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ABSTRACT
A fundamental question in theoretical machine learning is
generalization. Over the past decades, the PAC-Bayesian
approach has been established as a flexible framework to
address the generalization capabilities of machine learning
algorithms and design new ones. Recently, it has garnered
increased interest due to its potential applicability for a va-
riety of learning algorithms, including deep neural networks.
In parallel, an information-theoretic view of generalization
has developed, wherein the relation between generalization
and various information measures has been established. This
framework is intimately connected to the PAC-Bayesian ap-
proach, and a number of results have been independently
discovered in both strands.

Fredrik Hellström, Giuseppe Durisi, Benjamin Guedj and Maxim Raginsky (2025),
“Generalization Bounds: Perspectives from Information Theory and PAC-Bayes”,
Foundations and Trends® in Machine Learning: Vol. 18, No. 1, pp 1–223. DOI:
10.1561/2200000112.
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In this monograph, we highlight this strong connection and
present a unified treatment of PAC-Bayesian and informa-
tion-theoretic generalization bounds. We present techniques
and results that the two perspectives have in common, and
discuss the approaches and interpretations that differ. In
particular, we demonstrate how many proofs in the area
share a modular structure, through which the underlying
ideas can be intuited. We pay special attention to the con-
ditional mutual information (CMI) framework, analytical
studies of the information complexity of learning algorithms,
and the application of the proposed methods to deep learn-
ing. This monograph is intended to provide a comprehensive
introduction to information-theoretic generalization bounds
and their connection to PAC-Bayes, serving as a foundation
from which the most recent developments are accessible. It
is aimed broadly towards researchers with an interest in
generalization and theoretical machine learning.
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1
Introduction: On Generalization and Learning

Artificial intelligence and machine learning have emerged as driving
forces behind transformative advancements in various fields, becom-
ing increasingly pervasive in many industries and daily life. As these
technologies continue to gain momentum, the need to develop a deeper
understanding of their underlying principles, capabilities, and limita-
tions grows. In this monograph, we delve into the theory of machine
learning, and more specifically statistical learning theory, where a key
topic is the generalization capabilities of learning algorithms.

A learning algorithm is a (potentially stochastic) rule for selecting a
hypothesis given a training data set. Generalization bounds for learning
algorithms provide guarantees that the performance, as measured by
a loss function, is “good enough,” given that the training loss is small,
when the hypothesis is subjected to new samples that were not neces-
sarily in the training data. Such bounds are useful for several reasons.
When applied in a specific use case, a generalization bound provides
a certificate that the hypothesis performs well on new data, provided
that the assumptions under which the bound was derived are valid.
Furthermore, such bounds can serve as inspiration for the design of
new learning algorithms, potentially leading to practical improvements.

3
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4 Introduction: On Generalization and Learning

Finally, on a deeper level, generalization bounds can enable a more
complete understanding of learning algorithms.

While the literature on generalization bounds is vast, making an
in-depth review of the full field beyond our scope, we will discuss several
key references. Valiant (1984) formalized a model of learnability, called
Probably Approximately Correct (PAC) learning. Roughly speaking,
a problem is PAC learnable if there exists a learning algorithm such
that, for any data distribution, the selected hypothesis has satisfactory
performance with high probability. In the preceding decade, Vapnik
and Chervonenkis (1971) studied the uniform convergence of certain
events. They characterized this convergence in terms of a property of
the underlying set that would later be termed the Vapnik-Chervonenkis
(VC) dimension, which can be considered a measure of complexity.
Blumer et al. (1989) connected these two topics, and demonstrated
that the VC dimension of a hypothesis class characterizes its PAC
learnability. We discuss these topics and additional results in more
detail in Section 1.3.

The two particular strands in the literature on generalization bounds
that will be our main focus throughout this monograph are the PAC-
Bayesian and information-theoretic lines of research. Despite the great
commonality in techniques and concepts, these two fields have evolved
in almost parallel tracks until recently. One objective of the present
monograph is to give a unified treatment of the two approaches and high-
light their similarities, despite the differing origins. The PAC-Bayesian
approach—initiated by Shawe-Taylor and Williamson (1997), McAllester
(1998), and McAllester (1999), with significant later contributions from,
e.g., Catoni (2007)—started as a quest to obtain Bayesian-flavored
versions of PAC generalization bounds, as the name implies. PAC
bounds are independent of the specific learning algorithm used, as they
hold uniformly over the class of possible hypotheses. In contrast, PAC-
Bayesian bounds take into account the learning algorithm by explicitly
incorporating a distribution over hypotheses—hence the Bayesian suffix.

The effort of relating generalization and information, with a broad
interpretation of these terms, has a long history. Conventional wisdom,
by way of Occam’s razor (Blumer et al., 1987), holds that solutions that
are “simpler” in some sense tend to generalize better than their more
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“complex” counterparts. Many different ways of formalizing complexity
measures to capture “information” of some kind have been studied, with
some of the earliest examples being the Fisher information of Edgeworth
(1908) and Fisher and Russell (1922), the information theory of Shannon
(1948), and the Kolmogorov complexity of Kolmogorov (1963) and
Solomonoff (1964). In seminal works, Yang and Barron (1999) and Leung
and Barron (2006) connected such complexity measures to performance
guarantees for density estimation. Other notable information notions
in the context of learning include the Akaike information criterion of
Akaike (1974), the Bayesian information criterion of Schwarz (1978),
and the minimum description length principle, studied by, e.g., Rissanen
(1978; 1983), Barron and Cover (1991) and Barron et al. (1998) (see the
book of Grünwald (2007) for an in-depth treatment). The particular
flavor of information-theoretic approach to generalization that we will
focus on can be traced back to the work of Zhang (2006), and more
recently, to the seminal works of Russo and Zou (2016) and Xu and
Raginsky (2017). In this line of work, the learning algorithm is viewed
as a communication channel from the training data to the hypothesis.
With this interpretation of the statistical learning process, it is clear
that quantities that are common in communication applications, such
as the mutual information, have an important role to play.

Despite the historical separation between these lines of work—even
within the specific strands, at times—the tools and results that appear in
these fields have more similarities than differences, and any discrepancy
between them is mainly in the motivation and framing of the work. This
may be due to the interdisciplinary nature of the field: it can naturally
be covered as statistics, computer science, electrical engineering, and
physics.1 Thus, the reader will not be surprised that many of these
results were re-discovered and re-interpreted in many separate contexts,
evolving independently. Still, the connection between PAC-Bayesian
and information-theoretic generalization bounds has been noted and
explored by, e.g., Russo and Zou (2016), Banerjee and Montufar (2021),
Grünwald et al. (2021), and Alquier (2024). One of the aims of the

1Noting this deep connection, Catoni (2007) referred to the PAC-Bayesian
approach as the “thermodynamics of statistical learning.”
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6 Introduction: On Generalization and Learning

present monograph is to solidify the bridge between these strands of the
literature, demonstrating the commonalities in the different approaches.

1.1 Notation and Terminology

To set the stage, we introduce the notation that is used throughout this
monograph. Unless otherwise stated, capital letters indicate random
variables, with lower-case letters indicating their instances. For random
vectors, the same conventions apply, but the letters are in bold. We
consider the training examples to lie in a set Z, referred to as the
instance space. In the context of supervised learning, the instance
space is a product between a feature space X and a label space Y, so
that Z = X × Y. At its disposal, the learning algorithm has a training
set Z = (Z1, . . . , Zn) ∈ Zn, consisting of n training examples.2 Usually,
we assume that the training examples are independent and identically
distributed (i.i.d.),3 with each training example being drawn from a
data distribution PZ on Z. We denote the distribution of Z, as well
as other product distributions, as PZ = PnZ . Throughout, we will use
the shorthand [n] = {1, . . . , n} to refer to the indices of the training
samples.

Confronted with the training data, the learner selects a hypothe-
sis W from a set W, called the hypothesis space. Again, in supervised
learning, W is typically a subset of all functions from X to Y, or the
parameters of such functions, but the general framework can accom-
modate other notions of hypothesis. The method by which the learner
chooses the hypothesis is described by a (probabilistic) mapping from
the training set Z to the hypothesis W , denoted by PW |Z , and referred
to as a learning algorithm. Mathematically, it can be seen as a stochas-
tic kernel, which gives rise to a probability distribution on W for each
instance of Z. Note that PW |Z is defined for a specific size n of the
training set. We usually assume that the learning algorithm can be
adapted to training sets of different sizes, i.e., we assume that PW |Z

2Despite conventionally being called a “set,” Z is an ordered list: its elements
are ordered, and elements are allowed to be repeated.

3This assumption is classical in statistical learning theory. Nevertheless, we will
cover recent results that allow one to relax and even remove it (see Sections 5 and 9).
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1.1. Notation and Terminology 7

is defined for every n. While there is often a natural relation between
these conditional distributions for various n, we do not require that
they are related in general.

The quality of a specific hypothesis w ∈ W with respect to a
sample z ∈ Z is measured by a loss function, ℓ : W × Z → R+. To give
some classical examples of loss functions, consider supervised learning,
where the sample is decomposed into features and labels (or inputs
and outputs) as z = (x, y) ∈ X × Y and the hypotheses w ∈ W are
functions w : X → Y. For classification, where the label space Y is
discrete, a typical loss function is the classification error ℓ(w, z) =
1{w(x) ̸= y}. Here, 1{·} denotes the indicator function. For regression,
where the label space is continuous, a common choice is the squared
loss ℓ(w, z) = (w(x) − y)2.

The true goal of the learner is to select a hypothesis that performs
well on fresh data from the distribution PZ , as measured by the loss
function. This is formalized by the population loss

LPZ
(w) = EPZ

[ℓ(w,Z)] ,

sometimes referred to as the (true) risk of a hypothesis. A key feature of
the learning problem is that the true data distribution is assumed to be
unknown, which implies that the population loss cannot be computed
by the learner. However, by averaging the loss function over training
data, the learner obtains the training loss

LZ(w) = 1
n

n∑
i=1

ℓ(w,Zi),

which serves as an estimate of the population loss. The training loss is
also known as the empirical risk. A natural procedure for selecting a
hypothesis is to minimize the training loss. This is referred to as empir-
ical risk minimization (ERM), and is successful in finding a hypothesis
with low population loss if the difference between population loss and
training loss is small. This is measured by the generalization error

gen(w,Z) = LPZ
(w) − LZ(w),

which is also called the generalization gap.

Full text available at: http://dx.doi.org/10.1561/2200000112



8 Introduction: On Generalization and Learning

1.2 Flavors of Generalization

Since the randomized learning algorithm is described by a condi-
tional probability distribution PW |Z , bounds on the generalization
error gen(W,Z) come in a variety of forms. We now introduce three
canonical forms that have been studied in the information-theoretic and
PAC-Bayesian literature.

Firstly, one possibility that has been widely considered in the
information-theoretic strand of the literature is to bound the average
generalization error EPWZ

[gen(W,Z)]. Performing an average analysis
can often simplify mathematical derivations, and lead to some insights
about the studied algorithms. The works of Russo and Zou (2016)
and Xu and Raginsky (2017) both focus on this setting, and the mutual
information between training data and hypothesis naturally arises as a
fundamental quantity in upper bounds for the average generalization
error. In Section 2.3, we introduce a first such average generalization
bound, as a warm-up to the more general theory presented later in this
monograph. The particular features that are relevant specifically for
this scenario are discussed in more detail in Section 4.

Secondly, in practical situations, we may be given only one instance
of a training set, so an arguably more pertinent question is if we can
bound the generalization error with high probability over the draw
of the data. In the PAC-Bayesian literature, initiated in the works
of Shawe-Taylor and Williamson (1997) and McAllester (1998), most
bounds are on the generalization error when averaged over the learning
algorithm, EPW |Z [gen(W,Z)], and hold with probability at least 1 − δ

under PZ for some confidence parameter δ ∈ (0, 1). The change in
perspective in the PAC-Bayesian approach, as compared to the classical
statistical learning literature, is significant. We no longer ask whether
there are specific hypotheses w that perform well: instead, we ask if
there are distributions PW |Z over hypotheses that do. To highlight the
conceptual connection to Bayesian statistics, the distribution PW |Z is
usually termed posterior. This distribution is compared, via information-
theoretic metrics, to a reference measure QW called the prior. Another
significant feature that is shared among many PAC-Bayesian bounds is

Full text available at: http://dx.doi.org/10.1561/2200000112



1.2. Flavors of Generalization 9

that they hold uniformly for all choices of posterior. This, and other im-
portant properties of PAC-Bayesian bounds, are detailed in Section 5.2.

Finally, we may be interested in the generalization error when we
have a single training set and we use our learning algorithm to select
a single hypothesis. Thus, we seek bounds on gen(W,Z) that hold
with probability at least 1 − δ under PWZ . In this monograph, we will
call this the single-draw setting, following Catoni (2007), since we are
concerned with a single draw of both data and hypothesis. This type of
bound has appeared sporadically in both the information-theoretic and
PAC-Bayesian literature. While this type of bound can arguably be the
most relevant in practice—for instance, in deep learning (discussed in
Section 8), one typically uses a deterministic neural network obtained
via one instantiation of a randomized learning algorithm—it comes
with some drawbacks. For instance, since the probability is computed
with respect to the joint distribution PWZ , any single-draw bound is by
definition a statement pertaining to a particular posterior PW |Z . Thus,
we lose uniformity over posteriors. Furthermore, for the information-
theoretic bounds that we discuss here, we need a stronger technical
requirement on the absolute continuity of the distributions involved—at
least for data-dependent bounds. We will discuss this type of bounds in
Section 5.3.

It should be stressed that the terminology used here is not universally
accepted, and different names are used by different authors. Furthermore,
bounds of all types have been studied in both the PAC-Bayesian and
information-theoretic strands of the literature. For instance, average
bounds have been referred to as “PAC-Bayesian type” bounds (Salmon
and Dalalyan, 2011; Dalalyan and Salmon, 2012) or mean approximately
correct (MAC)-Bayesian bounds (Grünwald et al., 2021). Single-draw
bounds have been referred to as pointwise or de-randomized PAC-
Bayesian bounds (Catoni, 2007; Alquier and Biau, 2013; Guedj and
Alquier, 2013). The term de-randomized PAC-Bayesian bound has also
been used for bounds that specifically apply to the average hypothesis,
that is, bounds on gen(EPW |Z [W ] ,Z) that hold with probability 1 − δ

under PZ (Banerjee and Montufar, 2021) (such variants will be discussed
in Section 5.4). However, throughout this monograph, we will use the
terms defined above.
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10 Introduction: On Generalization and Learning

The framework of PAC learnability and the associated uniform-
convergence bounds that we mentioned earlier do not fit exactly into
any of the flavors that we have mentioned so far (although the single-
draw bounds are most closely related). In the following section, we give
a formal definition of PAC learnability, and provide an overview of some
generalization bounds based on uniform convergence.

1.3 Uniform Convergence-Flavored Generalization Bounds

As previously indicated, demonstrating PAC learnability for a hypothe-
sis class boils down to a very strong type of uniform convergence result.
Roughly speaking, PAC learnability requires that for any data distri-
bution PZ , there is a learning algorithm that, with sufficient training
data, is arbitrarily close to the optimal population loss. As it turns
out, PAC learnability is equivalent to uniform convergence, defined
below (Shalev-Shwartz and Ben-David, 2014, Chapter 4).

Definition 1.1 (Uniform convergence). The hypothesis class W has the
uniform convergence property if there exists a function m : (0, 1)2 → N
such that, for every ϵ, δ ∈ (0, 1) and every data distribution PZ , the
following holds: if Z contains n ≥ m(ϵ, δ) i.i.d. samples from PZ , we
have with probability at least 1 − δ that

|LZ(w) − LPZ
(w)| ≤ ϵ for all w ∈ W. (1.1)

The function m is called the sample complexity.

