. One
of the legal formulations for proving disparate treatment is that “a
similarly situated person who is not a member of the protected class
would not have suffered the same fate” (Barocas and Selbst, 2016).3
On the other hand, the disparate impact doctrine focuses on outcome
fairness,4 namely, the equality of outcomes among protected groups.
Disparate impact discrimination occurs if a facially neutral practice
has an adverse impact on members of the protected group. Under this
doctrine most commonly fall cases where discrimination is unintended
or implicit. The analysis can become somewhat intricate when variables
are correlated with the protected attribute and may act as a proxy. The
law may not necessarily prohibit their usage due to their relevance to the
business itself, legally known as “business necessity” or “job-relatedness”.
Taking business necessity into account is the essence of disparate impact
(Barocas and Selbst, 2016).

probability distribution P. Training the machine learning algorithm with data from
this distribution (D ∼ P) is replicating patterns from this reality, π. We would want
an alternative, counterfactual reality π′, which induces a different distribution P ′

without the past biases. The challenge here is that thinking about and defining P ′

relies on going beyond P, or the corresponding dataset, which is non-trivial, and yet
one of our main goals.

3This formulation is related to a condition known as ceteris paribus, which
represents the effect of the protected attribute on the outcome of interest while
keeping everything else constant. From a causal perspective, this suggests that the
disparate treatment doctrine is concerned with direct discrimination, a connection
we draw formally later on in the monograph.

4Interestingly, both of the above-discussed doctrines are usually considered under
the rubric of outcome fairness, that is, focusing on the disparity in the outcome itself.
An important complementary notion to outcome fairness is process fairness, which
is instead focused on how the decision process is carried out, and not specifically
on the outcomes themselves (Grgic-Hlaca et al., 2016). In this context, the causal
approach offers a key strength, discussed in detail in Appendix E.
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6 Introduction

(a) Spectrum of fairness notions spanned by
disparate treatment and impact doctrines.

X

Gender D

Department

Y

Admission

(b) A partial causal model for the Berkeley
Admission example.

Figure 1.1: Spectrum of fairness notions and the Berkeley Admissions example.

In fact, as we demonstrate intuitively and formally later in the text,
the disparate treatment and disparate impact doctrines can be seen as
spanning a spectrum of fairness notions (see Fig. 1.1a). On the one end,
the disparate treatment doctrine ensures that there is no direct effect of
the protected attribute on the outcome, which can be seen as the minimal
fairness requirement. On the other end, the disparate impact doctrine
(in the extreme case), ensures that the protected attribute has no effect
on the outcome. In practice, however, business necessity considerations
determine where on this spectrum the appropriate fairness notion is,
given the requirements and specific details of the application in question.

The connection of fairness with causal inference might be seen as
natural for two reasons. Firstly, business necessity considerations are in-
herently causal, as they require attributing the observed disparity to the
underlying causal mechanism. Our framework will therefore allow the
data scientist to quantify the disparity explained by mechanisms that
do not fall under business necessity and are considered discriminatory,
thereby accommodating application-specific requirements. Secondly, the
legal frameworks of anti-discrimination laws (for example, Title VII
in the US) often require that to establish a prima facie case of dis-
crimination the plaintiff must demonstrate “a strong causal connection”
between the alleged discriminatory practice and the observed statistical
disparity (e.g., Texas Dept. of Housing and Community Affairs v. In-
clusive Communities Project, Inc., 576 U.S. 519 (2015)). Therefore, as
discussed in subsequent sections, another requirement of our framework
will be the ability to distinguish between notions of discrimination that
would otherwise be statistically indistinguishable.

Full text available at: http://dx.doi.org/10.1561/2200000106
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Consider the Berkeley Admission example, in which admission re-
sults of students applying to UC Berkeley were collected and analyzed
(Bickel et al., 1975). The analysis showed that male students are 14%
more likely to be admitted than their female counterparts, which raised
concerns about the possibility of gender discrimination. The discussion
of this example is often less focused on the accuracy and appropriateness
of the used statistical measures and more on the plausible justification
of disparity based on the mechanism underlying this disparity. A visual
representation of the dynamics in this setting is shown in Fig. 1.1b.
In words, each student chooses a department of application (D). The
department’s choice and the student’s gender (X) might, in turn, in-
fluence the admission decision (Y ). In this example, there is a clear
need to determine how much of the observed statistical disparity can be
attributed to the direct causal path from gender to admission decision
vs. the indirect mechanism5 going through the department choice vari-
able. Looking directly at gender for determining university admission
would indeed be disallowed, whereas using department choice, which
may be influenced by gender, might be deemed acceptable.6 The need
to explain an observed statistical disparity, say in this case the 14%
difference in admission rates, through the underlying causal mechanisms
– direct and indirect – is a recurring theme when assessing discrimination,
even though it is sometimes considered only implicitly.

When AI tools are deployed in the real world, a similar pattern of
questions emerges. Examples include (but are not limited to) the debate
over the origins and interpretation of discrimination in the criminal
justice system (COMPAS, Angwin et al., 2016), the contribution of
data vs. algorithms in the observed bias in face detection (e.g., Harwell,
2019; Buolamwini and Gebru, 2018), and the business necessity vs. risk
of digital redlining in targeted advertising (Detrixhe and Merrill, 2019).
Intuitively, through these questions, society wants to draw a line between

5As discussed later on, even among indirect paths, one may need to distinguish
between mediated causal paths and confounded non-causal paths, or, more generally,
among a specific subset of these paths.

6Society may be “guilty” of creating the wrong incentives, and perhaps fewer
female applicants are considering certain departments, but the university itself may
not be deemed discriminatory.

Full text available at: http://dx.doi.org/10.1561/2200000106



8 Introduction

what is seen as discriminatory on the one hand and what is seen
as acceptable or justified by economic principles on the other. Put
differently, such discussions aim to determine where on the fairness
spectrum in Fig. 1.1a the appropriate notion of fairness lies.

A practitioner interested in implementing a fair AI system will
need to detect and quantify undesired discrimination based on society’s
current ethical standards, and then design learning methods capable of
removing such unfairness from future predictions and decisions. In doing
so, the practitioner will face two challenges. The first stems from the fact
that the current literature is abundant with different fairness measures,
some of which are mutually incompatible (Corbett-Davies and Goel,
2018), and choosing among these measures, even for the system designer,
is usually a non-trivial task. This challenge is compounded with the
second challenge, which arises from the statistical nature of such fairness
measures. As we will show both formally and empirically later in the
text, statistical measures alone cannot distinguish between different
causal mechanisms that transmit change and generate disparity in the
real world, even if an unlimited amount of data is available. Despite
this apparent shortcoming of purely statistical measures, much of the
literature focuses on casting fair prediction as an optimization problem
subject to fairness constraints based on such measures (Pedreschi et al.,
2008; Pedreschi et al., 2009; Luong et al., 2011; Ruggieri et al., 2011;
Hajian and Domingo-Ferrer, 2012; Kamiran and Calders, 2009; Calders
and Verwer, 2010; Kamiran et al., 2010; Zliobaite et al., 2011; Kamiran
and Calders, 2012; Kamiran et al., 2012; Zemel et al., 2013; Mancuhan
and Clifton, 2014; Romei and Ruggieri, 2014; Dwork et al., 2012; Friedler
et al., 2016; Chouldechova, 2017; Pleiss et al., 2017), to cite a few. In
fact, these methods may be insufficient for removing bias and perhaps
even lead to unintended consequences and bias amplification, as it will
become clear later on.

As outlined briefly in previous paragraphs, the behavior of AI/ML-
based decision-making systems is an emergent property following a
complex combination of past (possibly biased) data and interactions
with the environment. Predicting or explaining this behavior and its
impact on the real world can be difficult, even for the system designer
who knows how the system is built. Ensuring fairness of such decision-
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making systems, therefore, critically relies on contributions from two
groups, namely:

a. the AI and ML engineers who develop methods to detect bias and
ensure adherence of ML systems to fairness measures, and

b. the domain experts, policymakers, economists, social scientists,
and legal experts who study the origins of these biases and can
provide the societal interpretations of fairness measures and their
expectations in terms of norms and standards.

Currently, these groups do not share a common starting point. It is
challenging for them to understand each other and work together towards
developing a fair specification of such complex systems, aligned with
the many stakeholders involved in the process.

In this monograph, we argue that the language of structural causality
can provide a unique perspective on the issues of fairness and facilitate
the discussion and exchange of ideas, goals, and expectations between
these groups. Issues of unfairness are fundamentally linked to consid-
erations of responsibility and blame, and thus a causal analysis of the
problem is mandated from legal, logical and philosophical standpoints
(Moore, 2019; Halpern, 2016).7 A causal analysis, as will be discussed
in detail, is contingent on obtaining rich enough causal models of unob-
served or partially observed reality, which may be non-trivial in practice,
yet it is crucial in the context of fair ML as it allows one to relate ob-
served disparities to existing causal mechanisms. Causal models must
be built using inputs from domain experts, social scientists, and policy-
makers, and a formal language is needed to express and scrutinize their
assumptions. In this work, we lay down the foundations for interpreting
legal doctrines of discrimination through causal reasoning, which we
view as an essential step towards the development of a new generation
of more ethical and transparent AI systems.

7We remark that the causal perspective on fairness is not the only viewpoint,
and a number of important works have been developed entirely outside this rubric.
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Monograph Roadmap and Contributions

We develop a general and coherent framework of Causal Fairness Analy-
sis to overcome the challenges described above. This framework provides
a common language to connect computer scientists, statisticians, and
data scientists on the one hand and legal, social, and ethical experts on
the other, to tackle challenges of fairness in automated decision-making.
Further, this new framework grounds the legal doctrines of disparate im-
pact and disparate treatment through the semantics of structural causal
models. The critical elements of our proposal are shown in Fig. 1.2,
which also serves as a roadmap of how this monograph is organized
and how causal fairness analysis should be conducted. Specifically, in
Sec. 2, we cover the basic notions of causal inference needed to build
our framework, including structural causal models, causal diagrams,
and data collection. In Sec. 3, we introduce the essential elements of our
theoretical framework. In particular, we define the notions of structural
fairness that will serve as a baseline, ground truth for determining
the presence or absence of discrimination under disparate impact and
disparate treatment doctrines. In Sec. 4, we introduce causal measures
of fairness that can be computed from data in practice. We further draw
the connection between such measures and the aforementioned legal
doctrines. In Sec. 5, we introduce the tasks of Causal Fairness Analysis
– (1) bias detection and quantification, (2) fair prediction, and (3) fair
decision-making – and show how they can be solved by building on
the tools developed earlier. In Sec. 6 we develop tools for decomposing
indirect and spurious variations on a variable-specific level, which leads
to a general approach for evaluating fairness under arbitrary business
necessity sets. More specifically, our contributions are as follows:

1. We study the problem of decomposing variations between the
protected attribute X and the outcome variable Y , using the
technique of factual and counterfactual contrasts (Def. 3.7). We
prove the structural basis expansion formula for such contrasts,
which highlights the fundamental difference between causal and
non-causal variations (Thm. 3.1). Furthermore, this result allows

Full text available at: http://dx.doi.org/10.1561/2200000106



11

SCM M

a
Structural
Criteria
{Qk}k=1:s

d

Data D

b

Diagram G

c

Fairness
Measures
{µi}i=1:m

e

Disparate
Impact

Disparate
Treatment

Doctrines

Empirical
Measures
{ηi}i=1:m

g

Task 1:
Bias Detection

Task 2:
Fair Prediction

Task 3:
Decision-making

f

Tasks

Sections 2 & 3:
Foundations

Section 4:
Fairness
Measures

Section 5:
Fairness

Tasks

Figure 1.2: A mental map of the Causal Fairness Analysis framework.

us to show how the total variation (TV)8 can be decomposed based
on different causal mechanisms and across different groups of units.
These developments lead to the construction of the explainability
plane (Fig. 3.2).

2. We introduce the Fundamental Problem of Causal Fairness Anal-
ysis (FPCFA, Def. 3.6), which formalizes the key properties that
empirical measures of fairness should exhibit, including admissi-
bility and decomposability. Subsequently, we develop increasingly
refined solutions to the FPCFA, proved in Thms. 4.2, 4.3, 4.4,
and 4.5.

3. We design the first version of the Fairness Map (Thm. 4.8 and
Fig. 4.5), putting many well-known fairness measures under the
same theoretical umbrella and uncovering the structure that con-
nects them. In particular, the Map connects all the measures in
the so-called TV family (Tab. 4.1). We provide a detailed analy-
sis of the causal properties of well-known measures found in the

8What we refer to in this monograph as the total variation (TV) measure is also
known in the literature as the parity gap, or simply the difference in conditional
expectations, E[Y | x1]−E[Y | x0], where x0, x1 are the two values of the protected
attribute X, and Y is the outcome of interest.
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literature, including counterfactual fairness, individual fairness,
and predictive parity (Sec. 4.4).

4. We propose a simplified type of (clustered) graphical model called
the Standard Fairness Model (SFM, Def. 2.7), which requires
fewer modeling assumptions than typically used causal diagrams.
We show that the SFM strikes a balance between simplicity of
construction and informativeness for causal analysis (Thm. 4.11),
allowing us to perform causal inference even when detailed knowl-
edge about the underlying decision-making process is scarce.

5. We develop the first non-parametric decomposition of the predic-
tive parity measure in terms of the underlying causal mechanisms.
Building on this, we define causal predictive parity (Def. 4.14),
and show how this new notion is complementary to statistical
parity, thereby addressing a well-known impossibility result from
the literature (Thms. 4.12, 4.13).

6. By putting all the above results together, we develop a practical
procedure called the Fairness Cookbook (Alg. 5.1) that allows
data scientists to assess the presence of disparate treatment and
disparate impact and quantify their degree. Furthermore, we
provide an R-package called faircause for performing this task.

7. We study the implications of Causal Fairness Analysis on the fair
prediction problem. In particular, we prove the Fair Prediction
Theorem (Thm. 5.1) that shows that making TV equal to zero
during the training stage is almost never sufficient to ensure that
causal measures of fairness are well-behaved. We further propose
solutions that can provide causal guarantees for the constructed
predictors (Thms. 5.2, 5.3).

8. Based on the implications of the Fair Prediction Theorem to
decision-making (Cor. 5.5), we develop new procedures for achiev-
ing fairness in particular single-step decision-making settings
(Algs. 5.3 and 5.5).

9. We prove the first non-parametric decomposition for spurious
effects in Semi-Markovian models (Thms. 6.1, 6.3). We further
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show results that establish what is the most fine-grained path-
specific analysis that can be performed in practice (Thm. 6.9,
Cor. 6.10), and develop an algorithm for testing arbitrary business
necessity requirements (Alg. 6.4).

Readers familiar with causal inference may want to move straight to
Sec. 3, even though the examples provided in the next section are used to
motivate the problem of fairness discussed throughout the monograph.
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A
Proofs of Main Theorems and Derivations

In this section, we provide the proofs of the main theorems presented in
the monograph. In particular, we give the proof for the Fairness Map
theorem (Thm. 4.8), soundness of the SFM theorem (Thm. 4.11), the
Fair Prediction theorem (Thm. 5.1), and the soundness of the Causal
Individual Fairness procedure (Thm. 5.3).

A.1 Proof of Thm. 4.8

The proof of Thm. 4.8 is organized as follows. The full list of implications
contained in the Fairness Map in Fig. 4.5 is given in Tab. A.1. For each
implication, we indicate the lemma in which the implication proof is
given.

Lemma A.1 (Power relations of causal effects). The total, direct, and
indirect effects admit the following relations of power (assuming that
that Z ⊂ V ′):
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Table A.1: List of implications in the Fairness Map in Fig. 4.5.

Implication Proof

p
ow

er

Unit-TE =⇒ v′-TE =⇒ z-TE =⇒ ETT =⇒ TE Lem. A.1

Unit-DE =⇒ v′-DE =⇒ z-DE =⇒ Ctf-DE =⇒ NDE Lem. A.1

Unit-IE =⇒ v′-IE =⇒ z-IE =⇒ Ctf-IE =⇒ NIE Lem. A.1

Exp-SE ⇐⇒ Ctf-SE Lem. A.2

ad
m

is
si

b
il

it
y S-SE =⇒ Ctf-SE Lem. A.5

S-DE =⇒ unit-DE Lem. A.3

S-IE =⇒ unit-IE Lem. A.4

d
ec

om
p

os
ab

il
it

y

NDE ∧ NIE =⇒ TE Lem. A.6

Ctf-DE ∧ Ctf-IE =⇒ ETT Lem. A.6

z-DE ∧ z-IE =⇒ z-TE Lem. A.6

v′-DE ∧ v′-IE =⇒ v′-TE Lem. A.6

unit-DE ∧ unit-IE =⇒ unit-TE Lem. A.6

TE ∧ Exp-SE =⇒ TV Lem. A.7

ETT ∧ Ctf-SE =⇒ TV Lem. A.7

unit-TEx0,x1(y(u)) = 0 ∀u =⇒ v′-TEx0,x1(y | v′) = 0 ∀v′ (A.1)
=⇒ z-TEx0,x1(y | z) = 0 ∀z (A.2)
=⇒ ETTx0,x1(y | x) = 0 ∀x (A.3)
=⇒ TEx0,x1(y) = 0, (A.4)

unit-DEx0,x1(y(u)) = 0 ∀u =⇒ v′-DEx0,x1(y | v′) = 0 ∀v′ (A.5)
=⇒ z-DEx0,x1(y | z) = 0 ∀z (A.6)
=⇒ Ctf-DEx0,x1(y | x) = 0 ∀x (A.7)
=⇒ NDEx0,x1(y) = 0, (A.8)

unit-IEx0,x1(y(u)) = 0 ∀u =⇒ v′-IEx0,x1(y | v′) = 0 ∀v′ (A.9)
=⇒ z-IEx0,x1(y | z) = 0 ∀z (A.10)
=⇒ Ctf-IEx0,x1(y | x) = 0 ∀x (A.11)
=⇒ NIEx0,x1(y) = 0. (A.12)
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Proof. We prove the statement for total effects (direct and indirect
cases are analogous). We start by showing that ETT is more powerful
than TE.

TEx0,x1(y) =P (yx1)− P (yx0)

=
∑

x

[
P (yx1 | x)− P (yx0 | x)

]
P (x)

=
∑

x

ETTx0,x1(y | x)P (x).

Therefore, if ETTx0,x1(y | x) = 0 ∀x then TEx0,x1(y) = 0. Next, we can
write
ETTx0,x1 (y | x) = P (yx1 | x)− P (yx0 | x)

=
∑

z

[
P (yx1 | x, z)− P (yx0 | x, z)

]
P (z | x)

=
∑

z

[
P (yx1 | z)− P (yx0 | z)

]
P (z | x) Yx⊥⊥X | Z in SFM

=
∑

z

z-TEx0,x1 (y | z)P (z | x).

Therefore, if z-TEx0,x1(y | z) = 0 ∀z then ETTx0,x1(y | x) = 0 ∀x. Next,
for a set V ′ ⊆ V such that Z ⊆ V ′, we can write

z-TEx0,x1(y) = P (yx1 | z)− P (yx0 | z)

=
∑
v′\z

[
P (yx1 | z, v′ \ z)− P (yx0 | z, v′ \ z)

]
P (v′ \ z | z)

=
∑
v′\z

v′-TEx0,x1(y | v′)P (v′ \ z | z).

Therefore, if v′-TEx0,x1(y | v′) = 0 ∀v′ then z-TEx0,x1(y | z) = 0 ∀z.
Next, notice that

v′-TEx0,x1(y) = P (yx1 | v′)− P (yx0 | v′)

=
∑

u

[
yx1(u)− yx0(u)

]
P (u | v′)

=
∑

u

unit-TEx0,x1(y(u))P (u | v′).

Therefore, if unit-TEx0,x1(y(u)) = 0 ∀u then v′-TEx0,x1(y | v′) = 0 ∀v′.
■
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Lemma A.2 (Power relations of spurious effects). The criteria based on
Ctf-SE and Exp-SE are equivalent in the case of binary X. Formally,

Exp-SEx(y) = 0 ∀x ⇐⇒ Ctf-SEx,x′(y) = 0 ∀x ̸= x′. (A.13)

Proof.

Exp-SEx(y) = P (y | x)− P (yx)
= P (y | x)− P (yx | x)P (x)− P (yx | x′)P (x′)
= P (y | x)[1− P (x)]− P (yx | x′)P (x′)
= P (y | x)P (x′)− P (yx | x′)P (x′)
= −P (x′)Ctf-SEx′,x(y).

Assuming P (x′) > 0, the claim follows. ■

We remark that, in general (for multi-valued X), the criterion based on
Ctf-SE is stronger than that based on Exp-SE.

Lemma A.3 (Admissibility w.r.t. structural direct). The structural direct
effect criterion (X /∈ pa(Y )) implies the absence of unit-level direct
effect. Formally:

S-DE =⇒ unit-DEx0,x1(y(u)) = 0 ∀u. (A.14)

Proof. Suppose that X /∈ pa(Y ). Note that:

unit-DEx0,x1(y(u)) = yx1,Wx0
(u)− yx0(u)

= fY (x1,Wx0(u), Z(u), uY )− fY (x0,Wx0(u), Z(u), uY )
= fY (Wx0(u), Z(u), uY )
− fY (Wx0(u), Z(u), uY ) X /∈ pa(Y )

= 0.

■

Lemma A.4 (Admissibility w.r.t. structural indirect). The structural
indirect effect criterion (de(X) ∩ pa(Y ) = ∅) implies the absence of
unit-level indirect effect. Formally:

S-IE =⇒ unit-IEx1,x0(y(u)) = 0 ∀u. (A.15)
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Proof. Let Wde ⊆ W be the subset of mediators W which are in
de(X), and let WC

de be its complement in W . Then, by assumption,
Wde ∩ pa(Y ) = ∅. We can write:

unit-IEx1,x0(y(u)) = yx1,Wx0
(u)− yx1(u)

= fY (x1, (WC
de)x0(u), Z(u), uY )

− fY (x1, (WC
de)x1(u), Z(u), uY )

= fY (x1,W
C
de(u), Z(u), uY )

− fY (x1,W
C
de(u), Z(u), uY ) WC

de /∈ de(X)
= 0.

■

Lemma A.5 (Admissibility w.r.t. structural spurious). The structural
spurious effect criterion (UX ∩ an(Y ) = ∅ and an(X) ∩ anGX

(Y ) = ∅)
implies counterfactual spurious effect is 0. Formally:

S-SE =⇒ Ctf-SEx0,x1(y) = 0 ∀u. (A.16)

Proof. Note that S-SE implies there is no open backdoor path between
X and Y . As a consequence, we know that

Yx⊥⊥X.

Furthermore, the absence of backdoor paths also implies we can use the
2nd rule of do-calculus (Action/Observation Exchange). Therefore, we
can write:

Ctf-SEx0,x1(y) = P (yx0 | x1)− P (y | x0)
= P (yx0)− P (y | x0) since Yx⊥⊥X
= P (yx0)− P (yx0) Action/Observation Exchange
= 0.

■
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Lemma A.6 (Extended Mediation Formula). The total effect can be
decomposed into its direct and indirect contributions on every level of
the population axes in the explainability plane. Formally, we write:

TEx0,x1(y) = NDEx0,x1(y)−NIEx1,x0(y) (A.17)
ETTx0,x1(y | x) = Ctf-DEx0,x1(y | x)− Ctf-IEx1,x0(y | x) (A.18)
z-TEx0,x1(y | z) = z-DEx0,x1(y | z)− z-IEx1,x0(y | z) (A.19)
v′-TEx0,x1(y | v′) = v′-DEx0,x1(y | v′)− v′-IEx1,x0(y | v′) (A.20)

unit-TEx0,x1(y(u)) = unit-DEx0,x1(y(u))− unit-IEx1,x0(y(u)). (A.21)

Proof. The proof follows from the structural basis expansion from
Eq. 3.24. In particular, note that

E-TEx1,x0(y | E) = P (yx1 | E)− P (yx0 | E) (A.22)
= P (yx1 | E)− P (yx1,Wx0

| E) (A.23)
+ P (yx1,Wx0

| E)− P (yx0 | E)
= −E-IEx1,x0(y | E) + E-DEx1,x0(y | E). (A.24)

By using different events E the claim follows. ■

Lemma A.7 (TV Decompositions). The total variation (TV) measure
admits the following two decompositions

TVx0,x1(y) = Exp-SEx1(y) + TEx0,x1(y)− Exp-SEx0(y) (A.25)
= ETTx0,x1(y | x0)− Ctf-SEx1,x0 . (A.26)

Proof. We write
TVx0,x1(y) = P (y | x1)− P (y | x0)

= P (y | x1)− P (yx1) + P (yx1)− P (yx0) + P (yx0)− P (y | x0)
= Exp-SEx1

(y) + TEx0,x1(y)− Exp-SEx0
(y).