Thus, if a hypothesis class satisfies the uniform convergence property,
we can obtain generalization bounds that are uniform over both data
distributions and hypotheses. The attractiveness of these bounds is
clear: no matter what data you are dealing with, independent of the
learning algorithm you use, you can trust that the training loss gives a
good indication of your population loss. At the moment, it unfortunately
seems as if such requirements are too strict for many modern machine
learning settings, such as deep neural networks.4 For this model class,

4This is not meant to imply that the bounds discussed in this section have no
hope of describing modern models, such as deep neural networks. Indeed, promising
steps toward this have been taken in the literature (e.g., Neyshabur et al., 2019;
Negrea et al., 2020).
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1.3. Uniform Convergence-Flavored Generalization Bounds 11

some data distributions or some hypotheses lead to poor generalization,
while naturally occurring data and commonly used learning algorithms
perform well. This motivates the information-theoretic approach of
making statements that are specific to the data distribution and learning
algorithm in question. Still, the framework of uniform generalization has
proven immensely powerful for many domains, and has led to a definitive
characterization of when learning is possible in this strict sense for binary
classification: the VC dimension. Intuitively, the VC dimension is related
to the complexity of a hypothesis class, and measures the size of the
biggest data set for which the hypothesis class can induce arbitrary
labellings of the features. We give an overview of the VC dimension in
Section 1.3.1.

A step towards incorporating data dependence in the bounds was
taken by Gine and Zinn (1984), Koltchinskii and Panchenko (2000),
Koltchinskii (2001), Bartlett and Mendelson (2001), and Bartlett and
Mendelson (2002) with the introduction of the Rademacher complexity
of a hypothesis class. The Rademacher complexity similarly measures
the ability of a hypothesis class to instantiate arbitrary labels, but
can be computed empirically on the basis of a training set. Still, it
has a uniform flavor in terms of the hypothesis class. We discuss the
Rademacher complexity in Section 1.3.2.

Note that we only provide an exceedingly brief overview of uniform
convergence-flavored generalization bounds and their history, in order
to provide context for the upcoming sections. Since properly covering
this vast subject is far beyond the scope of the present monograph, the
reader is referred to, for instance, the excellent books by Shalev-Shwartz
and Ben-David (2014) and Mohri et al. (2018) for further details.

1.3.1 VC Dimension

We will now focus on binary classification, where the sample space
decomposes as Z = X ×Y . Here, X is the feature space, while Y = {0, 1}
is the label space. Each hypothesis w ∈ W is a map w : X → {0, 1}
that predicts a label for each feature. We will focus on the 0 − 1
loss function, given by ℓ(w, z) = 1{w(x) ̸= y}. Thus, the hypothesis
incurs a loss if and only if it predicts the wrong label. For this setting,
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the VC dimension of W, denoted as dVC, provides a fundamental
characterization of uniform convergence (defined in Theorem 1.1), and
hence of PAC learnability: W satisfies the uniform convergence property
if and only if dVC is finite. In order to define the VC dimension, we need
to introduce the growth function of a hypothesis class (Shalev-Shwartz
and Ben-David, 2014, Def. 6.5).

Definition 1.2 (Growth function and VC dimension). The growth func-
tion gW(m) is defined as the maximum number of different ways in
which a feature set of size m can be classified using functions from W,
that is,

max
(x1,...,xm)∈X m

|{(w(x1), . . . , w(xm)) : w ∈ W}| . (1.2)

Note that gF(m) ≤ 2m. The VC dimension of W, denoted dVC, is
the largest integer such that this upper bound holds with equality.
Specifically,

dVC = max{m ∈ N : gF (m) = 2m}. (1.3)

If no such integer exists, we say that dVC = ∞. If the VC dimension of
a hypothesis class is finite, we will refer to it as a VC class.

Intuitively, VC dimension characterizes uniform convergence for the
following reason: if the VC dimension is infinite, we can change the
labels of a training set Z arbitrarily and still find a hypothesis that
outputs these exact predictions, no matter the size n of the training set.
Hence, we can find a hypothesis with a minimal or maximal training
loss, independent of the underlying population loss. However, if the VC
dimension is finite and n ≫ dVC, we cannot adapt arbitrarily to every
sample in the training set, but only to dVC of them. Therefore, in some
sense, the remaining n− dVC samples provide a reasonable estimate of
the population loss.

Re-producing the full proof is beyond our present scope, but essen-
tially, one proceeds by bounding the generalization gap in terms of the
growth function by formalizing the intuition above (see, e.g., Shalev-
Shwartz and Ben-David, 2014, Chapter 28). Then, the growth function
is controlled using the Sauer-Shelah lemma (Shalev-Shwartz and Ben-
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1.3. Uniform Convergence-Flavored Generalization Bounds 13

David, 2014, Lemma 6.10), which provides a bound on the growth
function in terms of the VC dimension.5

Lemma 1.3 (Sauer-Shelah lemma). Let gW(·) denote the growth func-
tion of the function class W . For any function class W with VC dimen-
sion dVC,

gW(m) ≤
dVC∑
i=0

(
m

i

)
≤


2dVC+1, m < dVC + 1,(
em

dVC

)dVC
, m ≥ dVC + 1.

(1.4)

With this, we can obtain the following (Shalev-Shwartz and Ben-
David, 2014, Thm. 6.8).

Theorem 1.4 (Generalization from VC dimension). Consider a hypothesis
class W with VC dimension dVC. Then, W has the uniform convergence
property (see Theorem 1.1) with sample complexity m, which is upper
and lower bounded as

C ′dVC + log 1
δ

ϵ2
≤ m(ϵ, δ) ≤ C

dVC + log 1
δ

ϵ2
= m+(ϵ, δ), (1.5)

for some constants C, C ′. In particular, this implies that for all w ∈ W ,

|LZ(w) − LPZ
(w)| ≤

√
C
dVC + log 1

δ

n
. (1.6)

This implies that W is PAC learnable in the following sense: for every
distribution PZ , there exists a deterministic learning algorithm PW |Z
such that, for every ϵ, δ ∈ (0, 1), we have that with probability at
least 1 − δ over PZ ,

LPZ
(W ) ≤ inf

w∈W
LPZ

(w) + ϵ (1.7)

provided that n ≥ m+(ϵ, δ).

Remarkably, the upper and lower bounds on the sample complex-
ity m(ε, δ) differ only by a multiplicative constant, and specifically,
the dependence on dVC is identical. Thus, the PAC learnability of a

5As we will see in Section 7.3, this is also a key tool for analyzing information-
theoretic generalization bounds for the special case of VC classes.
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hypothesis class W is fully determined by its VC dimension dVC in the
sense that W admits a finite sample complexity if and only if dVC is
finite. As remarked before, PAC learnability is a very strong require-
ment, as it is equivalent to uniform convergence both with respect to
the hypothesis class and the data distribution. Hence, less stringent
notions of generalization are of interest, especially distribution- and
algorithm-dependent ones.

Under the assumption of realizability, where infw∈W LPZ
(w) = 0, it

is possible to derive a bound similar to (1.6), but with a decay of 1/n.
This is referred to as a fast rate, in contrast to the slow rate of 1/

√
n.

For more details on fast rates, the reader is referred to the seminal
works of Vapnik and Chervonenkis (1974), Lee et al. (1998), Li (1999),
and the more recent works of Van Erven et al. (2015) and Grünwald
and Mehta (2020).

1.3.2 Rademacher Complexity

Another important metric in the theoretical study of generalization
is the Rademacher complexity (Gine and Zinn, 1984; Koltchinskii and
Panchenko, 2000; Koltchinskii, 2001; Bartlett and Mendelson, 2001;
Bartlett and Mendelson, 2002). Notably, the Rademacher complexity
of a hypothesis class W is defined with respect to a given data set
(although an average version, where an expectation is taken over the
data set, is commonly used). We now give the definition of Rademacher
complexity (Shalev-Shwartz and Ben-David, 2014, Chap. 26).

Definition 1.5 (Rademacher complexity). Let Z ∈ Zn be a vector of
data samples and let ℓ : W × Z → R+ be a loss function. Let σi for
i ∈ [n] be independent Rademacher random variables, so that Pσi [σi =
−1] = Pσi [σi = +1] = 1/2. Then, the Rademacher complexity of the
function class W with respect to Z and ℓ(·, ·) is given by

RadZ(W) = 1
n
EPσ1...σn

[
sup
w∈W

n∑
i=1

σiℓ(w,Zi)
]
. (1.8)

To get some intuition for the Rademacher complexity, one can
imagine splitting the data set Z into a training set and a test set
uniformly at random. What the Rademacher complexity measures, in a
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1.4. Generalization Bounds from Algorithmic Stability 15

worst-case sense over the hypothesis class, is how big the discrepancy
between the loss on the training set and the loss on the test set will be on
average. With this interpretation, it is easy to see how the Rademacher
complexity is tied to generalization: it is almost a generalization measure
by definition. In the following theorem, the connection is made more
specific (Shalev-Shwartz and Ben-David, 2014, Thm. 26.5).

Theorem 1.6 (Generalization guarantee from Rademacher complexity).
Assume that, for all z ∈ Z and all w ∈ W , we have that ℓ(w, z) ∈ [0, 1].
With probability at least 1 − δ over PZ , for all w ∈ W,

LPZ
(w) − LZ(w) ≤ 2RadZ(W) +

√
2 log(2/δ)

n
. (1.9)

A similar bound holds when the sample-dependent Rademacher
complexity is replaced by its expectation under PZ .

As discussed by Shalev-Shwartz and Ben-David (2014, Part IV), the
Rademacher complexity can be used to derive generalization bounds
for relevant hypothesis classes, such as support vector machines, and
can also be used to provide tighter bounds for classes with finite VC
dimension. One issue with the Rademacher complexity is that, while
being data-dependent, it is still a worst-case measure over the hypothesis
class. This may typically lead to generalization estimates for modern
machine learning algorithms that are overly pessimistic.

1.4 Generalization Bounds from Algorithmic Stability

We conclude our overview of generalization bounds by discussing an
example that takes the learning algorithm into account, namely bounds
based on algorithmic stability (Rogers and Wagner, 1978; Devroye and
Wagner, 1979). As for the section on uniform convergence, we will
only provide a very short presentation to provide context for upcoming
sections, as an exhaustive discussion is beyond our scope.

The intuition behind generalization bounds based on algorithmic
stability is roughly as follows: if the selected output hypothesis does
not depend too strongly on the specific training data it is based on, it
should generalize well to unseen samples. Making this intuition precise,
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and specifically formalizing the notion of “strong dependence,” leads to
several different notions of stability that can be related to generalization
performance. In this section, we will focus only on uniform stability, as
studied by, e.g., Bousquet and Elisseeff (2002, Def. 6). There is, however,
a whole host of alternatives that have been studied in the literature (see,
e.g., the works of Kutin and Niyogi, 2002, and Rakhlin et al., 2005).
As shown by Shalev-Shwartz et al. (2010), there is also a fundamental
relation between stability and uniform convergence in settings beyond
standard supervised classification and regression.

We now present a generalization bound for deterministic learning
algorithms that satisfy uniform stability (Bousquet and Elisseeff, 2002,
Def. 6).

Theorem 1.7 (Uniform stability and generalization). We denote Z\i =
(Z1, . . . , Zi−1, Zi+1, . . . , Zn), and let W (Z) ∈ W denote the output of a
deterministic learning algorithm given a training set Z. Assume that
the learning algorithm has uniform stability β in the sense that, for
all Z ∈ Zn and all i ∈ [n],

max
z′∈Z

{∣∣∣ℓ(W (Z), z′) − ℓ(W (Z\i), z′)
∣∣∣} ≤ β. (1.10)

Then, with probability at least 1 − δ under PZ ,

LPZ
(W (Z)) − LZ(W (Z)) ≤ 2β + (4nβ + 1)

√
log 1

δ

2n . (1.11)

For many stable algorithms, such as linear regression and classifi-
cation with support vector machines, the stability parameter β decays
with n, implying that the bound in Theorem 1.7 approaches zero as
the number of training samples increases. For further details, including
the relation to regularization, see, for instance, Shalev-Shwartz and
Ben-David (2014, Chapter 13).

While we will not discuss them in detail, other approaches to gen-
eralization have been taken in the literature, for instance, based on
margins (Shawe-Taylor and Cristianini, 1999) and norms (Neyshabur
et al., 2015).
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1.5 Outline

This monograph is structured as follows. In Part I, comprising Sec-
tions 2 to 6, we cover the foundations of information-theoretic and
PAC-Bayesian generalization bounds for standard supervised learn-
ing. Specifically, in Section 2, we give an intuitive motivation for why
information-theoretic tools are suited for the study of generalization,
before presenting and proving a first information-theoretic generaliza-
tion bound as a gentle introduction to the subsequent sections. In
Section 3, we overview the core tools that are used in deriving gener-
alization bounds in the upcoming sections, in the form of information
measures, change of measure techniques, and concentration inequalities.
We use these tools to derive generalization bounds in expectation in Sec-
tion 4 and generalization bounds in probability in Section 5, including
PAC-Bayesian generalization bounds. We conclude Part I by presenting
the conditional mutual information (CMI) framework, as well as the
generalization bounds that can be derived through it.

In Part II, comprising Sections 7 to 10, we turn to applications of
the generalization bounds from Part I, as well as extensions to settings
beyond standard supervised learning. In Section 7, we examine the in-
formation complexity of several learning algorithms, that is, the value of
information measures that the learning algorithms induce. In Section 8,
we focus specifically on iterative methods, wherein the hypothesis is
sequentially updated as training progresses. This includes neural net-
works trained through standard methods, such as variants of gradient
descent. In Section 9, we derive bounds for alternative learning mod-
els, namely meta learning, out-of-distribution generalization, federated
learning, and reinforcement learning. Finally, in Section 10, we provide
concluding remarks and a broader discussion of information-theoretic
and PAC-Bayesian generalization bounds as a whole.
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7
The Information Complexity of Learning

Algorithms

As argued in Section 2.2, one benefit of the information-theoretic ap-
proach to analyzing generalization is that the resulting bounds depend
on both the learning algorithm and the data distribution. This is in
contrast to the uniform convergence-flavored bounds of Section 1.3,
i.e., bounds that hold uniformly over all data distributions, or even
uniformly over all hypotheses. Still, this is not very useful if we can-
not compute or bound the information measures that appear in the
information-theoretic generalization bounds.

In this section, we study these information measures for specific
learning algorithms. We begin by looking at the Gibbs posterior, which
naturally emerges as the minimizer of some PAC-Bayesian bounds,
and whose generalization error can be exactly characterized via a sym-
metrized relative entropy. Next, we discuss the Gaussian location model,
wherein the learner aims to estimate the mean of a Gaussian distribu-
tion. This simple setting allows us to exactly evaluate the training and
population losses, as well as several information measures, and thus
allows us to compare various bounds for a concrete setting. Next, we
consider the VC dimension, which plays a fundamental role in uniform
convergence-flavored generalization bounds, as well as bounds for com-
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122 The Information Complexity of Learning Algorithms

pression schemes. It can be shown that, in many cases, such uniform
convergence-flavored bounds can (essentially) be recovered from the
information-theoretic bounds from the previous sections. We refer to
this property as the expressiveness of the bounds—i.e., the extent to
which the information-theoretic bounds are able to express results from
alternative frameworks. Finally, we discuss connections to algorithmic
stability and privacy measures. We postpone applications to neural
networks and gradient-based algorithms, such as stochastic gradient
descent and stochastic gradient Langevin dynamics, to Section 8.