Alternatively, we can write

TVx0,x1(y) = P (y | x1)− P (y | x0)
= P (y | x1)− P (yx1 | x0) + P (yx1 | x0)− P (y | x0)
= ETTx0,x1(y | x0)− Ctf-SEx1,x0(y),

which completes the proof. ■
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A.2 Soundness of the SFM: Proof of Thm. 4.10 and 4.11

Proof. The proof consists of two parts. In the first part, we show that
the quantities where the event E is either of ∅, {x}, {z} (corresponding
to the first three rows of the fairness map) are identifiable under the
assumptions of the Standard Fairness Model. We in particular show
that TEx0,x1(y), Exp-SEx(y), TEx0,x1(y | z), ETTx0,x1(y | x), and Ctf-
DEx0,x1(y | x) are identifiable (it follows from very similar arguments
that all other quantities are also identifiable). Additionally, we also
show that (x,w)-DEx0,x1(y | x,w) and (x, z, w)-DEx0,x1(y | x, z, w)
are identifiable (being the only identifiable v′-specific measures with
W ⊆ V ′). From this, it follows that for any graph G compatible with
GSFM, the quantities of interest are (i) identifiable; (ii) their identification
expression is the same. This in turn shows that using GSFM instead
of the full G does not hurt identifiability of these quantities. In the
second part of the proof, we show that any contrast defined by an event
E which contains either W = w or Y = y (excluding (x,w)-DE and
(x, z, w)-DE) is not identifiable under some very mild conditions (namely
the existence of a path X →Wi1 → ...→Wik

→ Y ). This part of the
proof, complementary to the first part, shows that for contrasts with
event E containing post-treatment observations (i.e., descendants of the
protected attribute which is manipulated), even having the full graph G
would not make the expression identifiable. All of the proofs here need to
be derived from first principles, since the graph GSFM contains “groups”
of variables Z and W , making the standard identification machinery
(Pearl, 2000) not directly applicable.
Part I: Note that for identifying TEx0,x1(y) we need to identify P (yx).
We can write
P (yx) = P (y | do(x))

=
∑

z

P (y | do(x), z)P (z | do(x)) Law of Total Probability

=
∑

z

P (y | x, z)P (z) (Y⊥⊥X | Z)GX
, (X⊥⊥Z)G

X

from which it follows that TEx0,x1(y) =
∑

z[P (y | x1, z) − P (y |
x0, z)]P (z). Note that the identifiability of TEx0,x1(y | z) also fol-
lows from the above derivation, namely TEx0,x1(y | z) =

∑
z[P (y |
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x1, z) − P (y | x0, z)], and so does Exp-SEx(y) =
∑

z P (y | x, z)[P (z |
x)− P (z)]. We are now left with showing that ETTx0,x1(y | x) and Ctf-
DEx0,x1(y | x) are also identifiable. These are Layer 3, counterfactual
quantities and therefore rules of do-calculus will not suffice. To be able
to use independence statements of counterfactual variables, we will make
use of the make-cg algorithm of Shpitser and Pearl (2007) for construc-
tion of counterfactual graphs, which extends the twin-network approach
of Balke and Pearl (1994). Therefore, when considering an expression of
the form Yx = y,X = x′, we obtain the following counterfactual graph

Z

X

Wx

Yx

from which we can see that Yx⊥⊥X | Z. Therefore,

ETTx0,x1(y) = P (yx1 | x)− P (yx0 | x)

=
∑

z

[P (yx1 | x, z)− P (yx0 | x, z)]P (z | x) Law of Tot. Prob.

=
∑

z

[P (y | x1, z)− P (y | x0, z)]P (z | x) Yx⊥⊥X | Z.

Finally, for identifying Ctf-DEx0,x1(y | x) we use make-cg applied to
GSFM and yx1,w, wx0 , x, z to obtain

Z

X

Wx0

Yx1,w

from which we can say that Yx1,w⊥⊥(Wx0 , X) | Z. Therefore, we know
that Ctf-DEx0,x1(y | x) equals to:
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P (yx1,Wx0
| x)− P (yx0,Wx0

| x)

=
∑

z

[P (yx1,Wx0
| x, z)− P (yx0,Wx0

| x, z)]P (z | x) Law of Tot. Prob.

=
∑
z,w

[P (yx1,w, wx0 | x, z)− P (yx0,w, wx0 | x, z)]P (z | x) Ctf. unnesting

=
∑
z,w

[P (yx1,w | x, z)− P (yx0,w | x, z)]P (wx0 | z)P (z | x) Yx1,w⊥⊥Wx0 | Z

=
∑
z,w

[P (yx1,w | x, z)− P (yx0,w | x, z)]P (w | x0, z)P (z | x) Wx0⊥⊥X | Z

=
∑
z,w

[P (y | x1, z, w)− P (y | x0, z, w)]P (w | x0, z)P (z | x) Yx,w⊥⊥X | Z.

From the above, one can also show that

(x,w)-DEx0,x1(y | x,w) =
∑

z

[P (y | x1, z, w)− P (y | x0, z, w)]

· P (w | z, x)P (z | x),
(x, z, w)-DEx0,x1(y | x, z, w) = P (y | x1, z, w)− P (y | x0, z, w),

completing the first part of the proof.
Part II: We next need to show that any contrast with either W = w

or Y = y in the event E (excluding (x,w)-DE and (x, z, w)-DE) is
not identifiable, even if using the full graph G. We show this for the
quantity P (yx1 | x0, w), since other similar quantities work analogously.
Assume for simplicity that (i) variable Z = ∅; (ii) there are no bidirected
edges between the W variables. The latter assumption clearly makes
the identifiability task easier, since adding bidirected edges can never
help identification of quantities. To avoid degenerate cases (and trivial
identifiability due to a lack of directed paths), assume that a path
X →Wi1 → ...→Wik

→ Y exists. Then, when applying make-cg to G
and yx1 , x0, w the resulting counterfactual graph will contain

X Wi1 Wi2
. . . Wik

Wi1 x1
Wi2 x1

. . . Wik x1 Yx1
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as a subgraph and therefore when applying the ID∗ algorithm of Shpitser
and Pearl (2007), we will encounter a C-component {Wi,Wix1} which
will result in non-identifiability of the overall expression. Therefore, even
having access to the full G will not help us identify contrasts that include
observations of post-treatment variables, completing the proof. ■

A.3 Proof of Theorem 5.1

Proof. Considering the following SFM

U Z

X

W

Y

for which we can write the linear structural causal model as follows:

U ← N(0, 1) (A.27)
X ← Bernoulli(expit(U)) (A.28)
Z ← aUZU + aZZZϵZ (A.29)
W ← aXWX + aZWZ + aW WW + ϵW (A.30)
Y ← aXY X + aZY Z + aW Y W + ϵY (A.31)

where matrices aZZ , aW W are upper diagonal, making the above SCM
non-recursive, in the sense that no variable is a functional argument of
itself. For simplicity, we assume ϵZ ∼ N(0, InZ ), ϵW ∼ N(0, InW ) and
ϵY ∼ N(0, 1). The coefficients a of the above model are assumed to be
drawn uniformly from [−1, 1]|E|, where |E| is the number of edges, with
each edge corresponding to a linear coefficient.

Based on the above SCM, the outcome Y can be written

Y =
∑

Vi∈X,Z,W

aViY Vi + ϵY ,
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and the linear predictor of Y , labeled f can be written as

f(X,Z,W ) =
∑

Vi∈X,Z,W

ãViY Vi.

The objective of the optimization (i.e., the MSE) can then be written as
E[Y − f(X, Z, W )]2 = E

[ ∑
Vi∈X,Z,W

(aViY − ãViY )Vi + ϵY

]2

= E[ϵ2
Y ] +E

[ ∑
Vi,Vj ∈X,Z,W

(aViY − ãViY )(aVj Y − ãVj Y )ViVj

]
= 1 + (aV Y − ãV Y )T

E[V V T ](aV Y − ãV Y ),

when written as a quadratic form with the characteristic matrix E[V V T ].
Here, (with slight abuse of notation) the set V includes X,Z,W , but not
Y . Further, the constraint TVx0,x1(f) = 0 is in fact a linear constraint
on the coefficients ãV Y , since we have that

TVx0,x1(f) = (E[V | x1]−E[V | x0])T ãV Y .

We write

c = E[V | x1]−E[V | x0], (A.32)
Σ = E[V V T ] (A.33)

and note that our optimization problem can be written as

arg min
ãV Y

(aV Y − ãV Y )T Σ(aV Y − ãV Y ) (A.34)

subject to cT ãV Y = 0. (A.35)

The objective is a quadratic form centered at aV Y . Geometrically, the
solution to the optimization problem is the meeting point of an ellipsoid
centered at aV Y with the characteristic matrix Σ and the hyperplane
through the origin with the normal vector c. After a change of basis
(substituting t = Σ

1
2 (aV Y − ãV Y )), the solution can be derived explicitly

as

âV Y = aV Y −
cTaV Y Σ−1c

cT Σ−1c
.

We next analyze the constraints

Ctf-DEx0,x1(f̂fair | x0) = Ctf-IEx1,x0(f̂fair | x0) = Ctf-SEx1,x0(f̂fair) = 0.
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The first constraint Ctf-DEx0,x1(f̂fair | x0) can be simply written as
âXY (x1 − x0) = 0, and since x1 − x0 = 1, the constraint can be written
as cT

1 âV Y = 0 where c1 = (1, 0, . . . , 0)T . Similarly, but more involved,
the Ctf-IE constraint can be written as cT

2 âV Y = 0 where entries of c2
corresponding to Wi variables are

E[(Wi)x0 | x0]−E[(Wi)x1 | x0],

and 0 everywhere else. Finally, the Ctf-SE constraint can be written as
cT

3 âV Y = 0 where entries of c3 corresponding to Wi variables are

E[(Wi)x1 | x0]−E[(Wi)x1 | x1],

and the entries corresponding to Zi variables

E[Zi | x1]−E[Zi | x0].

Notice also that c1 − c2 − c3 = c (following from the decomposition
result in Eq. 4.48). We further note that by inverting Eq. A.29 and
using linearity of expectations

E[Z | x0]−E[Z | x1] = −(I − aZZ)−1aUZδ
01
u

where δ01
u = E[U | x1]−E[U | x0] is a constant. Similarly,

E[Wx1 | x0]−E[Wx1 | x1] = −(I − aW W )−1aZW (I − aZZ)−1aUZδ
01
u .

Furthermore, for the indirect effect, we have that

E[Wx0 | x0]−E[Wx1 | x0] = −(I − aW W )−1aXW .

Therefore, we can now see how the three constraints can be expressed
in terms of the structural coefficients a. What remains is understanding
the entries of the Σ matrix. Note that E[ViVj ] can be computed by
considering all treks from Vi to Vj . A trek is a path that first goes
backwards from Vi until a certain node, and then forwards to Vj . The
slight complication comes from the treks with the turning point at U that
pass through X, as the SCM is not linear along the bidirected U L9999K X
edge. Nonetheless, in this case the contribution to the covariance of Vi
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and Vj equals the product of the coefficients on the trek multiplied by
E[XU ]. Therefore, we note that

E[ViVj ] =
∑

treks Ts
from Vi to Vj

λ(Ts)
∏

edges Vk→Vl
∈Ts

aVkVl

where the weighing factor λ(Ts) is either 1 or E[XU ] depending on the
trek Ts. To conclude the argument, notice the following. The entries of
the Σ matrix are polynomial functions of the structural coefficients a.
The same also therefore holds for Σ−1. Furthermore, the coefficient c is
also a polynomial function of coefficients in a. Therefore, the condition
cT

1 âV Y = 0 can be written as

cT
1 (aV Y −

cTaV Y Σ−1c

cT Σ−1c
) = 0, (A.36)

where the left hand side is a polynomial expression in the coefficients
of a. Therefore, the above expression defines an algebraic hypersurface.
Any such hypersurface has measure 0 in the space [−1, 1]|E|, proving
that the set of 0-TV-compliant SCMs is in fact of measure 0. Intuitively,
the result is saying that the meeting point of an ellipsoid centered at
aV Y with the characteristic matrix Σ and the hyperplane through the
origin with the normal vector c with measure 0 also lies on a random
hyperplane defined by the normal vector c1 and passing through the
origin.

To extend the result for an ϵ > 0, we proceed as follows. Let H(ϵ)
be the set of ϵ-TV-compliant SCMs. Let HDE(ϵ) be the set of SCMs for
which the direct effect is bounded by ϵ for the f̂fair. Let HIE(ϵ), HSE(ϵ)
be defined analogously for the indirect and spurious effects. We then
analyze the degrees of the terms appearing in Eq. A.36, which defines
the hypersurface HDE(0). In particular, notice that

deg(cT
1 (aV Y −

cTaV Y Σ−1c

cT Σ−1c
)) ≤ deg(c1) + deg(aV Y ) + deg(c

TaV Y Σ−1c

cT Σ−1c
)

(A.37)

and also that

deg(c
TaV Y Σ−1c

cT Σ−1c
) ≤ deg(cTaV Y Σ−1c) + deg(cT Σ−1c) (A.38)

≤ 2deg(c) + deg(aV Y ) + deg(Σ−1) + 2deg(c) + deg(Σ−1).
(A.39)
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Now, one can observe the following bounds, where p = |V |:

deg(c) ≤ p from Eq. A.32, (A.40)
deg(aV Y ) = 1 by definition, (A.41)
deg(Σ−1) ≤ p2 ·max

i,j
deg(Σij) = p4 from Eq. A.33. (A.42)

from which it follows that the degree of the hypersurface of 0-TV-
compliant SCMs, labeled H(0), is bounded by 2+4p+2p2. Lojasiewicz’s
inequality (Ji et al., 1992, Thm. 1) states that if K is a compact set,
f a real analytic function on Rn, and Z = {x ∈ Rn : f(x) = 0} is the
locus of f , then there exist positive constants k1, k2 such that

inf
z∈Z
∥x− z∥2 ≤ k1|f(x)|k2 ∀x ∈ K. (A.43)

Therefore, there exist constants k1, k2 such that:

vol(HDE(ϵ)) = vol{a ∈ [−1, 1]|E| | |cT
1 (aV Y −

cTaV Y Σ−1c

cT Σ−1c
)| ≤ ϵ}

(A.44)
= vol{a ∈ [−1, 1]|E| | d(a,HDE(0)) ≤ k1ϵ

k2}, (A.45)

where the second line follows from Lojasiewicz’s inequality with the
choice f = Ctf-DEx0,x1(f̂fair | x0), Z = HDE(0), and setting K =
HDE(ϵ). By an application of the Crofton’s formula (Guth, 2009, p.
1975), for a real algebraic hypersurface H of a degree d, its volume in
the unit n-ball can be bounded above by

vol(H) ≤ C(n)d, (A.46)

where the constant C only depends on the dimension n. By a rescaling
argument, the volume in the n-ball of radius R can be bounded by
RnC(n)d. Therefore, the volume in Eq. A.45 can be bounded above by

vol(HDE(ϵ)) ≤ k1ϵ
k2 |E||E|/2C(|E|)deg(HDE(0)), (A.47)

by using the inequality Eq. A.46 with the choice H = HDE(0), scaling
factor R =

√
|E| (which ensures that the hypercube [−1, 1]n is contained

in the |E|-ball of radius R), and noting that the maximal thickness of
HDE(ϵ) compared to HDE(0) is bounded above by k1ϵ

k2 (see Eq. A.45).

Full text available at: http://dx.doi.org/10.1561/2200000106



A.4. Proof of Thm. 5.3 237

Finally, we can write that for a random M sampled from S linear
nZ ,nW

we
have that

P(M ∈ HDE(ϵ)) = vol(HDE(ϵ))
2|E| . (A.48)

By noting that |E| = p(p+ 1) and setting

ϵ =
( 2p(p+1)

8k1C(|E|)(p+ 1)2(p(p+ 1))
p(p+1)

2

)1/k2
(A.49)

we obtain that P(M ∈ HDE(ϵ)) ≤ 1
4 . Since we know that

H(ϵ) = HDE(ϵ) ∩HIE(ϵ) ∩HSE(ϵ) (A.50)
=⇒ P(M ∈ H(ϵ)) ≤ P(M ∈ HDE(ϵ)) (A.51)

=⇒ P(M ∈ H(ϵ)) ≤ 1
4 , (A.52)

for such an ϵ. Intuitively, any SCM in H(ϵ) must also be in HDE(ϵ).
Any SCM in HDE(ϵ) must be close to HDE(0). The maximal deviation
of an SCM in HDE(ϵ) from HDE(0) can be bounded using Lojasiewicz’s
inequality, whereas the surface area of HDE(0) can be bounded above by
an application of Crofton’s formula. Putting together, we get a bound
on the measure of ϵ-TV-compliant SCMs. ■

The behavior of the ϵ term given in Eq. A.49 cannot be theoretically
analyzed further, since the constants arising from the Lojasiewicz’s
inequality are dimension dependent. To this end, for nZ = nW = 5 we
empirically estimate

P(M ∈ HDE(ϵ)) (A.53)

for a range of ϵ values, and obtain the plot in Fig. A.1.

A.4 Proof of Thm. 5.3

Proof. We prove the result for the case BN-set= ∅ (the other cases of
BN-sets follow analogously), in the population level case. Based on the
standard fairness model, we are starting with an SCM M given by:
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Figure A.1: Estimating empirically the probability that a random SCM in Slinear
nZ ,nW

,
for nZ = nW = 5, has a direct effect smaller than ϵ after ensuring that TV equals 0.

X ← fX(ux, uz) (A.54)
Z ← fZ(ux, uz) (A.55)
W ← fW (X,Z, uw) (A.56)
Y ← fY (X,Z,W, uy). (A.57)

The noise variables ux, uz are not independent, but the variables uw, uy

are mutually independent, and also independent from ux, uz.
We now explain how the sequential optimal transport steps extend

the original SCM M (to which we do not have access). Firstly, the
conditional distribution Z | X = x1 is transported onto Z | X =
x0. Write τZ for the transport map. On the level of the SCM, this
corresponds to extending the equations by an additional mechanism

Z̃ ←

 fZ(ux, uz) if fX(ux, uz) = x0

fZ(πZ(ux, uz)) if fX(ux, uz) = x1
. (A.58)

Here, there is an implicit (possibly stochastic) mapping πZ that we can-
not observe. For simplicity, we assume that the variable Z is continuous
and that πZ is deterministic. We can give an optimization problem to
which πZ is the solution, namely:
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πZ := arg min
π

∫
UX×UZ

∥fZ(π(uz, ux))− fZ(uz, ux)∥2duX=x1
xz

s.t. fZ(π(uz, ux))
ux,uz∼UX ,UZ |X=x1

d= fZ(uz, ux)
ux,uz∼UX ,UZ |X=x0

.
(A.59)

The measure duX=x1
xz in the objective is the probability measure as-

sociated with the distribution P (ux, uz | X = x1). The constraint
ensures that after the transport, Z̃ | X = x1 is equal in distribution to
Z̃ | X = x0. In the second step of the procedure, we are transporting
the distribution of W . This results in adding the mechanism:

W̃ ←

 fW (x0, Z̃, uw) if X = x0

fW (x0, Z̃, π
W (uw)) if X = x1

. (A.60)

Similarly as for πZ , πW is a mapping that solves following optimization
problem:

πW := arg min
π

∫
UW

∥fW (x0, z̃, π(uw))− fW (x1, z̃, uw)∥2duw

s.t. fW (x0, z̃, π(uw)) d= fW (x0, z̃, uw).
(A.61)

The above optimization problem is thought of being solved separately
for each value of Z̃ = z̃. Finally, in the last step, we are constructing
the additional mechanism:

Ỹ ←

 fY (x0, Z̃, W̃ , uy) if X = x0

fY (x0, Z̃, W̃ , πY (uy)) if X = x1
(A.62)

Again, the implicit mapping πY is constructed so that it is the solution
to

πY := arg min
π

∫
UY

∥fY (x0, z̃, w̃, π(uy))− fY (x1, z̃, w̃, uy)∥2duy

s.t. fY (x0, z̃, w̃, π(uy)) d= fY (x0, z̃, w̃, uy).
(A.63)

where the problem is solved separately for each fixed choice of parents
Z̃ = z̃, W̃ = w̃.

After constructing the additional mechanisms Z̃, W̃ , and Ỹ , we draw
the explicit causal diagram corresponding to the new variables, which
includes the unobservables UX , UZ , UW , and UY (marked in red), given
as follows:
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X

Z̃

W̃

Ỹ

UX

UZ

UW

UY

.

Note that by marginalizing out the unobserved variables UX , UZ , UW ,

UY , we obtain the new causal diagram, which is given by the standard
fairness model over the variables X, Z̃, W̃ , Ỹ . Therefore, it follows that
the identification expressions for the spurious, indirect, and direct effects
are known, and given by:

x-DEx0,x1(ỹ | x0) =
∑
z̃,w̃

[P (ỹ | x1, z̃, w̃)− P (ỹ | x0, z̃, w̃)]P (w̃ | x0, z̃)P (z̃ | x)

(A.64)

x-IEx0,x1(ỹ | x0) =
∑
z̃,w̃

P (ỹ | x0, z̃, w̃)[P (w̃ | x1, z̃)− P (w̃ | x0, z̃)]P (z̃ | x)

(A.65)

x-SEx1,x0(ỹ) =
∑

z̃

P (ỹ | x1, z̃)[P (z̃ | x0)− P (z̃ | x1)]. (A.66)

To finish the proof, notice that by construction (the matching of distri-
butions via optimal transport), we have that

P (ỹ | x1, z̃, w̃) = P (ỹ | x0, z̃, w̃) (A.67)
P (w̃ | x1, z̃) = P (w̃ | x0, z̃) (A.68)
P (z̃ | x0) = P (z̃ | x1), (A.69)

implying that all three effects in Eq. A.64-A.66 are equal to 0 (the
argument for showing that x-DEx1,x0(ỹ | x0) and x-DEx1,x0(ỹ | x0) are
also equal to 0 is the same). ■
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A.5 Proof of Prop. 5.2

Proof. Suppose that the contrast (C0, C1, E0, E1) is a counterfactual one,
meaning that C1 ̸= C0, E1 = E0 (the proof for factual contrasts with
C1 = C0, E1 ≠ E0 is the same). Using the structural basis expansion
from Thm. 3.1, the fairness condition µ(ŷ) = 0 implies that∑

u

[ŷC1(u)− ŷC0(u)]P (u | E) = 0. (A.70)

For part (a), assume that the policy D is a linear function of Ŷ , i.e.,
fD(ŷ) = aŷ + b. Then we simply have that:

µ(d) =
∑

u

[dC1(u)− dC0(u)]P (u | E) (A.71)

= a ·
∑

u

[ŷC1(u)− ŷC0(u)]P (u | E) (A.72)

= aµ(ŷ) = 0. (A.73)
For part (b), assume that the measure µ is a unit-level measure (the
event E = {U = u}). Then, the fairness condition implies that ŷC1(u) =
ŷC0(u) ∀u, from which it follows that

dC1(u) = fD(ŷC1(u)) = fD(ŷC0(u)) = dC0(u) ∀u. (A.74)
■

A.6 Ex. 5.11 Computation

Here we provided the expanded computation from Ex. 5.11, showing
why Eq. 5.143 hold. Notice that for x ∈ {x0, x1} we can compute the
probability of the joint distribution of the potential responses as follows:
P (yd0 = 0, yd1 = 1 | w, x) = P (UY −

w

5 < 0.5, UY + w

3 −
w

5 > 0.5)
(A.75)

= P (UY < 0.5 + w

5 , UY > 0.5 + w

5 −
w

3 )
(A.76)

= P (0.5 + w

5 −
w

3 < UY < 0.5 + w

5 ) (A.77)

= w

3 (using UY ∼ Unif[0, 1]), (A.78)

from which Eq. 5.143 follows.
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A.7 Proof of Thm. 4.13 and Cor. 4.14

Proof. For the theorem proof, consider that:

E(y | x1, ŷ)−E(y | x0, ŷ) = E(yx1 | x1, ŷx1)−E(yx0 | x0, ŷx0) (A.79)
= E(yx1 | x1, ŷx1)−E(yx0 | x1, ŷx1)︸ ︷︷ ︸

Term (I)

(A.80)

+E(yx0 | x1, ŷx1)−E(yx0 | x1, ŷx0)︸ ︷︷ ︸
Term (II)

(A.81)

+E(yx0 | x1, ŷx0)−E(yx0 | x0, ŷx0)︸ ︷︷ ︸
Term (III)

. (A.82)

Since by assumption no backdoor paths between X and Y, Ŷ exist,
Term (III) vanishes. By noting that E(yx | x1, ŷx1) = E(yx | x1, ŷ) ∀x
by consistency (and applying it to Term (I)), and also that Yx⊥⊥X (and
applying it to Term (II)) gives us the required result.

For Cor. 4.14, we further assume that the SCM is linear, and that
the predictor Ŷ is efficient, i.e., Ŷ (x,w) = E[Y | x,w]. In the linear
case, the efficiency simply translates to the fact that

α
W Ŷ

= αW Y , (A.83)
α

XŶ
= αXY . (A.84)

Due to linearity, for every unit u, we have that

yx1(u)− yx0(u) = αXWαW Y + αXY , (A.85)

and since Term (I) can be written as
∑

u[yx1(u)− yx0(u)]P (u | x1, ŷ),
Eq. 4.222 follows. We next look at Term (II), which can be expanded as∑

u

ŷx0(u)[P (u | ŷx1)− P (u | ŷx0)]. (A.86)

We now look at units u which are compatible with Ŷx1(u) = ŷ and
Ŷx0(u) = ŷ. We can expand Ŷx1(u) as

Ŷx1(u) = α
XŶ

+ αXWα
W Ŷ

+ α
W Ŷ

uW . (A.87)

Thus, we have that

Ŷx1(u) = ŷ =⇒ α
W Ŷ

uW = ŷ − α
XŶ

+ αXWα
W Ŷ

. (A.88)
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Similarly, we also obtain that

Ŷx0(u) = ŷ =⇒ α
W Ŷ

uW = ŷ. (A.89)

Due to the efficiency of learning which implies that α
W Ŷ

= αW Y and
α

XŶ
= αXY , Eq. A.88 and A.89 imply

yx0(u) = ŷ − (αXY + αXWαW Y ) ∀u s.t. Ŷx1(u) = ŷ, (A.90)
yx0(u) = ŷ ∀u s.t. Ŷx0(u) = ŷ, (A.91)

which in turn shows that

E(yx0 | ŷx1)−E(yx0 | ŷx0) = −αXY − αXWαW Y . (A.92)

■

A.8 Proof of Thm. 5.6

Proof. The first part of the theorem states the optimality of the DCF

policy in the counterfactual world. Given that the policy uses the true
benefit values from the counterfactual world, we apply the argument of
Prop. 5.7 to prove its optimality.