7.1 The Gibbs Posterior

Given a generalization bound, it is tempting to design a learning al-
gorithm to minimize it. So far, when presenting information-theoretic
bounds, we have considered a specific learning algorithm, characterized
in terms of a posterior PW |Z . Given this posterior, we mainly focused
on the prior given by the marginal distribution PW , as this typically
minimizes the bounds in expectation. However, a slightly different ap-
proach is possible, as we exemplified when discussing PAC-Bayesian
bounds in Section 5.2. There, we discussed bounds that hold for any
prior and posterior. Crucially, the bounds based on the Donsker-Vara-
dhan variational representation of the relative entropy in Theorem 3.17
actually hold simultaneously for all posteriors. This is because of the
supremum over P in (3.34). This implies that for a fixed prior, we can
choose the posterior that minimizes the bound.

Of particular relevance is the Gibbs posterior. Given a prior QW ,
a training loss LZ(W ), a parameter λ referred to as the inverse tem-
perature, the Gibbs posterior for any measurable set E ⊆ W is given
by

PGW |Z(E|Z) =
∫

E exp(−λLZ(w)) dQW (w)∫
W exp(−λLZ(w)) dQW (w) . (7.1)

The normalization constant in the denominator, referred to as the parti-
tion function, is a random variable that depends on Z. This terminology
comes from statistical physics, where the Gibbs posterior also appears
under the name of Boltzmann distribution. For later use, it will be
convenient to define the log-partition function
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7.1. The Gibbs Posterior 123

Ψλ(Z) = log
∫

W
exp(−λLZ(w)) dQW (w). (7.2)

The relevance of the Gibbs posterior is that it is the minimizer of
many PAC-Bayesian bounds. Specifically, we have the following result,
which is a simple consequence of the Donsker-Varadhan variational
representation of the relative entropy applied conditionally on Z.

Lemma 7.1. Let the prior QW be given. Then, for any PW |Z ,

EPW |Z [LZ(W )] +
D(PW |Z ||QW )

λ
≥ − 1

λ
Ψλ(Z), (7.3)

and equality is achieved uniquely by the Gibbs posterior PGW |Z .

The inverse temperature parameter λ controls the trade-off between
the influence of the prior and the influence of the data, and the rel-
ative entropy D(PW |Z ||QW ) acts as a regularizer. On the one hand,
when λ → ∞, we completely ignore this regularizer and perform un-
fettered empirical risk minimization. On the other hand, if λ → 0, the
optimal posterior equals the prior, and we pay no mind to the collected
data. In PAC-Bayesian bounds such as (5.14), the inverse temperature
is typically chosen to be proportional to n. This leads to a very sensible
trade-off: when the amount of data is small, we are not easily convinced
to stray far from the prior. However, when the amount of data grows
large, we are inclined to place more importance on it, without relying
much on the prior.

Theorem 7.1 can be used to obtain bounds on the average general-
ization error of the Gibbs posterior. To that end, we start with a simple
observation based on Theorem 4.2 and the identity

inf
λ>0

(
aλ+ b

λ

)
= 2

√
ab. (7.4)

Suppose that ℓ(w,Z) is σ-subgaussian for all w ∈ W. Then, for any
PW |Z and any λ > 0,

E[LPZ
(W )] ≤ E[LZ(W )] + I(W ; Z)

λ
+ λσ2

2n . (7.5)

It is tempting to use this inequality to construct a learning algorithm
with small expected population loss as follows: fix the inverse temper-
ature λ > 0 and then choose PW |Z to minimize the right-hand side
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of (7.5). However, the mutual information I(W ; Z) depends on both
PW |Z and on the marginal distribution PZ , while the learning algorithm
has to be designed without knowledge of PZ . This can be solved by
relaxing the bound using the so-called golden formula for the mutual
information: for any QW ≪ PW , we have (Csiszar and Körner, 2011,
Eq. (8.7))

I(W ; Z) = D(PW |Z∥QW |PZ) −D(PW ∥QW ). (7.6)

Using this, along with the fact that the relative entropy is nonnegative,
we can weaken (7.5) to

EPWZ
[LPZ

(W )] ≤ EPWZ
[LZ(W )] +

D(PW |Z∥QW |PZ)
λ

+ λσ2

2n (7.7)

= EPZ

[
EPW |Z [LZ(W )] +

D(PW |Z∥QW )
λ

]
+ λσ2

2n . (7.8)

Thus, applying Theorem 7.1 conditionally on Z, we arrive at the fol-
lowing.

Theorem 7.2. Assume ℓ(w,Z) is σ-subgaussian under PZ for all w ∈ W .
Then, the expected population loss of the Gibbs posterior PGW |Z at
inverse temperature λ satisfies

E[LPZ
(W )] ≤ − 1

λ
E[Ψλ(Z)] + λσ2

2n . (7.9)

Bounds of this sort are common in the PAC-Bayes literature (McAllester,
1998; McAllester, 1999; Zhang, 2006; Catoni, 2007). To instantiate them
in a given setting, we need lower bounds on the log-partition function
Ψλ(Z), which are typically derived on a case-by-case basis. As an
example, we give the following result, due to Raginsky (2019).

Theorem 7.3. Assume the following:

1. The hypothesis space W is the d-dimensional Euclidean space Rd.

2. The loss function ℓ(w, z) is differentiable in w, and its gradient
∇ℓ(w, z) with respect to w is Lipschitz-continuous uniformly in z,
that is, there exists a constant M > 0, such that for all w,w′ ∈ W

sup
z∈Z

∥∇ℓ(w, z) − ∇ℓ(w′, z)∥ ≤ M∥w − w′∥ (7.10)

where ∥ · ∥ denotes the Euclidean (ℓ2) norm on Rd.

Full text available at: http://dx.doi.org/10.1561/2200000112



7.1. The Gibbs Posterior 125

3. For every realization of Z, all global minimizers of the training
loss LZ(W ) lie in the ball of radius R centered at 0.

4. The loss ℓ(w,Z) is σ-subgaussian under PZ for all w ∈ W.

Let PGW |Z be the Gibbs posterior with inverse temperature λ > 0
associated to the Gaussian prior QW = N (0, ρ2Id). Then

E[LPZ
(W )] − min

w∈W
LPZ

(w)

≤ Mπρ2d

λ
+ 1

2λρ2

R+

√
2πρ2d

λ

2

+ d

2λ log λ
d

− 1
λ

log Vd + λσ2

2n ,

(7.11)

where Vd is the volume of the unit ball in (Rd, ∥ · ∥).

Proof. Fix Z and let w∗
Z be any global minimizer of LZ(W ), where

∥w∗
Z∥ ≤ R by hypothesis. Since the gradient w 7→ ∇ℓ(w,Z) is M -

Lipschitz and ∇LZ(w∗
Z) = 0, we have

LZ(w) − LZ(w∗
Z) ≤ M

2 ∥w − w∗
Z∥2. (7.12)

Therefore,

Ψλ(Z) = −λLZ(w∗
Z) + logEQW

[exp (−λ (LZ(W ) − LZ(w∗
Z)))] (7.13)

≥ −λLZ(w∗
Z) + logEQW

[
exp

(
−λM

2 ∥W − w∗
Z∥2

)]
, (7.14)

so, in order to lower-bound the log-partition function Ψλ(Z), we need
to lower-bound the Gaussian integral

G = 1
(2πρ2)d/2

∫
Rd
e

− 1
2ρ2 ∥w∥2

e− λM
2 ∥w−w∗

Z∥2 dw. (7.15)

Let B be the ℓ2 ball of radius ε > 0 (to be tuned later) centered at w∗
Z

with volume Vold(B). Then
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G ≥ 1
(2πρ2)d/2 e

− λMε2
2 ·

∫
B
e

− 1
2ρ2 ∥w∥2

dw

≥ 1
(2πρ2)d/2 e

− λMε2
2 · e− 1

2ρ2 (∥w∗
Z∥+ε)2

Vold(B)

= 1
(2πρ2)d/2 e

− λMε2
2 · e− 1

2ρ2 (∥w∗
Z∥+ε)2

εdVd

≥
(

ε2

2πρ2

)d/2

exp
(

−λMε2

2 − 1
2ρ2 (R+ ε)2

)
Vd.

For all ε > 0, this leads to the estimate

− 1
λ
E[Ψλ(Z)] ≤ E

[
min
w∈W

LZ(W )
]

(7.16)

+ Mε2

2 + 1
2λρ2 (R+ ε)2 + d

2λ log
(

2πρ2

ε2

)
− 1
λ

log Vd. (7.17)

Choosing ε = 2πρ2d
λ and using that

E
[

min
w∈W

LZ(W )
]

= E[LZ(w∗
Z)] ≤ min

w∈W
LPZ

(w), (7.18)

we get (7.11).

Recently, Aminian et al. (2021a) provided an exact information-
theoretic characterization of the average generalization error of the Gibbs
posterior. Let PGW = EPZ

[
PGW |Z

]
denote the marginal distribution on W

induced by the Gibbs posterior. Then, for the Gibbs posterior, we let
the symmetrized KL information between W and Z be given by

ISKL(W ; Z) = D(PZP
G
W |Z ||PZP

G
W ) +D(PZP

G
W ||PZP

G
W |Z). (7.19)

This symmetrized relative entropy, where we sum two relative entropies
with their arguments swapped, is sometimes referred to as Jeffreys’
divergence. Notice that the term D(PZP

G
W |Z ||PZP

G
W ) is the mutual

information I(W ; Z) while the term D(PZP
G
W ||PZP

G
W |Z) is sometimes

referred to as the lautum information (Palomar and Verdu, 2008).13

With this, Aminian et al. (2021a) derived the following exact character-
ization of the average generalization error of the Gibbs posterior.

13This provides a strong incitement to refer to ISKL(·; ·) as the mutualautum
information, but we digress.
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Theorem 7.4. Given an inverse temperature λ and a prior distribu-
tion QW , the average generalization error of the Gibbs posterior is given
by

EPZP
G
W |Z

[LPZ
(W ) − LZ(W )] = ISKL(W ; Z)

λ
. (7.20)

Proof. Note that EPZP
G
W |Z

[
logPGW

]
= EPZP

G
W

[
logPGW

]
. Hence, using

(7.19), we can write

ISKL(W ; Z) = EPZP
G
W |Z

[
log

PGW |Z

PGW

]
+ EPZP

G
W

[
log PGW

PGW |Z

]
(7.21)

= EPZP
G
W |Z

[
logPGW |Z

]
− EPZP

G
W

[
logPGW |Z

]
. (7.22)

From the definition of the Gibbs posterior, we see that

logPGW |Z(W |Z) = logQW (W ) − Ψλ(Z) − λLZ(W ). (7.23)

Since the marginal distributions ofW and Z are the same under PZP
G
W |Z

and PZP
G
W we have

EPZP
G
W |Z

[logQW (W )−Ψλ(Z)]=EPZP
G
W

[logQW (W )−Ψλ(Z)] . (7.24)

From this, it follows that

EPZP
G
W |Z

[
logPGW |Z

]
− EPZP

G
W

[
logPGW |Z

]
=EPZP

G
W |Z

[−λLZ(W )] − EPZP
G
W

[−λLZ(W )] (7.25)

=λEPZP
G
W |Z

[LPZ
(W ) − LZ(W )] . (7.26)

From this, the result follows.

In order to interpret this result, we need to discuss the extreme cases.
First, if λ → ∞, it may seem as if the generalization error vanishes. This
is the case if ISKL(W ; Z) remains finite when we perform exact empirical
risk minimization. For this to occur, we need not only that PGW |Z ≪ PGW ,
but also that PGW ≪ PGW |Z . Since the Gibbs posterior with infinite
temperature is supported only on empirical risk minimizers, the second
criterion can only be fulfilled if the prior is also supported only on
empirical risk minimizers. For any non-trivial case, we expect the prior

Full text available at: http://dx.doi.org/10.1561/2200000112



128 The Information Complexity of Learning Algorithms

to assign some probability mass to non-minimizers as well, meaning
that ISKL(W ; Z) would diverge as λ → ∞. In a similar vein, when λ → 0,
the posterior does not change relative to the prior, so ISKL(W ; Z) → 0
as well.

While the Gibbs posterior has many attractive properties theoreti-
cally, it is not always straightforward to implement in practice. This
is discussed further by, for instance, Alquier et al. (2016) and Perlaza
et al. (2023).

7.2 The Gaussian Location Model

We now turn to a simple learning problem in which many of the quanti-
ties in the generalization bounds that we discussed can be evaluated
explicitly, allowing us to perform a direct comparison between different
bounds for a concrete setting. Specifically, assume that the data dis-
tribution PZ = N (µ, σ2) is a Gaussian distribution with mean µ and
variance σ2, and the training set Z = (Z1, . . . , Zn) ∈ Rn consists of n
independent samples from PZ . Based on this, the goal is to learn the
mean of the Gaussian distribution. Thus, the hypothesis space consists
of the real numbers W = R. A natural choice for the loss function,
which we will consider throughout, is the squared loss ℓ(w, z) = (w−z)2.
We will focus on the empirical risk minimizer obtained by taking the
sample average, W = 1

n

∑n
i=1 Zi.

For this setting, the average generalization error can in fact be
computed explicitly as (Bu et al., 2020)

gen=EPWZ

[
EZ′∼PZ

[
(Z ′−W )2

]
− 1
n

n∑
i=1

(Zi−W )2
]

(7.27)

= 2σ2

n
. (7.28)

We thus have a known baseline with which to compare the generalization
bounds that we derived in Sections 4 and 6, and for this setting, many
of them can be computed exactly. It should be noted here that if a
bound gives a loose characterization of the generalization error for this
specific problem, this is not an indictment of the bound as a whole.
Since all of the bounds that we will discuss have been derived for a
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very general class of learning problems and learning algorithms, it is
not unexpected that they will be loose for many specific problems and
algorithms. Nevertheless, due to its analytical tractability, this setting
serves as an instructive case study. Also, as mentioned in Section 7.1,
note that the average generalization error of the Gibbs posterior is
exactly characterized by the symmetrized KL information. By evaluat-
ing this information-theoretic quantity, one can show that the Gibbs
posterior also has a generalization error of order σ2/n. For more details,
see the work of Aminian et al. (2022b).