We next prove the optimality of the DUT policy from Alg. 5.5. In
Step 2 we check whether all individuals with a positive benefit can be
treated. If yes, then the policy DUT is the overall optimal policy. If not,
in Step 6 we check whether the overall optimal policy has a disparity
bounded by M . If this is the case, DUT is the overall optimal policy for
a budget ≤ b, and cannot be strictly improved. For the remainder of
the proof, we may suppose that DUT uses the entire budget b (since we
are operating under scarcity), and that DUT has introduces a disparity
≥ M . We also assume that the benefit ∆ admits a density, and that
probability P (∆ ∈ [a, b] | x) > 0 for any [a, b] ⊂ [0, 1] and x.

Let δ(x0), δ(x1) be the two thresholds used by the DUT policy. Sup-
pose that D̃UT is a policy that has a higher expected utility and
introduces a disparity bounded by M , or treats everyone in the disad-
vantaged group. Then there exists an alternative policy D

UT with a
higher or equal utility that takes the form
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D
UT =


1 if ∆(x1, z, w) > δ(x1)′

,

1 if ∆(x0, z, w) > δ(x0)′
,

0 otherwise.
(A.93)

with δ(x0)′
, δ(x1)′ non-negative (otherwise, the policy can be trivially

improved). In words, for any policy D
UT there is a threshold based

policy that is no worse. The policy DUT is also a threshold based policy.
Now, if we had

δ(x1)′
< δ(x1) (A.94)

δ(x0)′
< δ(x0) (A.95)

it would mean policy DUT is using a larger budget than DUT . However,
DUT uses a budget of b, making DUT infeasible. Therefore, we must
have that

δ(x1)′
< δ(x1), δ(x0)′

> δ(x0) or (A.96)

δ(x1)′
> δ(x1), δ(x0)′

< δ(x0). (A.97)

We first handle the case in Eq. A.96. In this case, the policy DUT

introduces a larger disparity than DUT . Since the disparity of DUT is at
least M , the disparity of DUT is strictly greater than M . Further, note
that δ(x0)′

> δ(x0) ≥ 0, showing that DUT does not treat all individuals
with a positive benefit in the disadvantaged group. Combined with a
disparity of > M , this makes the policy DUT infeasible.

For the second case in Eq. A.97, let U(δ0, δ1) denote the utility of a
threshold based policy:

U(δ0, δ1) = E[∆1(∆ > δ0)1(X = x0)] +E[∆1(∆ > δ1)1(X = x1)].
(A.98)

Thus, we have that U(δ(x0), δ(x1))− U(δ(x0)′
, δ(x1)′) equals

E[∆1(∆ ∈ [δ(x1), δ(x1)′ ])1(X = x1)] (A.99)

−E[∆1(∆ ∈ [δ(x0)′
, δ(x0)])1(X = x0)] (A.100)

≥δ(x1)
E[1(∆ ∈ [δ(x1), δ(x1)′ ])1(X = x1)] (A.101)

− δ(x0)
E[1(∆ ∈ [δ(x0)′

, δ(x0)])1(X = x0)] (A.102)
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≥δ(x0)(
E[1(∆ ∈ [δ(x1), δ(x1)′ ])1(X = x1)] (A.103)

−E[1(∆ ∈ [δ(x0)′
, δ(x0)])1(X = x0)]

)
(A.104)

=δ(x0)(P (∆ ∈ [δ(x1), δ(x1)′ ], x1) (A.105)

− P (∆ ∈ [δ(x0)′
, δ(x0)], x0)

)
(A.106)

≥0, (A.107)

where the last line follows from the fact that DUT has a budget no
higher than DUT . Thus, this case also gives a contradiction.

Therefore, we conclude that policy DUT is optimal among all policies
with a budget ≤ b that either introduce a bounded disparity in resource
allocation |P (d | x1)−P (d | x0)| ≤M or treat everyone with a positive
benefit in the disadvantaged group. ■
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Practical Aspects of Fairness Measures

B.1 Identification of measures

The structure of the measures used in Causal Fairness Analysis was
given by the Fairness Map in Thm. 4.8 (see also Fig. 4.5). Moreover, in
Thm. 4.11 in Appendix A.2 we have shown that many of the measures
in the map are identifiable from observational data in the standard
fairness model (SFM) and we provided explicit expressions for their
identification.

The natural question is whether these measures remain identifiable
when some assumptions of the SFM are relaxed. To answer this question,
we consider what happens to identifiability of different measures when
we add bidirected edges to the GSFM.

B.1.1 Identification under Extended Fairness Model

There are five possible bidirected edges that could be added to the GSFM
(since the bidirected edge X L9999K Z is assumed to be present already).
The other five possibilities include the Z L9999K Y (confounder-outcome),
W L9999K Y (mediator-outcome), X L9999KW (attribute-mediator), Z L99
99KW (confounder-mediator) and X L9999K Y (attribute-outcome). We
analyze these cases in the respective order.

246
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Table B.1: Population level and x-specific causal measures of fairness in the TV-
family, and their identification expressions under the standard fairness model GSF M .

Measure ID expression

ge
ne

ra
l

TEx0,x1(y)
∑

z[P (y | x1, z)− P (y | x0, z)]P (z)

Exp-SEx(y)
∑

z P (y | x, z)[P (z)− P (z | x)]

NDEx0,x1(y)
∑

z,w[P (y | x1, z, w)− P (y | x0, z, w)]P (w | x0, z)P (z)

NIEx0,x1(y)
∑

z,w P (y | x0, z, w)[P (w | x1, z)− P (w | x0, z)]P (z)

x
-s

pe
ci

fic

ETTx0,x1(y | x)
∑

z[P (y | x1, z)− P (y | x0, z)]P (z | x)

Ctf-SEx0,x1(y)
∑

z P (y | x0, z)[P (z | x0)− P (z | x1)]

Ctf-DEx0,x1(y | x)
∑

z,w[P (y | x1, z, w)− P (y | x0, z, w)]P (w | x0, z)P (z | x)

Ctf-IEx0,x1(y | x)
∑

z,w P (y | x0, z, w)[P (w | x1, z)− P (w | x0, z)]P (z | x)

z
-s

pe
ci

fic z-TEx0,x1(y | x) P (y | x1, z)− P (y | x0, z)

z-DEx0,x1(y | x)
∑

w[P (y | x1, z, w)− P (y | x0, z, w)]P (w | x0, z)

z-IEx0,x1(y | x)
∑

w P (y | x0, z, w)[P (w | x1, z)− P (w | x0, z)]

Bidirected edge Z L9999K Y . Consider the case of confounder-outcome
confounding, represented by the Z L9999K Y edge. An example of such a
model is given on the r.h.s. of Table B.2. In this case, without expanding
the Z set, none of the fairness measures are identifiable (due to the
set Z not satisfying the back-door criterion with respect to variables
X and Y ). However, this does not necessarily mean there is no hope
for identifying our fairness measures. What we do next is refine the
Z set, in the hope that the additional assumptions obtained in this
process will help us identify our quantities of interest. In some sense,
the assumptions encoded in the clustered diagram are not sufficient
for identification. However, spelling out the variable relations within a
cluster may help with identification. Consider the example on the r.h.s.
of Table B.2, where the full causal graph is given, after refining the
previously clustered Z set. Interestingly, in this case the set {Z1, Z2} can
be shown as back-door admissible for the effect of X on Y . Furthermore,
the identification expression for all the quantities remains the same as
in the standard fairness model, given by the expressions in Table B.1.
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Table B.2: An example of the extended fairness model with a bidirected Z L9999K Y
edge (left side), in which refining the set of variables Z yields a graph (right side) in
which all fairness measures are identifiable.

cluster model refined model

Z

X Y

Z1 Z2

X Y

Table B.3: An example of the extended fairness model with a bidirected W L9999K Y
edge (left side), in which refining the set of variables W yields a graph (right side)
in which all fairness measures are identifiable.

cluster model refined model

W

X Y X Y

W1 W2

Bidirected edge W L9999K Y . Next consider the case where there is
a bidirected edge between the group of variables W and the outcome
Y . Firstly, we note that the identification of causal (TE/ETT) and
spurious measures (Exp-SE/Ctf-SE) is unaffected by the W L9999K Y
edge, and that these quantities are identified by the same expressions
as in Table B.1. The quantities measuring direct and indirect effects
are not identifiable, at least not without further refining the W set.
Consider the example given in Table B.3.

In the l.h.s. of the table we have a model in which W is clustered and
NDE or NIE quantities are not identifiable. On the r.h.s., after expanding
the previously clustered W set, the natural direct (and indirect) effects
can be identified, by the virtue of the front-door criterion (Pearl, 2000).
However, note that in this case, the identification expression for the
natural direct effect is different from the identification expression for the
natural direct effect in the standard fairness model. Whenever front-door
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identification is used, we expect the expression to change, compared to
the baseline SFM case.

Bidirected edge X L9999K W . The case of the X L9999K W edge is
similar to that of W L9999K Y , yet slightly different. None of the measures
discussed are identifiable in this case, before refining the W set. However,
similarly as in the W L9999K Y example in Table B.3, when refining the
W set, we might find that in fact the effect of X on Y is identifiable
via the front-door. Again, the identification expression in this case will
change. For the sake of brevity we skip an explicit example.

Bidirected edge Z L9999K W . In the case of the Z L9999KW edge, none
of the measures are identifiable. However, refining the Z and W sets
may help. To see an example, consider the following graph

Z1

W1 W2

X Y

.

In this case, all of the measures of fairness in Table B.1 are identifiable,
but again with different expressions than those presented in the table.

Bidirected edge X L9999K Y . The attribute-outcome confounding
represented by the X L9999K Y edge is the most difficult case. When
this edge is present, none of the fairness quantities can be identified.
The reason why this case is hard is that the X L9999K Y introduces a
bidirected edge between X and its child Y . This causes the effect of X
on Y to be non-identifiable (Tian and Pearl, 2002). For more general
identification strategies for when a combination of observational and
experimental data is available, we refer the reader to Lee et al. (2019)
and Correa et al. (2021a), and for partial identification ones, see Zhang
et al. (2022).

The summary of the discussion of the five cases of bidirected edges
in the extended fairness model, and what can be done under their
presence, is given in Table B.4.
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Table B.4: Identification of causal fairness measures under latent confounding.

YW ✔ ✔ Refine W Refine W

YZ Refine Z Refine Z Refine Z Refine Z

WX Refine W Refine W Refine W Refine W

WZ Refine Z,W Refine Z,W Refine Z,W Refine Z,W

YX ✘ ✘ ✘ ✘

Z1 Z2

X Y

W1 W2

Figure B.1: Causal diagram compatible with the SFM with all bidirected arrows
apart from X L9999K Y , in which all effects are identifiable.

We end with an example (see Fig. B.1) that fits the extended fairness
model with all bidirected edges apart from the X L9999K Y , but in which
case all the fairness measures in Table B.1 are identifiable (albeit not
with the same expression as in the table), showing that refining Z and
W sets sometimes may help. We leave the derivation of the identification
expressions in this instance as an exercise for the curious reader.

B.2 Estimation of measures

Suppose we found that a target causal measure of fairness is identifiable
from observational data (after possibly refining the SFM). The next
question is then how to estimate the causal measure in practice. There
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is a large body of literature on the estimation of causal quantities, based
on which our own implementation is built. We focus on describing how
to estimate E(yx) and E(yx1,Wx0

). Most fairness measures can then be
derived from taking (conditional) differences of these two estimands.

Doubly Robust Estimation

In the SFM, a standard way of computing the quantity E(yx) would be
using inverse propensity weighting. The mediator W can be marginalized
out and the estimator

1
n

n∑
i=1

1(Xi = x)Yi

p̂(Xi | Zi)
, (B.1)

where p̂(Xi | Zi) is the estimate of the conditional probability P(Xi =
x | Zi), can be used. There is an additional assumption necessary for
such an approach:

Definition B.1 (Positivity assumption). The positivity assumption holds
if ∀ x, z, P(X = x | Z = z) is bounded away from 0, that is

δ < P(X = x | Z = z) < 1− δ,

for some δ > 0.

Such an assumption is needed for the estimation of causal quantities we
discuss (together with the assumptions encoded in the SFM that are
used for identification).

However, more powerful estimation techniques have been developed
and applied very broadly. In particular, doubly robust estimators have
been proposed for the estimation of causal quantities (Robins et al.,
1994; Robins and Rotnitzky, 1995; Bang and Robins, 2005). In context
of the estimator in Eq. B.1, a doubly robust estimator would be

1
n

n∑
i=1

1(Xi = x)(Yi − µ̂(Yi | Zi, Xi))
p̂(Xi | Zi)

+ µ̂(Yi | Zi, Xi), (B.2)

where µ̂ denotes the estimator of the conditional mean E[Y | Z =
z,X = x]. In fact, only one of the two estimators µ̂(Yi | Zi, Xi) and
p̂(Xi | Zi) needs to be consistent, for the entire estimator in Eq.B.2
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to be consistent. Such robustness to model misspecification is a rather
desirable property.

EstimatingE(yx1,Wx0
) in a robust fashion is somewhat more involved.

This problem has been studied under the rubric of causal mediation
analysis (Robins and Greenland, 1992; Pearl, 2001; Robins, 2003). Tch-
etgen and Shpitser (2012) proposed a multiply robust estimator of the
expected potential outcome E[Yx1,Wx0

] defined via:

ϕx0,x1 (X, W, Z) =1(X = x1)f(W | x0, Z)
px1 (Z)f(W | x1, Z) [Y − µ(x1, W, Z)]

+ 1(X = x0)
px0 (Z)

[
µ(x1, W, Z)−

∫
W

µ(x1, w, Z)f(w | x0, Z) dw
]

(B.3)

+
∫

W
µ(x1, w, Z)f(w | x0, Z) dw.

The estimator is given by 1
n

∑n
i=1 ϕ̂x0,x1(Xi,Wi, Zi), where in ϕ̂ the

quantities px(Z), µ(X,W,Z) and f(W | X,Z) are replaced by respective
estimates. Such an estimator is multiply robust (one of the three models
can be misspecified). However, the estimator also requires the estimation
of the conditional density f(W | X,Z). In case of continuous or high-
dimensional W , estimating the conditional density could be very hard
and the estimator could therefore suffer in performance. We revisit the
estimation of E[yx1,Wx0

] shortly.

Double Machine Learning

Doubly (and multiply) robust estimation allows for model misspecifica-
tion of one of the models, while retaining consistency of the estimator.
However, we have not discussed the convergence rates of these estimators
yet. In some cases fast, O(n− 1

2 ) rates are attainable for doubly robust
estimators, under certain conditions. For example, one such condition
is that px(Z), µ(X,W,Z) and their estimates belong to the Donsker
class of functions (Benkeser et al., 2017). For a review, refer to Kennedy
(2016). However, modern ML methods do not belong to the Donsker
class.

In a recent advance, Chernozhukov et al., 2018 showed that the
Donsker class condition can, in many cases (including modern ML
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methods), be relaxed by using a cross-fitting approach. This method
was named double machine learning (DML). For estimating E[Yx] we
make use of the estimator in Eq. B.2 and proceed as follows:

1. Split the data D into K disjoint folds D1, D2, ..., DK ,

2. Using the complement of fold Dk (labeled DC
k ) compute the

estimates p̂
−(k)
x (Z), µ̂−(k)(X,Z) of P (X = x | Z = z) and

E[Y | Z = z],

3. Compute

1(Xi = x)(Yi − µ̂(Yi | Zi, Xi))
p̂(Xi | Zi)

+ µ̂(Yi | Zi, Xi), (B.4)

for each observation (Xi, Zi, Yi) in Dk by plugging in estimators
p̂

−(k)
x (Z), µ̂−(k)(X,Z) obtained on the complement DC

k ,

4. Taking the mean of the terms in Eq. B.4 across all observations.

For estimating E[yx1,Wx0
] we follow the approach of Farbmacher et al.

(2020). The authors propose a slightly different estimator than that
based on Eq. B.3, where they replace ϕx0,x1(X,W,Z) by

ψx0,x1(X,W,Z) =1(X = x1)px0(Z,W )
px1(Z,W )px0(Z) [Y − µ(x1,W,Z)]

+ 1(X = x0)
px0(Z)

[
µ(x1,W,Z)−E[µ(x1,W,Z) | X = x0, Z]

]
(B.5)

+E[µ(x1,W,Z) | X = x0, Z],

which avoids the computation of densities in a possibly high-dimensional
case. The terms ψx0,x1(X,W,Z) are estimated in a cross-fitting proce-
dure as described above, with the slight extension in Step 2, where we
further split the complement DC

k into two parts, to estimate the condi-
tional mean µ(X,W,Z) and the nested conditional mean E[µ(x1,W,Z) |
X = x0, Z] on disjoint subsets of the data. This approach is used in the
faircause R-package.
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Selection Bias Interpretation

The majority of the monograph was concerned with the standard fairness
model (SFM) from Def. 2.7. In the SFM, there is a bidirected edge
X L9999K Z, which represents some latent (possibly historical) context
which is a source of common variation between the protected attribute
X and confounders Z. In particular, we now discuss the version of the
SFM which considers a selection bias process based on X,Z, instead of
latent confounding. In particular, consider the following definition:

Definition C.1 (SFM with Selection Bias). The standard fairness model
with selection bias (SFM-SB) is the causal diagram GSFM-SB over en-
dogenous variables {X,Z,W, Y } and given by

Z

X

W

Y

S
.
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Z

x1

x0

W

Y

S

P (yx0 | S(x1, Z) = 1)

−

Z

x0

W

Y

S

P (yx0 | S(x0, Z) = 1)

Figure C.1: Quantity Ctf-SBEx0,x1 (y) represented graphically as a contrast.

In the above causal model, we are considering a selection process S(x, z)
based on which individuals are included in the dataset. If S(x, z) = 1,
the individual is included in our dataset, and S(x, z) = 0 otherwise. As
there are no open back-door paths between X and Y , we know that the
spurious effect between X and Y is 0, so we can ignore it. However, the
TV measure P (y | x1)− P (y | x0) does include variations originating
from the selection process at node S. In particular, we can define an
effect associated with the selection process at S:

Definition C.2 (Counterfactual Selection Bias Effect). The counterfactual
selection bias effect (Ctf-SBE) is defined as:

Ctf-SBEx0,x1(y) = P (yx0 | S(x1, Z) = 1)− P (yx0 | S(x0, Z) = 1).
(C.1)

We also write Sx as an abbreviation for S(x, Z) = 1.

The definition is shown graphically in Fig. C.1. On the r.h.s. we have the
baseline in which the variables W,Y respond to the value X = x0, and
the selection process on individuals at S also takes the value X = x0.
This setting is compared to the setting on the l.h.s., in which W,Y still
respond to the value of the X = x0, but the individuals are subject to
the selection process of X = x1. Intuitively, due to a different selection
process for value x0, x1, the observed conditional distributions

Z | X = x0 and Z | X = x1
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are different, even though there are no common causes of X and Z. The
contrast in Eq. C.1 and its graphical representation in Fig. C.1 capture
precisely the difference in outcome Y arising from this difference in
the selection processes S(x0, ·) and S(x1, ·). Importantly, the model
SFM-SB allows us to decompose the total variation measure. For doing
so, we need the notions of direct and indirect effects, which are defined
as follows:

Ctf-DEx0,x1(y | Sx0) = P (yx1,Wx0
| Sx0)− P (yx0 | Sx0) (C.2)

Ctf-IEx0,x1(y | Sx0) = P (yx0,Wx1
| Sx0)− P (yx0 | Sx0). (C.3)

The notions are entirely analogous to the notions of direct and indirect
effects from Def. 4.5, apart from the fact that the conditioning on X = x

is replaced by conditioning on the selection process Sx. Armed with
such analogues of the direct and indirect effects for the SFM-SB model,
we decompose the TV as follows:

Proposition C.1 (Decomposition of TV for SFM-SB). The total variation
measure can be decomposed into the selection bias effect, indirect effect,
and direct effect as follows:

TVx0,x1(y) = Ctf-DEx0,x1(y | Sx0)− Ctf-IEx1,x0(y | Sx0)− Ctf-SBEx1,x0(y)
(C.4)

= Ctf-SBEx0,x1(y)− Ctf-DEx1,x0(y | Sx1) + Ctf-IEx0,x1(y | Sx1)
(C.5)

Importantly, the decomposition in Prop. C.1 can be identified from
observational data in the following way:

Proposition C.2. The quantities appearing in the TV decomposition in
Eq. C.4 are identifiable from observational data under selection bias,
and have the following identification expressions:
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Ctf-DEx0,x1(y | Sx0) =
∑
z,w

[P ∗(y | x1, z, w)− P ∗(y | x0, z, w)] (C.6)

· P ∗(w | x0, z)P ∗(z | x0)

Ctf-IEx1,x0(y | Sx0) =
∑
z,w

P ∗(y | x1, z, w) (C.7)

· [P ∗(w | x0, z)− P ∗(w | x1, z)]P ∗(z | x0)

Ctf-SBEx1,x0(y) =
∑

z

P ∗(y | x1, z)[P ∗(z | x0)− P ∗(z | x1)], (C.8)

where P ∗ is the observational distribution under selection bias, defined
by

P ∗(v) = P (v | S = 1). (C.9)

Proof. We prove the identification expression for the Ctf-SBE term, and
the other two expressions follow from a similar argument. Note that:

P (yx1 | Sx = 1) =
∑

z

P (yx1 | z, Sx = 1)P (z | Sx = 1). (C.10)

The first term within the sum can be expanded as:

P (yx1 | z, Sx = 1) = P (yx1 | z, x, Sx = 1) Yx1⊥⊥X | Z, Sx (C.11)
= P (yx1 | z, x, S = 1) Consistency Axiom (C.12)
= P (yx1 | z, x1, S = 1) Yx1⊥⊥X | Z, S (C.13)
= P (y | z, x1, S = 1) Consistency Axiom (C.14)
= P ∗(y | z, x1) by definition. (C.15)

For the second term within the sum, we have that

P (z | Sx = 1) = P (z | Sx = 1, x) Z⊥⊥X | Sx (C.16)
= P (z | S = 1, x) Consistency Axiom (C.17)
= P ∗(z | x) by definition. (C.18)

Putting together with the first term, the derivation yields the identifi-
cation expression in Eq. C.8. ■

The crucial takeaway from the above proposition is that the iden-
tification expressions we obtain are identical to those obtained when
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decomposing the TV based on the SFM. In particular, this implies
that even if we work with the SFM, but SFM-SB is the true underlying
model, the decomposition we obtain is valid, but has a slightly differ-
ent interpretation. This result can be seen formally in the following
corollary:

Corollary C.1 (SFM and SFM-SB decomposition ID equivalence). Let
M1 be an SCM compatible with the SFM, and let P1(V ) denote its
observational distribution. Let M2 be an SCM compatible with the
SFM-SB, and let P2(V ) denote its observational distribution. Suppose
moreover that

P1(V ) = P2(V ) = P (V ), (C.19)

that is, the observational distributions of M1 and M2 are the same.
Then it follows that

Ctf-DEM1
x0,x1(y | x0) = Ctf-DEM2

x0,x1(y | Sx0) (C.20)
Ctf-IEM1

x1,x0(y | x0) = Ctf-IEM2
x1,x0(y | Sx0) (C.21)

Ctf-SEM1
x1,x0(y) = Ctf-SBEM2

x1,x0(y), (C.22)

that is, the decomposition of the TV measure for the two SCMs has
the same terms.

Proof. We leverage the identification expressions from Prop. C.2 and
check they are equal to the identification expressions for Ctf-SE, Ctf-DE,
and Ctf-IE shown in Tab. B.1. ■

In words, the terms appearing in the TV decomposition of the SFM are
the same as the terms appearing in the TV decomposition when using
the SFM-SB, if two SCMs have the same observational distribution.
What this shows is that we are agnostic to the choice of the model,
between the SFM and SFM-SB, when decomposing the TV - the only
difference in the decomposition arises in the interpretation of the effects.
In particular, the if the SFM model is the true model, then the Ctf-
SEx1,x0(y) measures the change in outcome between conditioning on
X = x0 and X = x1, while keeping X = x1 along all causal pathways. If
the SFM-SB model is the true model, then the Ctf-SBEx1,x0(y) measures
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the change in outcome induced by the selection process Sx0 compared
to Sx1 , while keeping X = x1 along all causal pathways. The qualitative
interpretation of the two terms differs, but the quantitative value is
the same regardless of the model. This shows a fundamental analogy
between the bidirected arrow X L9999K Z in the SFM and the selection
process at the node S governed by X,Z in the SFM-SB.
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Multi-valued and Continuous Protected

Attributes

In this appendix, we discuss how to extend the main results of the
monograph to a setting with multi-valued or continuous protected
attributes. We also quickly discuss how we may address the setting with
multiple protected attributes.

Throughout, let X denote the domain of the protected attribute
X. In the multi-valued, discrete case, we consider |X | to be an integer,
whereas for X continuous, we assume that X in a subset of the reals,
X ⊆ R. We next explain how some of the key results may be extended
to the case of a multi-valued X.

(1) The definition of the total variation (TV) measure is updated,
and the new criterion we consider is

E[Y | X = x] = E[Y ] ∀x. (D.1)

Suppose we select a fixed baseline value of X, say x0 ∈ X . Then,
we could consider a collection of measures E[Y | X = x]−E[Y |
X = x0], for each x ∈ X . Alternatively, a single measure over the
entire domain could be considered, e.g.,

iTVx0,X(y) = EX∼P (X) [E[Y | X]−E[Y | X = x0]] , (D.2)

where iTV stands for integrated TV measure.

260
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(2) Notions of direct, indirect, and spurious effects also need to be
updated accordingly. For instance, given a baseline value of X =
x0, we may consider the following measures of the direct, indirect,
and spurious effects

NDEx0,x(y) = P (yWx0 ,x)− P (yx0) (D.3)
NIEx0,x(y) = P (yWx,x0)− P (yx0) (D.4)

Exp-SEx(y) = P (y | x)− P (yx), (D.5)

and further analogues can be written for x, z, or v′-specific mea-
sures of direct / indirect effects. In case a single measure1 is
of interest instead of a collection of measures, we may consider
measures such as

iNDEx0,X(y) = EX∼P (X)[NDEx0,X(y)] (D.6)

that integrates the NDE value over the entire domain of X.