First, we note that the mutual information I(W ; Z) gives a vacuous
bound on the generalization gap. Indeed, since the training data and
hypothesis are continuous and we use a deterministic learning algorithm,
the mutual information is infinite. However, as noted by Bu et al. (2020),
this can be rectified by using the individual-sample technique: since
the hypothesis is not a deterministic function of any single sample,
the individual-sample mutual information is finite. Indeed, it can be
computed in closed form as (Bu et al., 2020)

I(W ;Zi) = 1
2 log n

n− 1 . (7.29)

Inserting this into the generalization bound in Theorem 4.6, we find
that

gen ≤ 1
n

n∑
i=1

√
2σ2I(W ;Zi) (7.30)

= σ

√
log
(

n

n− 1

)
(7.31)

≤ σ

√
1

n− 1 . (7.32)

Thus, this gives a bound of order 1/
√
n, which is quadratically worse

than the true generalization gap.
Next, let us consider the CMI framework. To do this, one needs

to go beyond the assumption of a bounded loss that was considered
throughout most of Section 6. As indicated in (6.6), the main results
extend to certain unbounded losses. This includes the squared loss under
a Lipschitz condition, provided that the fourth moment of the data

Full text available at: http://dx.doi.org/10.1561/2200000112



130 The Information Complexity of Learning Algorithms

is finite (Steinke and Zakynthinou, 2020, Sec. 5.4). This is satisfied
for the Gaussian location problem—see the work of Zhou et al. (2021)
for details. While the CMI yields a finite result, unlike the mutual
information, it is significantly looser than the individual-sample mutual
information bound. Indeed, we have (Zhou et al., 2021)

I(W ; S|Z̃) = n

log2(e) . (7.33)

The reason for this is that conditioning on the supersample reveals
too much information, due to the continuous nature of the output. In
fact, if we consider a naïve individual-sample version of the CMI, where
we still condition on the full supersample, that is, I(W ;Si|Z̃), we still
get a constant—leading to a generalization bound that does not decay
with n. Motivated by this, Zhou et al. (2021) argue for the individually
conditioned CMI, where the conditioning is also on individual pairs of
the supersample—as discussed in Theorem 6.6. With this, it can be
shown that (Zhou et al., 2021, Lemma. 4)

I(W ;Si|Zi = zi, Zi+n = zi+n) = (zi − zi+n)2

8σ2(n− 1) + o

( 1
n

)
. (7.34)

Inserting this into the corresponding generalization bound of Zhou et al.
(2021), we again get a bound that decays as 1/

√
n, but with a slightly

improved constant factor.
This raises the question: is it possible to obtain the correct 1/n-

dependence from information-theoretic generalization bounds? The
answer turns out to be yes. Through the use of stochastic chaining,
as mentioned in Section 4.4, Zhou et al. (2022, Sec. 4.1) obtained a
generalization bound of gen ≤ 13σ2/n, thus matching the dependence of
the true generalization error but with a larger constant. An alternative
approach was taken by Wu et al. (2022b), who derived a bound that
appears to be identical to the individual-sample bound of Bu et al.
(2020), but with a key modification—instead of assuming the loss to be
sub-Gaussian, the excess risk, r(w,Z) = ℓ(w,Z) − ℓ(w∗, Z), is assumed
to be sub-Gaussian under PZ for all w ∈ W, where w∗ is a minimizer
of the population loss. For sufficiently large n, the excess risk of the
Gaussian location problem with the sample-averaging algorithm actually
turns out to be

√
4σ4/n-sub-Gaussian—the sub-Gaussianity parameter
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decays with n. Evaluating the generalization bound with this yields
an O(1/n) rate.

However, it is possible to demonstrate that this fast rate is achievable
with arguably simpler techniques. In fact, it turns out that it is possible
to derive an information-theoretic generalization bound that is exactly
tight for this problem, even up to constants, which was done by Zhou et
al. (2023a). This is achieved through a variant of the individual-sample
approach of Bu et al. (2020), with some key modifications: the change
of measure is applied to the generalization gap rather than the training
loss; disintegration is used; a different prior than the true marginal is
used; and the straight-forward sample-averaging algorithm is replaced
with a weighted one where Gaussian noise is added (which has the
same performance as the sample-averaging algorithm in expectation).
This includes many of the techniques that we covered in Section 4,
applied in a very careful way. If we are satisfied with a bound that is
optimal only in an asymptotic sense, the alternative prior and weighted
sample-averaging are not needed. The interested reader is referred to
the work of Zhou et al. (2023a) for the full details.

7.3 The VC Dimension

As discussed in Section 1.3.1, the VC dimension is a fundamental
quantity that characterizes distribution- and algorithm-independent
learnability for binary classification. While our original motivation for
pursuing information-theoretic generalization bounds was to go beyond
this style of uniform convergence analysis, an interesting question is
whether or not the information-theoretic approach is still expressive
enough to capture complexity measures such as the VC dimension.
More precisely, we seek to answer the following question: consider a
hypothesis class W with bounded VC dimension dVC. Can we provide
a bound on the information measures that appear in our generalization
bounds in terms of dVC, and if so, do the resulting bounds coincide with
the best available generalization bounds?

To partially answer this question, we focus on the case of general-
ization bounds in expectation and consider binary classification with
the 0 − 1 loss. Throughout, we assume that the instance space Z factors
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into a feature space X and label space Y = {0, 1}, and we associate
each hypothesis w ∈ W with a function fw : X → Y.

7.3.1 Mutual Information

We begin by considering the mutual information between the training
data Z and hypothesis W , I(W ; Z), that appears in, e.g., Theorem 4.2.
As an illustrative example of a class with finite VC dimension, we
consider threshold classifiers: that is, the set of classifiers is given
by {fw(x) = 1{x ≥ w} |w ∈ R}. As this hypothesis class can induce
arbitrary labels for a set with a single element, but not a set with two
elements (as achieving fw(x1) = 1 and fw(x2) = 0 for x1 < x2 is not
possible), its VC dimension is one. Throughout, we shall refer to data
distributions for which an element of the hypothesis class achieves zero
population loss as realizable.

Immediately, we can establish one negative result: the mutual infor-
mation I(W ; Z) can be unbounded, even for very reasonable empirical
risk minimizers. Consider, for instance, the case of threshold classi-
fiers for a realizable distribution. Let us denote each training sample
as Zi = (Xi, Yi), which consists of a real number feature Xi and a
label Yi ∈ {0, 1}. A reasonable empirical risk minimizer is an algorithm
that outputs fŴ , where Ŵ = min{x : (x, 1) ∈ Z}, i.e., the smallest
feature labelled 1. Due to the realizability assumption, this must achieve
zero training loss. However, since the learning algorithm is a determinis-
tic function of the training set with a continuous output, I(W ; Z) = ∞.

In order to circumvent this, Xu and Raginsky (2017) considered the
following two-stage algorithm. First, split the training set into two halves,
so that Za = (Z1, . . . , Zn/2) and Zb = (Zn/2+1, . . . , Zn), where we
assume n to be even for simplicity. In the first stage of the algorithm, one
constructs an empirical cover of W on the basis of Xa = (X1, . . . , Xn/2),
i.e., a subset Wa ⊂ W such that

∣∣∣{(fw(X1), . . . , fw(Xn/2)) : w ∈ Wa}
∣∣∣ =

|Wa|, meaning that each element of Wa induces a distinct classification,
and

∣∣∣{(fw(X1), . . . , fw(Xn/2)) : w ∈ W}
∣∣∣ = |Wa|, meaning that each

possible classification using W is induced by an element of Wa. In the
second stage of the algorithm, one selects an empirical risk minimizer
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for Zb from the finite Wa. By applying Theorem 4.2 conditional on Za,
evaluating the training loss with respect to Zb, we thus find that

EPWZ
[LPZ

(W )−LZb
(W )]=EPZa

[
EPWZb|Za

[LPZ
(W )−LZb

(W )]
]

(7.35)

≤

√
I(W ; Zb|Za)

n
, (7.36)

where we used the fact that the 0 − 1 loss is 1/2-sub-Gaussian. Now,
given Za, W can only take values in the finite set Wa. Furthermore,
the cardinality of Wa can be bounded using the Sauer-Shelah lemma
(Theorem 1.3). We thus conclude that

I(W ; Zb|Za) ≤ H(W |Za) ≤ log(|Wa|) ≤ dVC log
(

en

2dVC

)
, (7.37)

where the first step follows from the non-negativity of entropy, the second
step from the fact that entropy is maximized by a uniform distribution,
and the final step from the Sauer-Shelah lemma. Note that, through
these arguments, we have obtained an average version of the standard
generalization guarantee in terms of the VC dimension from Theorem 1.4,
up to constants and logarithmic dependencies. Still, this applies only to a
very particular algorithm, and not the standard empirical risk minimizer.
Indeed, Bassily et al. (2018) and Nachum et al. (2018) showed that for
any empirical risk minimizer over a finite input space, there exists a
realizable data distribution for which the mutual information I(W ; Z)
scales with the cardinality of the input space. Furthermore, Livni and
Moran (2017) demonstrated that for any learning algorithm for threshold
classifiers, there exists a realizable distribution for which either the
population loss or the mutual information is large (in fact, their result
applies more generally to the relative entropy that appears in PAC-
Bayesian bounds). On the positive side, Nachum and Yehudayoff (2019)
showed that there does exist learning algorithms with bounded mutual
information for “most” hypotheses in VC classes.

7.3.2 Conditional Mutual Information

We now turn to the CMI framework of Section 6. Specifically, we consider
the conditional mutual information between the hypothesis W and the
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membership vector S given the supersample Z̃, that is, I(W ; S|Z̃). As
discussed in Section 6, bounds in terms of the CMI are tighter (up to
constants) than the ones based on the mutual information I(W ; Z).
In contrast to the mutual information, there is a wide class of natural
empirical risk minimizers for which the CMI can be shown to be bounded
by (approximately) the VC dimension. In particular, this applies to any
algorithm satisfying the following consistency property. For simplicity,
following Steinke and Zakynthinou (2020), we restrict ourselves to
deterministic learning algorithms.

Definition 7.5 (Global consistency property). Let W (z) denote the point
mass on which PW |Z=z concentrates when trained on z = (x,y) ∈
Zn. Let z′ = (x′,y′) ∈ Zm with m ≥ n be constructed so that (i):
for all i ∈ [n], there is a j ∈ [m] such that xi = x′

j , and, (ii): for
all i ∈ [m], fW (z)(xi) = y′

i. Then, the learning algorithm characterized
by PW |Z has the global consistency property if, for any z ∈ Zn, PW |Z=z′

concentrates on W (z).

This property requires that if a training set z is re-labelled to obtain z′,
which is fully consistent with the output hypothesis W (Z) obtained
from training on z and possibly expanded with more consistent samples,
the output hypothesis obtained from training on z′ should still be W (Z).
Clearly, this property is satisfied for many reasonable empirical risk
minimizers.

With this, we can show the following.

Theorem 7.6. Consider the 0 − 1 loss and assume that the VC dimen-
sion dVC of W is finite. Assume that the learning algorithm satisfies
the global consistency property. Then, if n > dVC,

I(W ; S|Z̃) ≤ dVC log
( 2en
dVC

)
. (7.38)

Proof. Let z̃∗ = arg maxz̃ I(W ; S|Z̃ = z̃). Also, let Ŵ ⊆ W denote the
set of possible output hypotheses obtainable by varying S given the
fixed supersample z̃∗ = (x̃∗, ỹ∗). Then, we have

I(W ; S|Z̃) ≤ I(W ; S|Z̃ = z̃∗) ≤ log
∣∣∣Ŵ∣∣∣ . (7.39)
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Now, by the global consistency property, the output hypothesis w(z̃∗(s))
obtained by running the learning algorithm on the training set z̃∗(s)
can also be obtained by running the learning algorithm on the train-
ing set z̃′

∗ = (x̃′
∗, ỹ

′
∗), which is constructed so that x̃∗ = x̃′

∗ and, for
all i ∈ [2n], fw(z̃∗(s))((x̃∗)i) = (ỹ′

∗)i. In words: the output hypothe-
sis w(z̃∗(s)) from the training set z̃∗(s) can be obtained by running
the learning algorithm on z̃′

∗, which only contains samples that are
consistent with w(z̃∗(s)). Hence, the number of distinct possible output
hypotheses

∣∣∣Ŵ∣∣∣ is upper-bounded by the number of possible labellings
of x̃∗ using hypotheses from W. This, in turn, can be bounded using
the Sauer-Shelah lemma (Theorem 1.3). Specifically,

I(W ; S|Z̃) ≤ log
∣∣∣Ŵ∣∣∣ ≤ dVC log

( 2en
dVC

)
. (7.40)

To complete this argument, it remains to show that there exist
deterministic empirical risk minimizers with the global consistency
property. Since the argument is quite technical, we will not reproduce
it here. The proof can be found in Steinke and Zakynthinou (2020,
Lemma 4.15).

Note that this result does not imply that every empirical risk min-
imizer over a hypothesis class with finite VC dimension has bounded
CMI. To address this, we need to consider further processed versions of
the CMI.

7.3.3 Evaluated and Functional CMI

We now turn to the evaluated and functional versions of the CMI,
or e-CMI and f -CMI for short. Specifically, recall that the f -CMI
is given by the mutual information between the predictions F (for
the supersample Z̃ induced by the hypothesis W ) and the membership
vector S given Z̃, that is, I(F; S|Z̃). The e-CMI is obtained by replacing
the predictions with the losses Λ that they induce, that is, I(Λ; S|Z̃).
For binary classification with the 0−1 loss, there is a bijection between F
and Λ given Z̃: the loss of a prediction is 0 if and only if it matches the
corresponding label, otherwise the loss is 1. Thus, for this particular
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case, I(Λ; S|Z̃) = I(F; S|Z̃), although the latter more generally only
gives an upper bound. We will thus consider only the f -CMI. In contrast
to the CMI, it is possible bound the f -CMI for every learning algorithm
over a hypothesis class with finite VC dimension. We establish this
result in the following theorem.

Theorem 7.7. Consider the 0 − 1 loss and assume that the VC dimen-
sion dVC of W is finite. Then, if n > dVC,

I(F; S|Z̃) ≤ dVC log
( 2en
dVC

)
. (7.41)

Proof. Let z̃∗ = arg maxz̃ I(F ; S|Z̃ = z̃). Also, let F̂ ⊆ Y2×n denote
the set of possible predictions obtainable by varying S given the fixed
supersample z̃∗ = (x̃∗, ỹ∗). Then, we have

I(F; S|Z̃) ≤ I(F ; S|Z̃ = z̃∗) ≤ log
∣∣∣F̂ ∣∣∣ . (7.42)

The number of distinct possible output predictions F̂ is upper-bounded
by the number of possible labellings of x̃∗ using hypotheses from W.
This can be bounded using the Sauer-Shelah lemma (Theorem 1.3),
from which the final result follows.

Again, we emphasize that this result holds for every learning algo-
rithm, even beyond empirical risk minimizers. Furthermore, by using
the f -CMI, the proof of this result just involves an application of the
Sauer-Shelah lemma. In a sense, this provides an information-theoretic
re-interpretation of this classic uniform convergence argument (dis-
cussed in Section 1.3.1). Specifically, when the hypothesis class has low
complexity as measured by the VC dimension, any learning algorithm
for the hypothesis class has low information complexity, as measured
by the f -CMI.

While this demonstrates that one can obtain bounds for the f-CMI
of any learning algorithm, this does not generally lead to optimal
generalization bounds, as they are off by a log-factor (Haghifam et al.,
2021, Thm. 4.4).
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7.3.4 Leave-One-Out CMI

We conclude the discussion of the VC dimension by describing a bound
for learning of VC classes over realizable distributions obtained through
the leave-one-out evaluated CMI (loo-e-CMI), due to Haghifam et al.
(2022). Since the proof of this result is somewhat more involved, we will
not give it in full detail, but instead just sketch the arguments.

For the purposes of this discussion, we consider the leave-one-out
CMI setting introduced in Section 6.6 with the 0−1 loss, and assume the
data distribution to be realizable. First, we connect the binary loss loo-
e-CMI of interpolating learning algorithms and the leave-one-out-error,
defined as

R̂loo = EPU

[
EPΛ̇|UŻ

[
Λ̇U
]]
. (7.43)

In words, given a supersample Ż, R̂loo is the test loss when leaving
out the Uth sample, averaged over U and the randomness of the learn-
ing algorithm. Notice that R̂loo ∈ [0, 1]. It can be shown that the
loo-e-CMI I(Λ̇;U |Ż) can be bounded by Hb(R̂loo) + R̂loo log(n + 1),
where Hb(R̂loo) denotes the binary entropy (i.e., the entropy of a
Bernoulli random variable with parameter R̂loo) (Haghifam et al., 2022,
Thm. 3.1).