(3) The Fundamental Problem of Causal Fairness Analysis (FPCFA,
Def. 3.6) requires a decomposability property. If one considers
measures such as NDEx0,x(y) for each x separately, then the
property of decomposability will be satisfied for each value of
x separately. For the integrated measures, iTV measure can be
decomposed as

iTVx0,X(y) = iNDEx0,X(y)− iNIEX,x0(y) (D.7)
+ iExp-SEX(y)− Exp-SEx0(y). (D.8)

Other decomposition results, such as in Thms. 4.3, 4.4, and 4.5
can be adapted similarly. Further, the integrated measures are
still admissible to the structural measures, i.e.,

Str-DE = 0 =⇒ iNDEx0,X(y) = 0 (D.9)
Str-IE = 0 =⇒ iNIEx0,X(y) = 0 (D.10)
Str-SE = 0 =⇒ iExp-SEX(y) = 0. (D.11)

1One may also attempt to detect discrimination by using measures such as
supx∈X |NDEx,x0 (y)| which would also be a valid choice, but the property of decom-
posability as in Eq. D.7 would not hold true.
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For each x ∈ X , the NDE, NIE, and Exp-SE measures are also
admissible with respect to structural criteria.

(4) The Fairness Map (Thm. 4.8, Fig. 4.5) was defined as having two
separate axes, corresponding to different units of the population,
and different mechanisms. In the continuous case, there is an
additional, third axis, which indicates which value of x ∈ X is
being compared against the baseline value X = x0.

(5) The decomposition of the predictive parity measure (PPM) from
Thm. 4.13 can still be applied, but now again there is a unique
measure for each x ∈ X , PPMx0,x(y) = P (y | x, ŷ)− P (y | x0, ŷ).
Furthermore, the principles of Causal Predictive Parity (Def. 4.14)
can also be extended to the continuous case, by adding a quantifier
∀x ∈ X , e.g., causal predictive parity along the direct pathway
could be written as

E[yx,Wx0
| E]−E[yx0 | E] = E[ŷx,Wx0

| E]−E[ŷx0 | E] ∀x ∈ X , E.
(D.12)

(6) In the context of decision-making, the Benefit Fairness criterion
(Def. 5.10) can be adapted to require that

P (d | x,∆ = δ) = P (d | x,∆ = δ) ∀x ∈ X , δ. (D.13)

The definition of Causal Benefit Fairness (Def. 5.11) could be
adapted to the continuous case by adding a quantifier over x ∈ X ,
for instance, Causal BF along the direct pathway would be defined
as

E(yx,Wx0 ,d1 − yx,Wx0 ,d0 | x, z, w) = E(yx0,d1 − yx0,d0 | x, z, w) ∀x, z, w
(D.14)

P (d | ∆, x0) = P (d | ∆, x1) ∀x, δ. (D.15)

As the above reasoning shows, extending the results of the monograph
to multi-valued and continuous protected attributes X would be concep-
tually possible. However, we note that continuous protected attributes
may complicate the estimation of some of the quantities described above,
and we do not consider these challenges in this monograph.
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Multiple Protected Attributes. Finally, we mention how one may
wish to handle multiple protected attributes X1, . . . , Xk. Firstly, we will
only consider the case in which the attributes X1, . . . , Xk satisfy the
assumptions of the standard fairness model (SFM), defined as follows:

Definition D.1 (Multi-Attribute Standard Fairness Model). The multi-
attribute standard fairness model (MA-SFM) is the cluster causal
diagram GSFM over endogenous variables {X1, . . . , Xk, Z,W, Y } and
given by

Z

X1...
Xk

W

Y

.

The cluster {X1, . . . , Xk} allows for arbitrary causal or confounding
relationships between the variables X1, . . . , Xk.

Now, if we are dealing with a setting of multiple protected attributes
that satisfy the MA-SFM model, we proceed as follows. Let X1, . . . ,Xk

be the domains of X1, . . . , Xk, respectively. Then, we define the product
protected attribute as Xp = (X1, . . . , Xk) taking values in X p = X1 ×
· · · × Xk. Then, based on the product attribute Xp and the values it
takes, we reduce the problem to a setting with a single multi-valued (or
continuous) protected attribute that can be handled as discussed above.

In general, the protected attributes X1, . . . , Xk may not necessarily
satisfy the assumptions of the MA-SFM. If this is the case, a suggested
route for considering fairness with respect to X1, . . . , Xk would be to
consider X1, . . . , Xk one-by-one, and perform the analyses described in
the monograph for a single X = Xi at a time.

D.1 On the Semantics of Manipulating the Protected Attribute

In this section, we discuss various questions related to the meaning
of manipulating the protected attribute X. In particular, commonly
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considered protected attributes such as race, gender, or religion are not
subject to a real-world “intervention” of setting the attribute to a fixed
value. In other words, we cannot simply design an experiment in which
we randomize the allocation of individuals to males and females, or
to majority and minority group applicants. Furthermore, some works
have argued that the meaning of the counterfactual Yx may not be
well-defined (Hu and Kohler-Hausmann, 2020), with some even arguing
that counterfactual reasoning may be inappropriate for capturing dis-
crimination (Kohler-Hausmann, 2018; Dembroff and Kohler-Hausmann,
2022). All of these works seek more precision in the semantics around the
concept of “manipulating race”, which is certainly a worthwhile question
to ask. More broadly, in the causal inference literature, many have ar-
gued for the mantra “no causation without manipulation” (Rubin, 1986;
Hernán, 2005; Gelman and Hill, 2006), and here we wish to alleviate
most of these concerns, by discussing the semantics of manipulating
attribute such as race, gender, or religion.

In our discussion, we focus on the arguments put forth by Hu
and Kohler-Hausmann (2020), as these arguments are articulated in
the language of graphical causal models. We analyze a number of
claims made by the authors, and propose specific tools for addressing
their concerns. Crucially, we phrase some of the elusive philosophical
concepts in a formal mathematical language, thereby adding to the
existing discussion about the validity of hypothetical manipulations of
the protected attribute. In particular, we address the following three
arguments of Hu and Kohler-Hausmann (2020):

(A) Protected attributes are a “bundle of sticks” (Sen and Wasow,
2016), formed from multiple constitutive, and not defining features,

(B) The effects of interventions on attributes such as sex, race, and
religion thus cannot be reasoned about in the framework of struc-
tural causality and graphical causal models, since such effects are
not well-defined,

(C) Explanations originating from counterfactual worlds where the
protected attribute is manipulated are not meaningful for explain-
ing discrimination in the current world.
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Figure D.1: Modeling options for religion as a bundle of sticks.

D.1.1 Issue A: Attributes as a bundle of sticks.

The example put forward by Hu and Kohler-Hausmann (2020) takes
religion as the protected attribute, with X ∈ {0, 1} representing whether
an individual is or is not Catholic. A number of constitutive features
of X are then mentioned, namely the following beliefs and practices:
Resurrection of Christ (X1), Papal Infallibility (X2), Saints (X3), and
Sunday Mass (X4), to name a few. The authors then argue that, for
a given outcome Y , one of the two causal models is possible, shown
in Figs. D.1a, D.1b. Their conclusion is that either (i) X1, . . . , X4 are
causal descendants of X as in Fig. D.1a; or (ii) X1, . . . , X4 causally
precede X as in Fig. D.1b. The very concept of Catholic surely depends
on all of the mentioned constitutive features, and hence Hu and Kohler-
Hausmann (2020) conclude that the setting (i) seems unlikely. Similarly,
one may notice that reasoning about the concept of Catholic itself
seems to be meaningless without X1, . . . , X4. Therefore, the Fig. D.1b
also seems inappropriate. From this, the authors conclude that causal
diagrams may be insufficient for representing concepts that are formed
from constitutive features, such as religion, race, or gender.

However, not all modeling options are exhausted after considering
diagrams in Fig. D.1a and D.1b. In fact, the standard fairness model
(SFM) introduced in Def. 2.7 was partially motivated by such ambiguities
in specifying diagrams in the context of fairness analysis – and in
particular, there is a bidirected arrow X L9999K Z between the protected
attribute X and the set of confounders Z. The reason for this modeling
choice is that one may not be able to commit to the complex historical
processes that introduce co-variations between the protected attribute,
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and the usually observed demographics. Importantly, the very same
modeling choice can be used for the bundle of sticks representation
of religion – clearly, belief in the Resurrection of Christ and Papal
Infallibility are correlated, yet there is no clear causal relation between
them. Instead, we may say that a set of historical process and practices
confounds these two variables, indicated by the latent, unobserved Uhist
in Fig. D.1c. In the analysis of the second issue, we discuss how the
causal diagram in Fig. D.1c can be used for a meaningful analysis.

D.1.2 Issue B: Effects of interventions on race, sex, or religion are
not well-defined through structural causality.

Hu and Kohler-Hausmann (2020) argue that, partly for reasons outlined
above, one cannot reason about the causal effects of attributes such
as race, sex, or religion. Even though the question of manipulating
protected attributes is subtle, and clarity on the semantics of such
manipulations is a worthy endeavor, we disagree with the conclusions
of Hu and Kohler-Hausmann (2020). We next discuss a number of
methodological options that ground the semantics of such manipulations,
and allow one to reason about fairness through structural causality.

In particular, we cover three different approaches for defining how
the manipulations of the protected attribute can be defined in light of
considering constitutive features. The described approach is related to
the reasoning presented in Weinberger (2022), based on the notion of
signal manipulation. The approaches we discuss are twofold, based on
whether the constitutive features of the protected attribute (features
X1, . . . , X4 in our running example) are observed and available in the
data. We thus discuss an approach for the case of observed features,
and an interpretation for the case of unobserved features.

Observed Constitutive Features and Multi-valued Attributes. Con-
sider now the case of the causal diagram in Fig. D.1c, with X1, . . . , X4,

and Y observed. The first modeling step required is to draw a boundary
that determines what are the constitutive features of the protected
attribute. For instance, should the protected attributes be constituted
from all of the features X1, . . . , X4? Or, alternatively, should one choose
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Figure D.2: Modeling options for religion as a bundle of sticks.

only a subset of them as constitutive of the protected group? For in-
stance, one may consider X1, X3, X4 only as constitutive of the protected
group. The choice of constitutive features may be application-specific,
and should be performed by the data analyst, while also taking into
account domain knowledge. Once the constitutive features have been
grouped into a cluster,2 the remaining features become a confounder,
as displayed in Fig. D.2a. Once the cluster diagram after grouping the
variables has been established, there are two ways we can proceed, which
are discussed next.

The first option is to treat all of the constitutive features separately.
Consider the multi-valued vectors that represent all the possible combi-
nations of (X1, X3, X4). There are 23 possible values that are attained,
and we set the value (0, 0, 0) as the baseline value (corresponding to an
individual for whom no constitutive characteristics are present). Then,
we can compare each vector (x1, x3, x4) against (0, 0, 0), and measure
the effect of manipulating the xi ̸= 0 to 0.3 Interesting structure may be
uncovered in this way, namely, perhaps E[Y(0,0,1)−Y(0,0,0)] is much larger
(in absolute value) than E[Y(1,0,0) − Y(0,0,0)], possibly implying that the
feature x1 plays a more important role in explaining the phenomenon
than the feature x4. In fact, this argument can be made formal under
the assumption of no interactions in the fY mechanism but we do not
go into its detail here.

2This clustering process is similar to the clustering of Z or W variables when
constructing the Standard Fairness Model (Def. 2.7). For more details, we refer the
reader to Anand et al. (2021).

3For instance, such manipulations can be conceptualized as a person “writing a
different value on their application”.

Full text available at: http://dx.doi.org/10.1561/2200000106



268 Multi-valued and Continuous Protected Attributes

Another option would be construct a mapping fX : (X1, X3, X4) 7→
X, that assigns a value to the entire cluster. One such possible function is
just setting X = 1

|I|
∑

i∈I Xi, where I is the index set of all constitutive
features. Naturally, other possible mappings exist, and the mapping
could also be stochastic. Once a cluster value X has been defined,
we can again use the methods proposed for multi-valued attributes
in Appendix D, and compare different values of X = x against the
baseline X = 0. In the extreme case, the mapping fX may create a
binary label for X. We next explain why this simplification step can
still be meaningful.

Unobserved Constitutive Features and Soft Interventions. Consider
now the case of the causal diagram in Fig. D.2a, with X1, . . . , X4, not ob-
served, but instead we are given an imperfect value of the cluster, labeled
X. That is, we are only given the output of the fX : (X1, X3, X4) 7→ X

mapping described in the previous paragraph. The key question we
answer next is the following: If we hypothesize interventions on the
variable X, do such operations have a valid syntactic interpretation?

To give a positive answer to this question, we describe an inter-
pretation via soft-interventions (Correa and Bareinboim, 2020). Soft
interventions are an extension of atomic interventions, which were con-
sidered throughout this monograph. Atomic interventions set X to a
specific, fixed value, say X = x0. Soft interventions, on the other hand,
may set the value of X to a policy, e.g., we may consider a policy
intervention that sets the value of X to x0 with probability 0.6, whereas
it sets it to x1 with probability 0.4.