Next, we briefly describe the one-inclusion graph algorithm intro-
duced by Haussler et al. (1988). Given Ż = (Ẋ, Ẏ ) ∈ Zn+1, let V denote
the set of possible labellings of Ẋ = (Ẋ1, . . . , Ẋn+1) with hypotheses
from W. We refer to elements of V as adjacent if they differ in only
one element. We define a probability assignment P : V × V → [0, 1] so
that P (v,w) = 0 if v,w ∈ V are not adjacent, and P (v,w)+P (w,v) = 1
if they are, where P is chosen solely on the basis of Ẋ. Recall that ZŪ de-
notes the training set, formed by removing the Uth entry of Ż, while ZU
is a test sample. Due to the realizability assumption, either one or two
elements of V are consistent with Żū for u ∈ [n]. The one-inclusion
graph algorithm, given the training set Żū, predicts the label of ẏu as
follows: if only one element v ∈ V is consistent with Żū, it predicts vu.
If two elements v,w ∈ V are consistent with Żū, it predicts vu with
probability P (v,w) and wu otherwise. Let v∗ denote the vector of
correct labels for Ẋ. When using Żū as training set, the probability of
incurring an error on Żu is given by P (v′,v∗) for v′ such that v′

u ̸= v∗
u
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but all other entries of v′ and v∗ are equal, provided that such a v′

exists in V. Otherwise, it is zero. Therefore, the leave-one-out error is
given by

R̂loo =
∑

v′∈V

P (v′,v∗)
n+ 1 . (7.44)

Haussler et al. (1988, Lemma 5.2) established that there exists a proba-
bility assignment such that

∑
v′∈V P (v′,w) ≤ dVC uniformly for w ∈ V .

By combining this with the bound on I(Λ̇;U |Ż) in terms of R̂loo pro-
vided in the first step, a bound for learning realizable VC classes can
be established.

Notably, in the works of Haghifam et al. (2021) and Haghifam et al.
(2022), the CMI of a learning algorithm is demonstrated to provide
a universal characterization of realizable generalization in a certain
sense: specifically, for every interpolating learning algorithm and data
distribution, the population loss vanishes as n goes to infinity if and
only if the CMI of the learning algorithm grows sub-linearly in n. For
the loo-e-CMI, an even stronger characterization can be established,
in the sense that the loo-e-CMI also captures the decay rate when the
population loss decays polynomially or converges to a positive value.
For more details, the reader is referred to Haghifam et al. (2021) and
Haghifam et al. (2022).

7.4 Compression Schemes

We now consider a class of learning algorithms known as compression
schemes (Littlestone and Warmuth, 2003). A compression scheme of
size k consists of two components: a sequence of maps κ : Zn → Zk

for n ≥ k, which given an input vector Z of size n outputs a vector κ(Z)
consisting of k elements of Z; and a map ρ : Zk → W that selects a
hypothesis based on this compressed training set. By composing these
maps, we obtain a learning algorithm for training sets of size n ≥ k.

As an example, consider threshold classifiers, as introduced in Sec-
tion 7.3.1, and a learning algorithm that simply sets the threshold W

to be the smallest training feature with the label 1, i.e., W = min{x :
(x, 1) ∈ Z} (and W = ∞ if there is no sample with the label 1).
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Clearly, this can be written as the composition of a map κ that out-
puts κ(Z) = (xi∗ , yi∗), where i∗ = arg mini{xi : (xi, 1) ∈ Z}, and a
map

ρ(x, y) =

x if y = 1
∞ otherwise.

(7.45)

Therefore, it is a compression scheme of size 1.
The mutual information I(W ; Z) of such algorithms will generally

be unbounded, since we are dealing with deterministic algorithms with
continuous inputs and outputs. However, for the CMI, the following
can be established, as per Steinke and Zakynthinou (2020, Thm 4.2).

Theorem 7.8. Assume that PW |Z is a compression scheme of size k.
Then, we have I(W ; S|Z̃) ≤ k log(2n).

Proof. Since W is a function of κ(ZS),

I(W ; S|Z̃) ≤ I(κ(ZS); S|Z̃) ≤ H(κ(ZS)|Z̃) ≤ k log(2n). (7.46)

Here, the last step follows since, given Z̃, there are at most
(2n
k

)
≤ (2n)k

possible values of κ(ZS). This establishes the result.

Up to constants, this bound cannot be improved for general compres-
sion schemes. However, for the important subclass of stable compression
schemes, the logarithmic dependence on n can be removed. A compres-
sion scheme is said to be stable if it is invariant to permutations of its
input, and κ(Z) = κ(Z ′) if κ(Z) ⊆ Z ′ ⊆ Z—that is, if only elements
that are not in the compressed set are removed from the training set, this
does not change the output. For stable compression schemes, Haghifam
et al. (2021, Thm. 3.4) showed that I(W ; S|Z̃) ≤ 2k log(2). This result
demonstrates that the CMI suffices to obtain generalization bounds for
stable compression schemes without a logarithmic dependence on n,
which is optimal up to constants (Haghifam et al., 2021, Thm. 3.1).

7.5 Algorithmic Stability

We now turn to algorithmic stability, as discussed in Section 1.4. As
mentioned therein, several notions of stability have been discussed in the
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literature. In this section, following Harutyunyan et al. (2021, Thm. 4.2),
we will focus on average prediction stability with respect to sample
replacement and bound the f -CMI. This notion of stability is comparable
to the pointwise hypothesis stability in Bousquet and Elisseeff (2002,
Def. 4). Note that Harutyunyan et al. (2021) also consider other notions
of stability, which we do not cover for brevity. We will discuss further
connections between algorithmic stability and information-theoretic and
PAC-Bayesian generalization bounds in Section 7.7.

Theorem 7.9. Assume that Z = X × Rd and ℓ(w, z) = ℓf (fw(x), y),
where each w ∈ W induces a function fw : X → Rd. Let Z

(i)
S equal ZS

for all entries except the ith, which we denote by Z ′ = (X ′, Y ′), and
assume to be independently drawn from PZ . Consider a deterministic
learning algorithm, and let fW |ZS

: X → Rd denote the function that
the learning algorithm induces given the training set ZS . Assume that
the learning algorithm is β-stable, meaning that for all i ∈ [n],

EPWZ̃SPZ′

[∥∥∥∥fW |ZS
(X̃i+Sin) − f

W |Z(i)
S

(X̃i+Sin)
∥∥∥∥2
]

≤ β2. (7.47)

Roughly speaking, this means that the prediction that the hypothesis
issues for X̃i+Sin does not depend too strongly on whether or not this
specific sample is included in the training set. Furthermore, suppose
that the loss function ℓf (·, ·) is γ-Lipschitz in its first argument. Then,
we have that

|gen| ≤ d1/4√8γβ. (7.48)

Proof. In order to establish this result, we will relate the deterministic
algorithm to a stochastic one. Specifically, let

fσW |ZS ,N
(x) = fW |ZS

(x) +Nσ. (7.49)

Here, the Gaussian noise Nσ ∼ N (0, σ2Id), where Id denotes the d-
dimensional identity matrix, is independent for all training sets and
inputs. With this, we find that the average generalization gap of the
learning algorithm with added noise is
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genσ =
∣∣∣∣EPWZ̃SPZ′

[
EPNσ

[
ℓf (fσW |ZS ,N

(X ′), Y ′)
]

− 1
n

∑
i∈[n]

EPN

[
ℓf (fσW |ZS ,N

(Xi+Sin), Yi+Sin)
] ]∣∣∣∣

=
∣∣∣∣EPWZ̃SPZ′

[
ℓf (fW |ZS

(X ′), Y ′) + EPNσ

[
∆′] (7.50)

− 1
n

∑
i∈[n]

(
ℓf (fW |ZS

(Xi+Sin), Yi+Sin) + EPNσ
[∆i]

)]∣∣∣∣,
where

∆′ =ℓf (fσW |ZS ,N
(X ′), Y ′)−ℓf (fW |ZS

(X ′), Y ′), (7.51)

∆i=ℓf (fσW |ZS ,N
(Xi+Sin), Yi+Sin)−ℓf (fW |ZS

(Xi+Sin), Yi+Sin). (7.52)

Due to the Lipschitz assumption, we have |∆′| ≤ γ ∥Nσ
′∥, where Nσ

′ ∼
N (0, σ2Id). Similarly, |∆i| ≤ γ ∥Nσ

′∥. Since E[∥Nσ
′∥] ≤ 2σ

√
d, we find

that

genσ ≥ gen − 2γσ
√
d. (7.53)

We now need to bound genσ. Let Fσ denote the vector of predictions
on X̃ induced by fσW |ZS ,N

. By the individual-sample f -CMI version of
Theorem 6.12, we have

genσ ≤ 1
n

∑
i∈[n]

√
2I(F σi , F σi+n;Si|Z̃) (7.54)

≤ 1
n

∑
i∈[n]

√
2I(F σi , F σi+n;Si|S−i, Z̃), (7.55)

where S−i is S with the ith entry removed. Here, the last step fol-
lows since S−i is independent from Si. To establish the result, it
remains to bound the conditional mutual information in (7.55). In-
tuitively, computing this quantity involves comparing the conditional
joint distribution of (F σi , F σi+n) and Si, given S−i and Z̃, with the prod-
ucts of their conditional marginals. When Si is drawn independently
from all other random variables, there is a 50% chance of drawing
the “matching” instance, in which case the two distributions coincide,
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and a 50% chance of drawing the “opposite” instance, in which case
the ith sample of the training set is replaced. Hence, we are comparing
two Gaussian distributions with covariance σ2Id and means given by
the predictions based on the training set corresponding to S−i and
either Si = 1 or Si = 0. By the stability assumption, the difference
between the means is on average bounded by β2 (for more details, see
the work of Harutyunyan et al., 2021, Prop. 4.2 and Eq. (175)-(179)).
Since D(N (x1, σ

2Id) || N (x2, σ
2Id)) = ∥x1 − x2∥2 /(2σ2), we get

I(F σi , F σi+n;Si|S−i, Z̃) ≤ β2

2σ2 . (7.56)

By combining (7.53), (7.55), and (7.56), setting σ2 = β/(2γ
√
d) to

optimize the bound, we obtain the desired result.

Thus, for Lipschitz losses, certain notions of algorithmic stability
imply bounds on certain information measures for the learning algorithm,
allowing us to (essentially) recover known generalization bounds (cf.
Section 1.4). The technique used in this proof, where a learning algorithm
is compared to a noisy surrogate in order to more easily evaluate the
mutual information, is a fruitful approach that has also been used to
establish generalization bounds for stochastic gradient descent (Neu
et al., 2021).

7.6 Differential Privacy and Related Measures

We now discuss differential privacy, which can be seen as a type of
stability measure. As the name suggests, this measure was originally
constructed as a guarantee on the privacy of the training data used by a
learning algorithm. Specifically, let z, z′ ∈ Zn be two training sets that
differ in a single element. Then, the algorithm PW |Z is ε-differentially
private if, for any measurable set E ∈ W (Dwork et al., 2015)

PW |Z=z(E|z) ≤ eεPW |Z=z′(E|z′). (7.57)

This is related to so-called ε-MI stability, which requires that for any
random Z ∈ Zn (Feldman and Steinke, 2018)

1
n

n∑
i=1

I(W ;Zi|Z−i) ≤ ε, (7.58)
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where Z−i denotes Z with the ith element removed. As shown by Feld-
man and Steinke (2018), an algorithm that is

√
2ε-differentially private

is ε-MI stable. If the elements of Z are independent, we have

I(W ; Z) =
n∑
i=1

I(W ;Zi|Z<i) ≤
n∑
i=1

I(W ;Zi|Z−i) ≤ εn, (7.59)

where Z<i = (Z1, . . . , Zi−1) (and Z<1 = ∅). Thus, any ε-MI stable
(including any

√
2ε-differentially private) learning algorithm has mutual

information bounded by εn.
We conclude with a brief mention of max information, defined

by Dwork et al. (2015) as

Imax(W ; Z) = ess sup
PWZ

ı(W,Z). (7.60)

As established by Esposito et al. (2021a, Lemma 12), L(Z → W ) ≤
Imax(W ; Z). Furthermore, since the α-mutual information is non-decrea-
sing with α (Verdú, 2015), and it coincides with the mutual information
for α = 1 and the maximal leakage for α → ∞, we have

I(W ; Z) ≤ L(Z → W ) ≤ Imax(W ; Z). (7.61)

Thus, bounds in terms of max information, as discussed by Dwork et al.
(2015), can be recovered from bounds in terms of the mutual information
and maximal leakage.

7.7 Bibliographic Remarks and Additional Perspectives

In this section, we discuss the relation of the results we presented
to the literature, and give a brief overview of results that we did
not cover explicitly. For the Gibbs posterior, Theorem 7.3 is largely
based on Raginsky et al. (2021, Chapter 10), while Theorem 7.4 is due
to Aminian et al. (2021b). A discussion of generalization bounds for
Gibbs posteriors regularized with arbitrary complexity measures can
be found in the work of Viallard et al. (2024).

The Gaussian location model has been studied as an example ap-
plication of information-theoretic generalization bounds since the work
of Bu et al. (2019), with later improvements by Zhou et al. (2021), Zhou
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et al. (2022), and Wu et al. (2022a). An information-theoretic bound
that is tight up to constants was provided by Zhou et al. (2023a).

For learning with VC classes, Xu and Raginsky (2017) constructed
a two-phase learning algorithm with finite mutual information, but
this result does not apply to standard empirical risk minimizers. As
shown by Livni and Moran (2017), Bassily et al. (2018), and Nachum
et al. (2018), there are certain limitations in obtaining finite PAC-
Bayesian and information-theoretic generalization bounds using the
standard, non-CMI framework. Recently, Pradeep et al. (2022) showed
that under the stricter requirement of a finite Littlestone dimension, it
can be shown that learnability is possible with finite mutual information,
demonstrating a gap compared to just having finite VC dimension.
Through the use of the CMI framework, Steinke and Zakynthinou
(2020) obtained Theorem 7.6 for all empirical risk minimizers satisfying
the consistency property of Theorem 7.5. As shown by Harutyunyan et
al. (2021), the use of functional CMI enables Theorem 7.7, which applies
to any learning algorithm. An extension to the Natarajan dimension,
which is an analogue of the VC dimension for the multiclass setting,
was provided by Hellström and Durisi (2022a).

Finally, the leave-one-out CMI framework enables optimal bounds
for VC classes in certain situations, as shown by Haghifam et al. (2022)
and discussed in Section 7.3.4. Further discussion of the expressiveness
of information-theoretic generalization bounds can be found in the
work of Haghifam et al. (2021). Notably, generalization bounds in
terms of the VC dimension obtained from PAC-Bayesian bounds were
originally derived in the work of Catoni (2004a, Corollary 2.4). The
derivation is very similar to the CMI case, and based on the formalism
of exchangeable priors. This was extended to almost exchangeable priors
by Audibert (2004) and Catoni (2007). Recently, a further extension
that allows for bounds with fast rates under a Bernstein condition was
provided by Grünwald et al. (2021). Furthermore, Grünwald and Mehta
(2019) also explored connections between PAC-Bayesian bounds and
the Rademacher complexity.

For compression schemes, Steinke and Zakynthinou (2020) obtained
the result of Theorem 7.8. This was improved by a logarithmic factor
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for stable compression schemes by Haghifam et al. (2021, Theorem 3.1).
Catoni (2004a, Sec. 3) studied the use of exchangeable priors to obtain
bounds for compression schemes.

The result in Theorem 7.9 is due to Harutyunyan et al. (2021),
who also established results for other notions of algorithmic stability.
Bounds based on average stability, with connections to information-
theoretic generalization bounds, were also established by Banerjee et al.
(2022). PAC-Bayesian generalization bounds in terms of stability have
been established by, for instance, London et al. (2014), London (2017),
Rivasplata et al. (2018), Sun et al. (2022), and Zhou et al. (2023b).

The discussion of privacy measures, such as the differential privacy
of Dwork et al. (2015), in Section 7.6 is largely based on results from Feld-
man and Steinke (2018), with additional results due to Esposito et al.
(2021a). For further discussion of these and other privacy measures,
see for instance the work of Steinke and Zakynthinou (2020), Oneto
et al. (2020), Hellström and Durisi (2020a), Esposito et al. (2021a), and
Rodríguez-Gálvez et al. (2021a).
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8
Neural Networks and Iterative Algorithms

In this section, we apply the bounds from Sections 4 to 6 to learning
algorithms that are iterative in nature, in the sense that they proceed
by updating a hypothesis step-by-step with the aim to converge to a
final output hypothesis with good properties. A key example of such
an algorithm is the ubiquitous gradient descent, which updates the
current hypothesis by adding the negative gradient of the training loss,
scaled by a parameter called the learning rate. Of particular importance
in modern machine learning are neural networks, which are typically
trained using variants of (stochastic) gradient descent. However, the
framework of iterative learning algorithms applies to a much broader
class of learning algorithms.