We continue illustrating our point by means example. Consider
a hypothetical setting in which we have a continuous variable Xc ∼
Unif[0, 1] that represents the protected attribute, and the true causal
diagram is given in Fig. D.2b. The variable is chosen as continuous to
indicate a possible complexity in determining the protected attribute
(as described in previous paragraphs). Instead of having access to Xc,
we only have access to an imperfect version of it, say X ∈ {0, 1},
and we posit the diagram in Fig. D.2c. For simplicity, suppose that
X = 1(Xc ≥ 1

2) but we are not given this information.
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A possible issue may lie in the fact that the mechanism fY in fact
responds to Xc, while we are trying to conceptualize interventions on
X, and the fY mechanism responds to Xc, and not its abstraction
X. However, as it turns out, an atomic intervention in the model in
Fig. D.2c corresponds to a soft-intervention in the model in Fig. D.2b.
In particular, in this case, we may write

P (YX=x0 = 1) = P (Y = 1 | X = x0) (D.16)

=
∫

[0, 1
2 ]
P (Y = 1 | Xc = xc, X = x0)fXc|X=x0(xc)dxc

(D.17)

=
∫

[0, 1
2 ]

2P (Y = 1 | Xc = xc, X = x0)dxc (D.18)

= P (Y = 1 | Xc ∼ Unif[0, 1
2]) (D.19)

= P (Y = 1 | do(Xc ∼ Unif[0, 1
2])) (D.20)

= P (Y = 1;σXc) (D.21)

where σXc indicates a policy intervention that sets Xc uniformly to
the [0, 1

2 ] interval. Through this analysis, the meaning of, say, the total
effect of X on Y , written P (yx1)− P (yx0), becomes more apparent:

TEx0,x1(y) = P (y | do(Xc ∼ Unif[12 , 1]))− P (y | do(Xc ∼ Unif[0, 1
2])).

(D.22)

That is, the total effect compares the outcome of a policy that sets
Xc uniformly to [0, 1

2 ], against a policy that sets Xc uniformly to [1
2 , 1],

given a clear semantical interpretation to the quantity TEx0,x1(y) in
terms of the true underlying, though unobserved, quality Xc.

In fact, this construction generalizes to arbitrary mappings satis-
fying minor assumptions. Suppose that Xc ∼ FXc according to some
probability distribution FXc that admits a density. Then, suppose that
fX : Xc 7→ X is an arbitrary mapping from the domain of Xc into
{0, 1}. We can then write
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P (YX=x0 = 1) = P (Y = 1 | X = x0) (D.23)

=
∫

f−1
X (x0)

P (Y = 1 | X = x0, Xc = xc)fXc|X=x0(xc)dxc

(D.24)

=
∫

f−1
X (x0)

P (Y = 1 | Xc = xc)fXc|X=x0(xc)dxc (D.25)

= P (Y = 1 | Xc ∼ FXc|X=x0) (D.26)
= P (Y = 1 | Xc ∼ do(FXc|X=x0)) (D.27)
= P (Y = 1;σXc), (D.28)

where σXc now indicates a stochastic intervention that sets Xc to its
conditional distribution given X = x0. In other words, the interpretation
given to the total effect in our first example with a uniformly distribution
and a threshold mapping was not an idiosyncrasy. Instead, it follows
from a more general approach in Eqs. D.23-D.28.

We now recap the importance of the above result. Crucially, in
the real world, the fY mechanism responds to a continuous random
variable Xc. The mechanism is unaware of the value of the “binarized”
attribute X, and does not respond to it. Nonetheless, in a simplified
causal diagram with X taken as the treatment instead of Xc, the total
effect still has a meaningful interpretation with respect to the underlying
true structural causal model, in which fY responds to changes in Xc,
and not to X.

D.1.3 Issue C: Counterfactual Worlds Do Not Explain Social Phe-
nomena in the Current World

The final point we address concerns the validity of counterfactual causal
reasoning for explaining discrimination in the current real world. Here,
we leverage the Berkeley admissions example introduced in Ex. 2.1. As
a quick recap, the protected attribute X represents gender, a mediator
D represents the choice of department to which the student applies,
and Y represents the admission outcome. In particular, Hu and Kohler-
Hausmann (2020) write: “Modular counterfactuals of the type, ‘What
would the effect of sex on admissions be in a world when men and women
apply at the same rates to math departments?’ – do not necessarily
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tell us anything empirically relevant to the normative question about
whether a current practice is discriminatory in our current world where
those premises are counter to fact”.

Some clarification is in order regarding what causal modeling is
attempting to answer in such instances. The dataset under analysis was
generated from a specific structural causal model that represents the
decision-making mechanism that was used by the university’s commit-
tee, labeled fY . One can perform a thought experiment, in which the
committee spends infinite time deliberating admissions, and produces
an output decision for any input and possible value of the noise variables.
Any causal analysis undertaken is strictly concerned with this generative
model of reality, and does not attempt to answer anything about how
the committee would have acted on a different occasion, on which the
correlation between department of application and gender vanished.
Instead, the type of question we are asking is, for the committee fixed
in time and place, how would they have evaluated students had they
been given applications of students in which, for instance, the gender
was randomized? That is, causal modeling is relative to the underlying
model of reality, and does not purport to answer questions on how
downstream mechanisms (evaluation of applications) would change over
time had an upstream mechanism (choosing department of application)
been affected.

We address one final point of Hu and Kohler-Hausmann (2020). The
authors write that “more people sexcoded ‘male’ than ‘female’ apply to
math departments and that means, cognitively, that decision-makers
associate male and math more than they associate female and math.
That is, after all, the problem. It is not clear why knowing how people
sexcoded ‘female’ would be treated in a counterfactual world where equal
numbers of people sexed female and male applied to math departments
is helpful for sorting out whether in our world, where math is a male-y
thing, the current admission practices constitute discrimination”. Some
key methodological developments in causal inference are entirely ignored
in the considerations of authors, similarly as in Kohler-Hausmann (2018).
In fact, as we discuss next, causal methodology allows us to: (i) determine
whether math is seen as a male-y thing by the committee, or if females
are treated unfairly for other reasons; (ii) quantify the contribution of
math being a male-y thing compared to other forms of discrimination.
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The issue at hand hand, best illustrated through an example, has to
do with interactions among variables. Consider the following example:

Example D.1 (Berkeley Admissions – continued). Consider the Berkeley
admissions setting from Ex. 2.1. Let X be gender (x0 female, x1 male),
D department choice (d0 non-math, d1 math), and Y admission outcome
(y1 for admission). Consider the following SCM:

X ← Bernoulli(0.5) (D.29)
D ← Bernoulli(0.5 + αX) (D.30)
Y ← (0.1 + βX + γD + δXD). (D.31)

Now, notice that there is an interaction term in the fY mechanism,
namely δXD. Due to this term, the probability of admission increases
for individuals who are male, and apply to the math department. This
term, therefore, in words of Hu and Kohler-Hausmann (2020) measures
how much math is male-y thing, as perceived by the committee. The
other part of this story about how much math is male-y thing is the
difference in the rate of application to math departments, given by the
parameter α.

Importantly, other forms of discrimination also exist. For instance,
if β > 0, male applicants are given advantage over female candidates,
in way that has nothing to do with math being a male-y thing.

A technical question, in this scenario, is the following. Can we
test for the existence of the interaction term? And secondly, if the
interaction term exists, can we obtain a quantity that captures it? To
answer affirmatively to both questions, we first compute the NDE for
both x0 → x1 and x1 → x0 transitions:

NDEx0,x1(y) = β + δ

2 (D.32)

NDEx1,x0(y) = β + δ

2 + αδ. (D.33)

Notice that if either α = 0, or δ = 0, the two NDEs are the same. In
fact, a hypothesis test

H0 : NDEx0,x1(y) = NDEx1,x0(y) (D.34)
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is a test for the existence of an interaction between direct and indirect
pathways. In fact, the difference between the two NDEs

NDEx1,x0(y)−NDEx0,x1(y) = αδ (D.35)

quantifies the strength of the interaction of direct and indirect pathways,
e.g., the impact of the entire phenomenon of math being a male-y thing
(males are more likely to apply to math departments, in conjunction
with the committee perceiving males as more qualified) on the disparity
observed in outcome. □

The discussion of the above example does not only address the simple
parametric instance in Eqs. D.29-D.31, but can also be generalized to
more complex settings and interactions, that is, to arbitrary SCM mech-
anisms. Therefore, when diagnosing issues with the causal methodology
for detecting discrimination, one also needs to carefully consider the
methodological capabilities at hand to the data analyst.
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In this appendix, we discuss the connection of causal fairness analysis
with the notion of process fairness (Grgic-Hlaca et al., 2016). Process
fairness offers a different normative view on fairness when compared to
the legal doctrines of disparate treatment and disparate impact, around
which most of the discussion in this monograph revolved. The discussion
in this appendix builds on the tools developed in Sec. 3 and Sec. 4.

The disparate treatment and impact doctrines are usually discussed
in the context of outcome fairness, focusing on disparities in the outcome
itself. Complementary to this, the notion of process fairness is focused
on how decisions come about, and, in particular, which variables are
used in the decision-making process. In this context, the causal approach
to fairness discussed earlier also plays an important role. The crucial
point is that considerations about outcome fairness, when paired with
appropriate causal assumptions, may also give insights about process
fairness. We formalize this statement in the sequel.

The disparate treatment doctrine is concerned with differential
outcomes for similarly situated individuals who differ in the protected
characteristic. If Z = z,W = w denote the values of the confounders
and mediators, respectively, such as disparity can be written as
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P (y | x1, z, w)− P (y | x0, z, w) ̸= 0. (E.1)
However, a statistical claim, such as in Eq. E.1, in itself does not make
any claims about the decision-making process, unless paired with causal
assumptions. To produce a causal claim, we can consider the quantity

(x, z, w)-DEx0,x1(y | x0, z, w) = P (yx1,Wx0
| x0, z, w)− P (yx0 | x0, z, w),

(E.2)

which measures the direct effect of a x0 → x1 transition for the group of
units with covariate values x0, z, w (see Sec. 4 for details). Crucially, this
quantity may have causal implications since it is admissible (Def. 3.4)
with respect to the structural direct effect (Def. 3.2). This implies that

(x, z, w)-DEx0,x1(y | x0, z, w) ̸= 0 =⇒ Str-DE ̸= 0. (E.3)
In words, if the causal quantity is different from 0, then the protected
attribute X is known to be used as an input to the decision-making
mechanism fY that determines the values of the outcome. Put differently,
this allows one to establish a qualitative claim about the process itself, as
discussed in Grgic-Hlaca et al. (2016). Now, the key piece of the puzzle
is how to move from the statistical claim in Eq. E.1 to a counterfactual
claim about (x, z, w)-DEx0,x1(y | x0, z, w). As it turns out, the latter
quantity is identifiable under the SFM, and in fact equals exactly
the expression in Eq. E.1. The main point here is that, in absence
of appropriate causal assumptions, the quantity (x, z, w)-DEx0,x1(y |
x0, z, w) need not equal the expression in Eq. E.1, and observing a
disparity in outcome does not imply anything about the process of
decision-making in general. However, based on this disparity, one may
be able to produce claims about the process of decision-making with
the help of appropriate causal assumptions.

A similar line of reasoning, although somewhat more involved, ap-
plies for the doctrine of disparate impact, and the indirect and spurious
effects. For instance, based on the admissibility of measures such as nat-
ural indirect effect (Def. 4.2) and experimental spurious effect (Def. 4.1)
with respect to structural indirect and spurious effects, respectively, we
know that

NIEx0,x1(y) ̸= 0 =⇒ Str-IE ̸= 0, (E.4)
Exp-SEx(y) ̸= 0 =⇒ Str-SE ̸= 0. (E.5)
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Once again, this allows one to make qualitative claims about the decision-
making process (in particular, Str-IE ̸= 0 implies mediators are used
as an input to the mechanism fY , and that the mediators are affected
by the protected attribute X; Str-SE ̸= 0 implies that confounders are
used as an input to fY , and that there are common variations of the
confounders and the attribute X).

Finally, we mention another fundamental connection of process and
outcome fairness that follows from the causal approach. Based on the
decomposition of the TV measure in Thm. 4.3, we have that

TVx0,x1(y) = x-DEx0,x1(y | x0)− x-IEx1,x0(y | x0)− x-SEx1,x0(y).
(E.6)

The TV measure captures the entire observed disparity, related to
outcome fairness. However, each of the terms on the r.h.s. of Eq. E.6 is
related to a specific part of the decision-making process – whether the
attribute is used directly (term x-DE); whether the attribute influences
the mediators, which are then used in decision-making (term x-IE);
and whether the attribute has common variations with the confounders,
which are used in decision-making (term x-SE). Crucially, once we
compute each of the terms on the r.h.s. of Eq. E.6, it allows us to
quantify how much each part of the decision process contributes to
the overall disparity in the outcome that was observed in an aggregate
measure such as TV. Therefore, the causal analysis allows the data
scientist to attribute outcome disparities found in the data to the causal
mechanisms that generate them, and therefore permit simultaneous
reasoning about both disparities in outcome and how they came about
– thereby considering outcome and process fairness within a unified
framework.
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