In Section 8.1, we discuss iterative, noisy algorithms in general,
before specializing to the case of stochastic gradient Langevin dynam-
ics (SGLD). SGLD is a variant of stochastic gradient descent (SGD)
with added Gaussian noise, which makes it particularly well-suited to
analysis via information-theoretic bounds. In Section 8.2, we discuss
the application of generalization bounds from Sections 4 to 6 to neural
networks. Clearly, some bounds cannot be computed for practical sce-
narios. For instance, the mutual information depends on the unknown

146
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data distribution, and some information metrics can be prohibitively
expensive to estimate due to high dimensionality or the lack of closed-
form expressions. For many bounds, however, it is possible to obtain
informative values, for instance by using Monte Carlo estimates.

We will mainly focus on methods for numerically evaluating the
bounds, and discuss training algorithms inspired by them. We will also
provide pointers to methods for obtaining generalization bounds in
closed form.

8.1 Noisy Iterative Algorithms and SGLD

Here, we consider iterative learning algorithms of the following general
form. The hypothesis space W is the d-dimensional Euclidean space Rd.
Given the training data Z = (Z1, . . . , Zn), we generate the hypothesis
W as follows:

W = f(V1, . . . , VT )
Vt = g(Vt−1) − ηtF (Vt−1, ZJt) + ξt, t = 1, . . . , T

(8.1)

where V0 is a random initial condition independent of everything else;
T ∈ N is a fixed number of iterations; J1, . . . , Jt is a sequence of
random elements of [n] = {1, . . . , n}; ξt ∼ N (0, ρ2

t Id) is a sequence of
independent Gaussian random vectors which are also independent of
everything else; and finally, f(·), g(·), F (·, ·) are deterministic mappings.
We will use the shorthand V = (V0, . . . , VT ).

The analysis relies on the following regularity assumptions:

1. The following holds for the algorithm’s sampling strategy, i.e., the
conditional probability law of J = (J1, . . . , JT ) given (Z,V ): for
each t ∈ [T − 1],

PJt+1|J1,...,Jt,V ,Z = PJt+1|J1,...,Jt,Z . (8.2)

That is, the index of the sample in round t+1 does not depend on
the iterates V1, . . . , Vt, given the previous choices J1, . . . , Jt and
the data Z.

2. The update function F (·, ·) is bounded:

sup
v∈Rd

sup
z∈Z

∥F (v, z)∥ ≤ L < ∞. (8.3)
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To control the generalization error, we will upper-bound the mutual
information I(W ; Z). Let ZJ = (ZJ1 , . . . , ZJT

) denote the random T -
tuple of the training instances “visited” by the algorithm and observe
that Z and V are conditionally independent given ZJ . Using this fact
together with the data processing inequality and the chain rule, we have
the following:

I(W ; Z) = I(f(V ); Z) (8.4)
≤ I(V ; Z) (8.5)
≤ I(V ; ZJ ) (8.6)

=
T∑
t=1

I(Vt; ZJ |V t−1). (8.7)

Each term in (8.7) admits a simple expression involving only random
variables from two successive time steps, as we show in the following
lemma.

Lemma 8.1. Under the conditional independence assumption on the
sampling strategy in (8.2),

I(Vt; ZJ |V t−1) = I(Vt;ZJt |Vt−1). (8.8)

Proof. First, we express I(Vt; ZJ |V t−1) as

I(Vt; ZJ |V t−1) = h(Vt|V t−1) − h(Vt|V t−1,ZJ ), (8.9)

where h(·|·) is the conditional differential entropy (Theorem 3.4). From
the update rule for Vt in (8.1) and the assumption on {ξt}t∈[T ], it follows
that Vt is conditionally independent from (V t−2,ZJ\{Jt}) given (Vt−1,

ZJt). Using this, we conclude that

h(Vt|V t−1,ZJ ) = h(Vt|Vt−1, ZJt , V
t−2,ZJ\{Jt})

= h(Vt|Vt−1, ZJt).

By the same token, h(Vt|V t−1) = h(Vt|Vt−1). Using these expressions
in (8.9), we obtain the desired result.

The following lemma provides an easy-to-compute upper bound on
I(Vt;ZJt |Vt−1) .

Full text available at: http://dx.doi.org/10.1561/2200000112



8.1. Noisy Iterative Algorithms and SGLD 149

Lemma 8.2. For every t ∈ [T ],

I(Vt;ZJt |Vt−1) ≤ d

2 log
(

1 + η2
tL

2

dρ2
t

)
≤ η2

tL
2

2ρ2
t

. (8.10)

Proof. Given Vt−1 = vt−1, we have

Vt = g(vt−1) − ηtF (vt−1, ZJt) + ξt, (8.11)

where ZJt and ξt are independent. Consequently, by the shift-invariance
property of differential entropy,

h(Vt|Vt−1 = vt−1) = h(Vt − g(vt−1)|Vt−1 = vt−1) (8.12)
= h(−ηtF (vt−1, ZJt) + ξt|Vt−1 = vt−1). (8.13)

Now, recall that for any d-dimensional random vector U with finite
second moment, i.e., E

[
∥U∥2] < ∞, we have (Polyanskiy and Wu, 2022,

Thm. 2.7)

h(U) ≤ d

2 log
(

2πeE
[
∥U∥2]
d

)
. (8.14)

Since ZJt and ξt are independent and ξt has zero mean, we obtain

E
[
∥ − ηtF (vt−1, ZJt) + ξt∥2 |Vt−1 = vt−1

]
= η2

t E
[
∥F (vt−1, ZJt)∥2 |Vt−1 = vt−1

]
+ E

[
∥ξt∥2

]
≤ η2

tL
2 + ρ2

td, (8.15)

where we have also used the uniform boundedness assumption on F (·, ·).
Consequently,

h(Vt|Vt−1) ≤ d

2 log
(

2πe(η2
tL

2 + ρ2
td)

d

)
. (8.16)

By the same reasoning,

h(Vt|Vt−1, ZJt) = h(g(Vt−1) − ηtF (Vt−1, ZJt) + ξt|Vt−1, ZJt) (8.17)
= h(ξt|Vt−1, ZJt) (8.18)
= h(ξt) (8.19)

= d

2 log(2πeρ2
t ), (8.20)
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where we have used the fact that ξt is independent of the pair (Vt−1, ZJt).
Hence,

I(Vt;ZJt |Vt−1) = h(Vt|Vt−1) − h(Vt|Vt−1, ZJt) (8.21)

≤ d

2 log
(

1 + η2
tL

2

ρ2
td

)
(8.22)

≤ η2
tL

2

2ρ2
t

, (8.23)

where the last step follows from the inequality log x ≤ x− 1.

Combining Theorems 8.1 and 8.2 and the mutual information gen-
eralization bound in Theorem 4.2, we get the following result, due
to Pensia et al. (2018).

Theorem 8.3. Suppose that ℓ(w,Z) is σ2-subgaussian for every w ∈ W
under PZ . Then, under the assumptions on the sampling strategy and
on F stated in (8.1) and (8.2), we have

EPWZ
[gen(W,Z)] ≤

√√√√σ2

n

T∑
t=1

η2
tL

2

ρ2
t

. (8.24)

We now specialize the result in (8.24) to the case of SGLD. Specifi-
cally, we assume that the loss ℓ(w, z) is differentiable as a function of w
for every z, and take

V0 = 0
Vt = Vt−1 − ηt∇ℓ(Vt−1, ZJt) + ξt, t = 1, . . . , T
W = VT

(8.25)

where J1, . . . , JT are i.i.d. samples from the uniform distribution on [n]
(in each iteration, we sample with replacement from the n-tuple Z);
η1, . . . , ηT are positive step sizes; and ξt ∼ N (0, ρ2

t Id), with ρ2
t = ηt

β

for some β > 0. The resulting SGLD algorithm is a special case of
(8.1) with g(v) = v, F (v, z) = ∇ℓ(v, z), and f(v1, . . . , vT ) = vT . Thus,
W is the last iterate VT , although other choices are possible, such as
f(v1, . . . , vT ) = 1

T

∑T
t=1 vt (trajectory averaging). There exists a large

literature on generalization bounds in expectation for SGLD; here we
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provide one such result due to Pensia et al. (2018), obtained under the
(restrictive) assumption of a Lipschitz-continuous loss.

Theorem 8.4. Suppose that the loss function w 7→ ℓ(w, z) is L-Lipschitz
uniformly in z:

sup
z∈Z

|ℓ(w, z) − ℓ(w′, z)| ≤ L∥w − w′∥. (8.26)

Assume that the SGLD algorithm in (8.25) (with an arbitrary postpro-
cessing step) runs for T = nk steps, where k is a positive integer, and
let ηt = 1

t . Then

EPWZ
[gen(W,Z)] ≤

√√√√βσ2L2

n

nk∑
t=1

1
t

(8.27)

≤

√
βσ2L2

n
(logn+ log k + 1). (8.28)

Proof. By the Lipschitz assumption on ℓ, its gradient ∇ℓ(·, ·) is bounded
by L in ℓ2 norm. The result then follows from Theorem 8.3.

8.2 Numerical Bounds for Neural Networks

In recent years, many practical successes in machine learning have relied
on neural networks (NNs). Although a comprehensive discussion of
NNs is beyond the scope of this monograph, we will provide a very
brief description of NNs and introduce some notation. Further details
can be found in, for instance, Murphy (2022, Chapter III). While a
whole host of different NN architectures have been developed for specific
application areas, we will focus solely on so-called feedforward NNs. We
proceed by defining a single layer, from which NNs can be constructed
through composition. Each layer consists of two components: an affine
transformation and an activation function. Denote the input to the lth
layer as xl−1 ∈ Rdl−1 . The weights of the lth layer are denoted by Al ∈
Rdl×dl−1 , while the bias vector is bl ∈ Rdl . We refer to dl as the width of
the layer. Then, the pre-activation output is given by al = Alxl−1 + bl,
which is simply an affine transformation of the input. In order to allow
the network to express non-linear functions, we also use an activation
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function ϕl : R → R. Then, the final output from the layer is given
by xl = ϕl(al), where the activation function is applied elementwise
to the pre-activation vector al. Since NNs are typically trained using
gradient-based algorithms, this activation function is often required to
be differentiable almost everywhere. An NN fW (·) of depth L consists
of L such layers, where we let W ∈ Rp, with p =

∑L
l=1(dl−1 + 1)dl,

denote the concatenation of all weights and biases expressed as a vector.
We will typically also denote the output as ŷ = xL ∈ RdL and the input
as x = x0 ∈ Rd0 . Thus, the final output is ŷ = fW (x) = ϕL(aL).

For a given sample z = (x, y), the loss is given by ℓ(W, z) = ℓf (ŷ, y).
Given the training set Z, we assume that the NN is trained as follows:
first, the weights and biases of the network are initialized as W0. At
each time step t, they are then updated as

Wt = Wt−1 − η∇WLZ(W ) (8.29)

= Wt−1 − η
n∑
i=1

∇W ℓf (ŷi, yi) (8.30)

= Wt−1 − η
n∑
i=1

∇W fW (xi)
dℓf (ŷi, yi)

dŷi
. (8.31)

Here, η > 0 is the learning rate. The exact form of this update depends
on the specific activation function under consideration, and can be
computed for each parameter of the network through the chain rule.
This process may, for instance, continue for a fixed number of steps or
until a certain target loss, either evaluated on the training set or on a
held-out validation set, is reached. One common variant of (8.31) is SGD,
where the training loss gradient is not evaluated with respect to the
entire training set at each time step. Instead, a “mini batch” of K < n

samples is selected at each time step, and the weight update is computed
with respect to these samples. This approach has several benefits, such
as speeding up computation and reducing memory requirements.

Typically, NNs operate in the so-called overparameterized regime.
This means that p, which is determined by the widths and depth of the
network, is greater than what would be needed in order to interpolate
the n training samples in Z after gradient descent training. In many
practical scenarios, p is many orders of magnitude greater than n. In
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fact, NNs often have the capacity to interpolate the training data even
with randomly assigned labels. This indicates that they do not operate
in a regime where notions like the VC dimension are relevant (Zhang
et al., 2021). Still, when trained using data with the correct labels,
NNs display impressive generalization performance. So, in the regime
that is relevant in practice, NNs generalize well when trained with
true labels, but generalize poorly when trained with random labels.
This suggests that any generalization guarantee that is uniform over all
data distributions is doomed to be vacuous, as it would need to hold
for both scenarios. This provides a motivation for considering PAC-
Bayesian and information-theoretic bounds, as these can incorporate
data-distribution dependence. We now discuss various ways to evaluate
information-theoretic and PAC-Bayesian bounds for NNs.

8.2.1 Weights with Gaussian Noise

One issue with applying many standard PAC-Bayesian and information-
theoretic generalization bounds, as repeatedly discussed, is that they
are often vacuous for deterministic learning algorithms. For instance,
training an NN using gradient descent with a fixed initialization and
stopping criterion would yield infinite mutual information between the
training data and the parameters of the NN. Now, typically, there
are sources of stochasticity in NN training. First, the initialization is
often not fixed, but instead drawn from some distribution. Second,
training is usually based on SGD, or one of its variants, rather than
deterministic gradient descent. However, characterizing information-
theoretic quantities in the presence of these sources of stochasticity is not
entirely straightforward. Furthermore, one would still expect the bulk of
generalization performance to be present even for deterministic gradient
descent—while the stochasticity of SGD, for instance, may provide a
marginal benefit, it is unlikely to make the difference between very
poor and very good generalization. This was empirically demonstrated
by Geiping et al. (2022).

An alternative approach builds on the popular hypothesis that
the generalization capabilities of an NN are related to the flatness of
the loss function in the vicinity of its global minima. If the training
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loss of the NN is not significantly affected when its parameters are
perturbed, this indicates some kind of robustness that could lead to
good generalization. This is intimately related to the concept of margins,
which has previously been successfully used to analyze the performance
of support vector machines (Cristianini and Shawe-Taylor, 2000). It
is with this motivation that Langford and Caruana (2001) considered
stochastic NNs, for which the parameters are randomly drawn from a
particular distribution each time the NN is used. The distribution of
each parameter is set as an independent Gaussian distribution, whose
mean coincided with the underlying deterministic NN and with variance
selected to be as large as possible without degrading the training loss
by more than a given threshold. Exploiting this randomization, they
were able to evaluate PAC-Bayesian generalization bounds, which can
be related to the performance of the underlying deterministic NN
using parameters such as the margin and Lipschitz properties of the
NN. In order to be able to select reasonable parameters for the prior,
Langford and Caruana (2001) considered a suitable dyadic grid of
candidate values, applying a union bound over these to obtain bounds
that hold simultaneously for all candidates on the entire grid. This led
to bounds that are nonvacuous, and significantly better than known
generalization bounds for deterministic networks—although the NNs
that were considered by Langford and Caruana (2001) were naturally
significantly less complex than what has been used in recent years.

This approach was adapted to more modern settings by Dziugaite
and Roy (2017). While Langford and Caruana (2001) performed a
sensitivity analysis for each parameter separately, this approach is not
tenable for large NNs. Instead, given a trained NN, Dziugaite and
Roy (2017) selected the weight distributions by directly optimizing
a PAC-Bayesian bound, using Theorem 5.4 as a starting point. By
using the relaxation obtained via Pinsker’s inequality, replacing the
training loss with a convex surrogate, fixing the prior to be a Gaussian
distribution centered on the underlying deterministic network, and
restricting the posterior to be an isotropic Gaussian, they obtained a
training objective that can be optimized via gradient-based methods.
The underlying motivation for why this procedure is successful is, as
already indicated, the hypothesized flatness of the loss landscape around
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minimizers of the training loss. While certain measures of flatness have
been criticized as insufficient to explain generalization, since they can
be arbitrarily altered through reparameterizations that do not affect
the neural network itself (Dinh et al., 2017), measuring flatness through
the relative entropy avoids such drawbacks. Indeed, the relative entropy
is invariant under parameter transformations.

This idea was further developed by Dziugaite et al. (2021), who
pointed out the crucial role that data-dependent priors, discussed in
Section 5.2.3, can play in the tightness of PAC-Bayesian bounds, as
observed earlier by, e.g., Ambroladze et al. (2006) and Mhammedi et al.
(2019). In fact, as demonstrated in Dziugaite et al. (2021, Lemma 3.3),
there exist learning settings for which data-dependent priors are neces-
sary in order to obtain a nonvacuous PAC-Bayesian bound.

Motivated by this, Dziugaite et al. (2021) proceed to evaluate such
data-dependent priors for NNs. Roughly speaking, a fraction α of the
training set, ZP , is used to train an NN upon which the prior is based,
while the full training set Z is used to train another NN that corresponds
to the posterior. In order to obtain a tighter characterization, this is
done in such a way that both NNs process the same samples in the initial
epochs, since these will have the largest impact on the final weights.
Experiments are also performed where the prior is further informed
by a ghost sample, which is not used for selecting the posterior, in
order to approximate an oracle prior. The use of data-dependent priors
leads to tighter bounds than just the use of a ghost sample. Crucially,
unlike the aforementioned results, this leads to nonvacuous bounds
when the posterior is chosen through a standard SGD-based procedure
(with added noise). However, an even tighter bound can be obtained by
optimizing the PAC-Bayesian bound via SGD, as shown in Dziugaite
et al. (2021, Fig. 5). Even tighter results, where bounds with data-
dependent priors were directly optimized, were obtained by Pérez-Ortiz
et al. (2021), who argued that this could potentially be used for self-
certified learning, where no separate test set is needed to certify the
performance of the learned hypothesis. Still, the utility of these data-
dependent priors is not entirely clear. As argued by Lotfi et al. (2022,
Fig. 1(a)), similar or better bounds can be obtained by simply letting
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the posterior equal the data-dependent prior, and using the remaining
data to obtain an unbiased estimate of the population loss.

8.2.2 Using the CMI Framework

As discussed in Section 6.3, the CMI framework of Section 6 can be
viewed as an alternative path to data-dependent priors. This was ex-
ploited in Hellström and Durisi (2021a) and Hellström and Durisi
(2021b), wherein an approach similar to that of Dziugaite and Roy
(2017) and Dziugaite et al. (2021) was used, in that Gaussian distri-
butions centered on the outputs of SGD are set as the posterior and
prior. Specifically, given a supersample Z̃ of training samples, half of
the samples are selected to form the training set ZS . The mean of the
posterior is then found by running SGD for a fixed set of iterations
on ZS. Next, the true marginal distribution PW |Z̃S in Theorem 6.7
is replaced by an auxiliary QW |Z̃ , the mean of which is obtained by
averaging the output of SGD trained on a number of samples of ZS with
a fixed Z̃. For both the posterior and prior, the variance is set to be as
large as possible while not degrading the training loss of the randomized
NN too much—similar to Langford and Caruana (2001), but with a
uniform choice for all parameters. While this yields similar numerical
bounds as Dziugaite et al. (2021), there is one notable drawback—the
bound cannot be directly optimized, as this would introduce a direct
dependence of the posterior on ZS̄. This would violate the required
conditional independence between Z̃ and W given ZS .

All these bounds apply to stochastic networks, where noise is added
to the parameters, and not to the underlying, deterministic ones typically
used in practice. While the CMI bounds are finite without this added
noise, as guaranteed by the CMI framework, they are typically vacuous.
This can be avoided through the use of evaluated or functional CMI
(e-CMI or f -CMI). Motivated by the aim of obtaining information-
theoretic generalization bounds that depend on the predictions induced
by a learning algorithm, rather than the hypothesis itself, Harutyunyan
et al. (2021) derived several bounds in terms of the f -CMI. To illustrate
the benefits of this shift, consider the case of binary classification.
Then, the f -CMI I(F; S|Z̃) measures the mutual information between
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the predictions F and the membership vector S—two discrete random
variables—given the supersample Z̃. Furthermore, for individual-sample
f -CMI bounds, I(Fi, Fi+n;Si|Z̃) measures mutual information between
binary random variables. This dramatically expands the set of possible
scenarios where the information measure, and thus the bound itself, can
be small even for deterministic learning algorithms, while being easy to
evaluate numerically. Specifically, Harutyunyan et al. (2021) evaluated
an average, disintegrated, individual-sample f -CMI bound through
Monte Carlo estimation, and obtained nearly accurate estimates of the
test error for deterministic NNs with relatively small training set sizes.
These numerical evaluations were extended to tighter generalization
bounds and e-CMI by Hellström and Durisi (2022a). In subsequent
work, Wang and Mao (2023c) obtained further improvements through
the use of ld-MI.

For a concrete example, consider Figure 8.1 (Hellström and Durisi,
2022a, Fig. 2(a)). The setting under consideration is binary classification
for a version of the MNIST data set, which consists of 32 × 32 images of
handwritten digits. Specifically, the data set is restricted to the digits
4 and 9, and a CNN trained with Adam (a variant of SGD) is used.
The plot shows the test error, i.e., the test loss using the 0 − 1 loss,
along with several upper bounds. Specifically, these are samplewise,
disintegrated e-CMI versions of the square-root bound in (6.1), the
binary KL bound in (6.9), and the interpolation bound in (6.8). To be
explicit, the bounds are, recalling the notation of Section 6.5,

L ≤ L̂+ 1
n

n∑
i=1

EZ̃

[√
2IZ̃(Λi; Si)

]
(8.32)

L ≤ EZ̃

[
d−1

2

(
EPWS|Z̃

[LZS
(W )] , 1

n

n∑
i=1

IZ̃(Λi; Si)
)]

(8.33)

L ≤
n∑
i=1

I(Λi; Si|Z̃)
n log(2) (8.34)

where d−1
2 (q, c) = sup

{
p ∈ [0, 1] : d

(
q || q+p2

)
≤ c

}
. The disintegrated

samplewise e-CMI IZ̃(Λi; Si) is evaluated via sampling: for each n ∈
{75, 250, 1000, 4000}, a supersample of 2n samples is drawn from the full
data set. Half of these are selected to obtain the n training samples, and
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Figure 8.1: Numerical evaluation for a CNN trained on a binary version of MNIST
(Hellström and Durisi, 2022a, Fig. 2(a)).

the network is then trained and evaluated. This is repeated several times
to build an empirical distribution of the relevant random variables, which
is used to compute the mutual information term via a plug-in estimator.
The results show that, whenever it is applicable, the interpolating
bound (8.34) is tightest. For n = 4000, not all training losses were zero,
precluding its use. Thus, the binary KL bound of (8.33) is tightest of
the applicable bounds. For all values, it improves on the square-root
bound (8.32). Thus, these results demonstrate that the bounds can be
estimated and are numerically fairly accurate. For more details and
results for other settings, the reader is referred to, for instance, the work
of Harutyunyan et al. (2021), Hellström and Durisi (2022a), and Wang
and Mao (2023c).

Note that, in contrast to the aforementioned bounds for stochastic
NNs, these bounds hold only in expectation. While corresponding
results can be obtained in probability, this would limit the possibility of
using the individual-sample technique, potentially degrading the bounds
significantly.
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8.2.3 Compression-Based Bounds

An alternative approach to obtaining numerically nonvacuous general-
ization bounds for NNs is through the lens of compression (Arora et al.,
2018; Bu et al., 2021). This approach builds on the observation that,
often, well-performing NNs can be significantly compressed without
noticably affecting their performance. While generalization bounds for
the original NN may be far from accurate, applying the same bound to
a compressed NN can yield much better results. While these bounds
still do not explain the generalization capabilities of the original NN,
they can provide guarantees for the compressed counterparts.

This approach was used by Zhou et al. (2019), who obtained nonva-
cuous generalization bounds for NNs by combining off-the-shelf com-
pression algorithms and PAC-Bayesian bounds. The idea is essentially
to set the posterior in the PAC-Bayesian bound to be a point mass
centered on the output of the combined NN training and compression
algorithm, and combine this with a suitably chosen prior on the set of
possible hypotheses following the compression step. The specific com-
pression algorithm considered by Zhou et al. (2019) is weight pruning,
whereby a large number of parameters are set to zero in a way that
aims to minimize adversely affecting predictive performance (Han et al.,
2016). Finally, in order to further exploit the flatness of the loss surface,
Gaussian noise is added to the non-zero weights, similar to the approach
taken by Dziugaite and Roy (2017).

This approach was extended in several ways by Lotfi et al. (2022),
who aimed to leverage these bounds to shed light on various factors
behind generalization in NNs. First, they perform training only in a care-
fully constructed random linear subspace of the parameters, constraining
the space of possible hypotheses and thus enabling smaller compressed
sizes. Instead of pruning, Lotfi et al. (2022) use trainable quantization,
whereby the quantization levels and the weights themselves can be
learned simultaneously. Furthermore, whereas Zhou et al. (2019) consid-
ered a prior based on a uniform distribution, Lotfi et al. (2022) replaced
it with a so-called universal prior, which assigns greater weight to more
compressed hypotheses. This leads to nonvacuous bounds, which can be
further tightened through the use of data-dependent priors in the style
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of Ambroladze et al. (2006) and Dziugaite et al. (2021). However, Lotfi
et al. (2022) argue that while this leads to numerically accurate bounds,
it does not explain generalization for the full learning procedure: such
bounds only compare the posterior to the data-dependent prior, but the
question of why the prior is good is left unanswered. Finally, numerical
experiments by Lotfi et al. (2022) indicate that one possible explanation
for why techniques such as transfer learning and the use of symmetries
improve generalization is that they increase compressibility.

8.3 Bibliographic Remarks and Additional Perspectives

The results in Section 8.1 are based on the work of Pensia et al. (2018).
Additionally, information-theoretic bounds for SGLD have also been de-
rived by, for instance, Mou et al. (2018), Li et al. (2020), Bu et al. (2020),
Negrea et al. (2019), Haghifam et al. (2020), Wang et al. (2021b), Wang
et al. (2021a), Wang et al. (2023), Issa et al. (2023), and Futami and
Fujisawa (2023). By relating the parameter trajectory of SGLD to the
corresponding noise-free trajectory of SGD, Neu et al. (2021) and Wang
and Mao (2022) obtained bounds for SGD. However, as demonstrated
by Haghifam et al. (2023), current information-theoretic approaches
are not sufficient to obtain minimax optimal rates for stochastic convex
optimization problems. This was rectified to some extent by Wang and
Mao (2023b), who combined the information-theoretic approach with
techniques from algorithmic stability.

In addition to the results for NNs that we have discussed so far,
several alternative approaches to obtain generalization bounds for neural
networks have been explored in the literature, both within the scope of
information-theoretic and PAC-Bayesian bounds and beyond it. While
a comprehensive overview of all such work is beyond the scope of this
monograph, we will mention some of the approaches here. For instance,
bounds have been derived based on the norms of the weights of the
NN (Neyshabur et al., 2015; Bartlett et al., 2017). A PAC-Bayesian view
on this approach was taken by Neyshabur et al. (2018), who used the
robustness of NNs to parameter perturbations in order to obtain a de-
randomized bound in terms of a relative entropy that can be evaluated
explicitly. Bartlett and Mendelson (2002) derived norm-based bounds
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for NNs starting from the Rademacher complexity. The connection
between PAC-Bayesian bounds and flatness has also been explored by,
e.g., Tsuzuku et al. (2020) and Foret et al. (2021). Several works have
derived generalization bounds for NNs trained via SGLD (Bu et al.,
2020; Haghifam et al., 2021), and other noisy versions of SGD (Banerjee
et al., 2022). Pitas (2020) explored the use of Gaussian posteriors in PAC-
Bayesian bounds for NNs, while Dziugaite and Roy (2018a) established
a connection to entropy-SGD. Recently, Mitarchuk et al. (2024) derived
generalization bounds for a class of recurrent NNs, while Mustafa et al.
(2024) obtained nonvacuous bounds for the adversarial risk.

In the limit of infinite width, and under certain conditions on their
initialization, NNs can be described as a Gaussian process (Neal, 1994),
a correspondence referred to as the NN Gaussian process (NNGP—Lee
et al., 2018). For certain loss functions and suitably scaled learning rates,
the evolution of the infinitely wide NN during training is also tractable,
and is described by the neural tangent kernel (NTK) (Jacot et al.,
2018). Pérez et al. (2019) combined PAC-Bayesian bounds with the
NNGP correspondence to argue that the functions learned by NN tend
to be simple in a sense that leads to generalization, and support their
arguments by numerically estimating the relevant quantities. Bernstein
and Yue (2021) took a similar approach, but derived analytical upper
bounds that lead to nonvacuous generalization guarantees. Shwartz-
Ziv and Alemi (2020) used the NTK formalism to analytically study
various information metrics for NNs, such as I(W ; Z). Huang et al.
(2023), Clerico et al. (2023), and Clerico and Guedj (2024) extended
the NTK formalism to networks trained by optimizing PAC-Bayesian
bounds, while Wang et al. (2022) explored connections to the information
bottleneck.

Viallard et al. (2019) used the PAC-Bayesian framework to analyze
a particular two-phase procedure to train NNs. Rivasplata et al. (2019)
considered a broad family of methods for training stochastic NNs by
minimizing PAC-Bayesian bounds. Letarte et al. (2019) considered NNs
with binary activation functions, and used PAC-Bayesian bounds to
both formulate a framework for training and to obtain nonvacuous gen-
eralization guarantees. Biggs and Guedj (2021) considered ensembling
over stochastic NNs, obtaining differentiable PAC-Bayes objectives,
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while Biggs and Guedj (2022a) derived a de-randomized PAC-Bayesian
bound for shallow NNs, using data-dependent priors to get nonvacuous
generalization bounds. Zantedeschi et al. (2021) used PAC-Bayesian
bounds to learn stochastic majority votes, while Nagarajan and Kolter
(2019) obtained de-randomized PAC-Bayes bounds via noise-resilience.
Tinsi and Dalalyan (2022) obtained tractable bounds for certain aggre-
gated shallow NNs, using a PAC-Bayesian bound with Gaussian priors
as the starting point, while Clerico et al. (2022a) derived a training
algorithm for stochastic NNs without the need for a surrogate loss. Jin
et al. (2022) discussed how the use of dropout affects PAC-Bayesian
generalization bound through the concept of weight expansion. Liao
et al. (2021) used PAC-Bayes to derive generalization bounds for graph
NNs, while Viallard et al. (2021) and Xiao et al. (2023) derived bounds
for adversarial robustness.

Comprehensive surveys of various complexity measures and their
connection to generalization can be found in, for instance, the works
of Neyshabur et al. (2017), Jiang et al. (2020), and Dziugaite et al.
(2020).
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9
Alternative Learning Models

So far, we have considered a generic learning model in which the learner
has access to n (typically i.i.d.) data points from a fixed data distribution,
and the goal is to achieve a small loss on new samples from the same
distribution. While this learning model covers many learning settings of
interest, it is not all-encompassing. In this section, we consider learning
problems that do not fit neatly into the generic setting we discussed
so far. We will not analyze any of these settings in depth. Our aim is
merely to illustrate the wide applicability of the information-theoretic
and PAC-Bayesian approaches to generalization.

First, we discuss the setting of meta learning, wherein the learner
observes training data from several related tasks, and the goal is to
learn how to perform well on a new task. Next, we consider transfer
learning, wherein the distribution of the training data is not the same
as the distribution of the test data. This is closely related to domain
adaptation and out-of-distribution generalization. Following this, we
present an information-theoretic generalization bound for federated
learning, where a set of distributed nodes separately observe training
samples, on the basis of which a composite hypothesis is formed under
certain communication constraints. Finally, we look at reinforcement
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learning, wherein the learner collects observations by interacting with
an environment. Specifically, it observes states, takes actions according
to a policy, and receives rewards, with the goal of learning a policy that
yields high rewards. We conclude by briefly discussing the application
of information-theoretic and PAC-Bayesian generalization bounds to
online learning, active learning, and density estimation.

9.1 Meta Learning

In typical supervised learning, each learning task is considered in isola-
tion: the learner has access to n training samples from the task, and
this is all it has to rely on. In reality, this is usually not the case: differ-
ent tasks of interest may have many commonalities. For instance, any
computer vision task is based on the processing of visual data, which
may be similar across many different tasks.

This idea is captured by the framework of meta learning (Caru-
ana, 1997; Thrun and Pratt, 1998; Baxter, 2000). In this setting, we
assume that there exists a task space T , paired with a task distribu-
tion Pτ . For each task τ ∈ T , there is a corresponding in-task data
distribution P τZ . In order to form the meta-training set Ẑ ∈ Zm×n, m
tasks are drawn from Pτ , and for each of these, n samples are drawn
from the corresponding P τZ . Thus, for each i ∈ [m], τi is drawn inde-
pendently from Pτ , and for each j ∈ [n], Ẑi,j is drawn independently
from P τi

Z . On this basis, the meta learner aims to find a hyperparameter
(or meta hypothesis) U ∈ U on the basis of the meta-learning algo-
rithm PU |Ẑ . This hyperparameter will serve as an additional input to a
base learner, allowing it to use information from the meta-training set
for new tasks. Specifically, for Z ∈ Zn, the base learner is characterized
by the conditional distribution PW |ZU . The performance of the meta
learner is evaluated through the test loss of the base learner on a test
task. Specifically, let τ be drawn from Pτ , independently from Ẑ, let
the “test-training set” Zτ consist of n i.i.d. samples from P τZ , and let
the “test-test sample” Zτ ∼ P τZ . Then, the average meta-test loss is
defined as

L = EPẐPU|ẐPZτ PW |ZτUPZτ [ℓ(W,Zτ )] = EPWPZτ [ℓ(W,Zτ )] . (9.1)
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While the meta learner does not have access to L, it can compute the
meta-training loss, defined as

L̂ = EPẐPU|Ẑ

 1
m

m∑
i=1

EPWi|Ẑi,:U

 1
n

n∑
j=1

ℓ(Wi, Ẑi,j)

 . (9.2)

Here, Ẑi,: = (Ẑi,1, . . . , Ẑi,n) denotes the training set for the ith task
and Wi is the corresponding hypothesis of the base algorithm. For
simplicity, we only focus on generalization bounds in expectation. We
can extend all of these results to obtain PAC-Bayesian and single-draw
counterparts, by following the approach detailed in Section 5.

In the standard learning setting, a key step was to perform a change
of measure to handle the dependence between the training data and
the hypothesis. In the meta-learning setting, there is an additional
dependence between the training data and the hyperparameter. One
way to handle this additional dependence is to use a two-step approach,
wherein an auxiliary loss is introduced as an intermediate step between
the meta-training and meta-population loss. This allows us to obtain
generalization bounds by applying two changes of measure, separately:
one to relate the meta-training loss to the auxiliary loss, and one to
relate the auxiliary loss to the meta-population loss. This allows us to
apply standard generalization bounds on the intra-task and inter-task
levels separately. However, tighter bounds can be obtained by dealing
with them simultaneously. This joint approach leads to the following
generalization bound for meta learning, due to Chen et al. (2021).

Theorem 9.1. Assume that the loss is σ-sub-Gaussian. Let Ŵ =
(W1, . . . ,Wm) denote the output hypotheses of the base learners for
the m training tasks. Then,

∣∣∣L− L̂
∣∣∣ ≤

√
2σ2I(U, Ŵ ; Ẑ)

nm
. (9.3)

Proof. The proof follows the same approach as the proof of Theorem 4.2,
once we make the following observation: the average loss on the meta-
training set under the joint distribution of U , Ŵ , and Ẑ equals L̂. If
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we instead draw (U, Ŵ ) independent from Ẑ, it equals L. We begin by
re-writing the training loss as

L̂ =EPẐPU|Ẑ

 1
m

m∑
i=1

EPWi|Ẑi,:U

 1
n

n∑
j=1

ℓ(Wi, Ẑi,j)

 (9.4)

= 1
m

m∑
i=1

EPWi|Ẑi,:UPẐPU|Ẑ

 1
n

n∑
j=1

ℓ(Wi, Ẑi,j)

 . (9.5)

Furthermore, since the tasks and samples are i.i.d., we have

1
m

m∑
i=1

EPWi|UPẐPU

 1
n

n∑
j=1

ℓ(Wi, Ẑi,j)

 = EPWPZτ [ℓ(W,Zτ )] = L. (9.6)

We conclude the proof by changing measure from PUŴẐ to PUŴPẐ and
using sub-Gaussian concentration.

The effects of the environment level and in-task level in Theorem 9.1
can be disentangled using the chain rule:√

2σ2I(U, Ŵ ; Ẑ)
nm

=

√
2σ2(I(U ; Ẑ) + I(Ŵ ; Ẑ|U))

nm
(9.7)

≤

√
2σ2I(U ; Ẑ)

nm
+

√
2σ2I(W1; Ẑ1,:|U)

n
. (9.8)

In the second step, we used the fact that I(Ŵ ; Ẑ|U) can be separated
into m mutual information terms, one for each task, with the same
underlying distributions.

The bound in Theorem 9.1 can be tightened through the use of
alternative changes of measure and concentration methods, disintegra-
tion, and the individual-sample technique. We will not discuss this
explicitly, but instead provide pointers for such extensions and to ad-
ditional results. PAC-Bayesian bounds for meta learning have been
derived, often with a focus on algorithms that minimize these bounds to
improve generalization, by, e.g., Pentina and Lampert (2014), Amit and
Meir (2018), Rothfuss et al. (2021), and Rezazadeh (2022). Information-
theoretic bounds were provided by Jose and Simeone (2021a) and Jose
et al. (2022b), who used a two-step derivation, and Chen et al. (2021)
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who used the one-step derivation described above. A CMI formulation
of meta learning was introduced by Rezazadeh et al. (2021), which
was later extended to incorporate one-step derivations, disintegration,
and alternative comparator functions by Hellström and Durisi (2022b).
Finally, Jose and Simeone (2021c) derived generalization bound that
explicitly incorporate task similarity, as measured through, for instance,
the relative entropy.

9.2 Out-of-Distribution Generalization and Domain Adaptation

In the standard learning setting, the population loss is defined with
respect to the same distribution from which the training set is drawn.
While this is a natural assumption to make from a theoretical standpoint,
there are many situations where a distribution shift is expected when de-
ploying a model. There are also scenarios where there is an abundance of
data from a surrogate distribution, but a lack of data from the actual dis-
tribution of interest. This motivates theoretical settings where the pop-
ulation loss is defined with respect to a target distribution, which may
differ from the source distribution used to generate the training data.

For the purposes of this discussion, we assume that the sample
space factors into a feature space and a label space as Z = X × Y . The
overarching framework, where the only assumption is that the training
data is drawn from a source distribution PZ but we evaluate the model
on a target distribution P TZ , is usually referred to as out-of-distribution
(OOD) generalization (Liu et al., 2021a). When the marginal distribution
on X induced by PZ differs from the one induced by P TZ , but the
conditional distributions of the label given the features are identical, we
refer to this as domain adaptation (Kouw and Loog, 2019; Redko et al.,
2022). Finally, when the learner has access to (partial) samples from the
target distribution, we refer to this as transfer learning, categorized as
unsupervised if the learner only has access to unlabelled target features
and supervised if it has access to full target samples (Weiss et al., 2016).
While the definitions of OOD generalization and domain adaptation
provided above are fairly established, the term transfer learning is
sometimes overloaded and used to refer to OOD generalization more
broadly, or even to certain variations of meta learning.
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For simplicity, we only consider bounds in expectation. As usual,
we denote the training set as Z, drawn from PZ = PnZ , and the out-
put hypothesis from the stochastic algorithm PW |Z as W . Similarly,
the average training and population loss with respect to the source
distribution are still given by

L̂ = EPWZ
[LZ(W )] , L = EPWZ

[EPZ
[ℓ(W,Z)]] . (9.9)

However, the performance metric that we actually wish to minimize is
the average target population loss, given by

LT = EPWZ

[
EPT

Z

[
ℓ(W,ZT )

]]
. (9.10)

9.2.1 Generic OOD Generalization Bounds

Our first approach to obtaining OOD generalization bounds is natural.
Since we have already established bounds for the population loss under
the source distribution, but are now interested in bounds under the
target distribution, we can apply a change of measure. By a direct
application of the Donsker-Varadhan variational representation of the
relative entropy, we obtain the following (Wang and Mao, 2023a).

Proposition 9.2. Assume that the loss function is σ-sub-Gaussian un-
der PZ almost surely under PW and that P TZ ≪ PZ . Then,∣∣∣LT − L

∣∣∣ ≤
√

2σ2D(P TZ ||PZ). (9.11)

Proof. By the Donsker-Varadhan variational representation of the rela-
tive entropy in Theorem 3.17, for any λ ∈ R, we have

D(P TZ ||PZ)≥EPT
Z

[
λEPWZ

[
ℓ(W,ZT )

]]
−logEPZ

[
eλEPWZ

[ℓ(W,Z)]
]
. (9.12)

Due to the sub-Gaussianity assumption, we have

logEPZ

[
eλEPWZ

[ℓ(W,Z)]
]

= logEPZ

[
eλ(EPWZ

[ℓ(W,Z)]−EPZ [EPWZ
[ℓ(W,Z)]]+EPZ [EPWZ

[ℓ(W,Z)]])] (9.13)

≥λEPZ
[EPWZ

[ℓ(W,Z)]] + λ2σ2

2 . (9.14)

By combining these steps and optimizing over λ for the two cases λ > 0
and λ < 0, we obtain the final result.
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Theorem 9.2 allows us to turn any generalization bound for standard
learning into an OOD generalization bound via the triangle inequality,
at the cost of a term depending on D(P TZ ||PZ). This result confirms the
intuition that OOD generalization works well if the target and source
distributions are similar, with the added specificity that similarity in
terms of relative entropy is sufficient. One drawback of the relative
entropy is that it requires absolute continuity for finiteness. This can be
alleviated to some extent: the roles of the source distribution PZ and
target distribution P TZ in the derivation above can be swapped, leading
to a bound in terms of D(PZ ||P TZ ). For this to work, we instead need
to assume that the loss function is σ-sub-Gaussian under P TZ almost
surely under PW and that PZ ≪ P TZ .

Unfortunately, there are scenarios where neither of these conditions
are satisfied—for instance, if the two distributions have disjoint supports.
This motivates bounds in terms of other information measures, such as
the Wasserstein distance. The following result follows directly from the
Kantorovich-Rubinstein duality.

Proposition 9.3. Assume that the loss is 1-Lipschitz. Then,∣∣∣LT − L
∣∣∣ ≤ W1(PZ , P TZ ). (9.15)

The benefit of this result is that, unlike for the relative entropy, it
remains finite even for the case where the source and target distributions
have disjoint support.

9.2.2 Unsupervised Transfer Learning

In the previous section, we derived generic bounds in which minimal
assumptions were made on the distributions and task, and the learning
algorithm did not have access to any samples from the target distribution.
While this led to explicit bounds in terms of discrepancy measures
between the source and target distribution, the utility is limited since
we cannot minimize these discrepancy measures and do not have access
to the source and target distributions.

In order to gain algorithmic insights, we will now consider unsu-
pervised transfer learning. More precisely, we assume that the sample
space factors into a feature space and label space as Z = X × Y . Hence,
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the target distribution also factors as P TZ = P TXP
T
Y |X . Furthermore, we

assume that the hypothesis W implements a function fW : X → Y,
with its loss depending on the true label and the corresponding pre-
diction as ℓ(W,Z) = ℓf (fW (X), Y ). In addition to the training set Z

drawn from PZ , the learning algorithm now also has access to a set
of unlabelled features XT = (XT

1 , . . . , X
T
m), with each element drawn

independently from P TX . The learning algorithm is now characterized by
the conditional distribution PW |ZXT , and the training loss and target
population loss are thus given by

L̂ = EP
WZXT

[LZ(W )] , LT = EP
WZXT

[
EPT

Z

[
ℓ(W,ZT )

]]
. (9.16)

Following Wang and Mao (2023a), we can derive bounds on LT directly
from L̂, i.e., without relying on the source-distribution population loss.

Theorem 9.4. Assume that the loss function is σ-sub-Gaussian un-
der PZ almost surely under PW and that P TZ ≪ PZ . Then,

∣∣∣LT − L̂
∣∣∣ ≤ EP

XT

√2σ2IXT (W ; Z)
n

+ 2σ2D(P TZ ||PZ)

 . (9.17)

Proof. We begin by considering a specific XT . Then, by the same
argument as used in Theorem 9.2, for all λ ∈ R

D(PWZi|XT
j

||PW |XT
j
P TZ )

≥ EP
WZi|XT

j

[λℓ(W,Zi)] − EP
W |XT

j
PT

Z

[
λℓ(W,ZT )

]
− σ2λ2

2n . (9.18)

Now, note that

D(PWZi|XT
j

||PW |XT
j
P TZ ) = IX

T
j (W ;Zi) +D(PZ ||P TZ ). (9.19)

Hence, by optimizing over λ as before, we get∣∣∣∣∣EPWZi|XT
j

[λℓ(W,Zi)] − EP
W |XT

j
PT

Z

[
λℓ(W,ZT )

]∣∣∣∣∣
≤
√

2σ2IX
T
j (W ;Zi) +D(PZ ||P TZ ). (9.20)

The stated result now follows by decomposing
∣∣∣LT − L̂

∣∣∣, applying (9.20)
termwise, and performing a full-sample relaxation.
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The role of XT in the disintegrated mutual information here is
not entirely clear. Indeed, if we use Jensen’s inequality to move the
expectation inside the square root, we get

EP
XT

[√
IXT (W ; Z)

]
≤
√
I(W ; Z|XT ). (9.21)

This conditional mutual information is lower-bounded as I(W ; Z|XT ) ≥
I(W ; Z). If we had not fixed XT at the beginning of the derivation,
and had instead just averaged it out, we would have obtained a gener-
alization bound in terms of I(W ; Z), where the role of XT is ignored,
as was done by Jose and Simeone (2021d). However, the relationship
between EP

XT

[√
IXT (W ; Z)

]
and I(W ; Z) is not clear. Indeed, the

unlabelled target features could potentially be used to decrease the
information measure that appears in the bound, as discussed by Wang
and Mao (2023a).

Still, this does not address the term D(PZ ||P TZ ) in Theorem 9.4.
This term can be controlled to some extent when the function im-
plemented by the learning algorithm can be expressed as a composi-
tion fW = gW ◦ hW , where hW : X → R is a mapping to a representa-
tion space R and gW : R → Y is the final mapping to the prediction.
Here, fW (·) can for instance be an N -layer neural network, where hW (·)
consists of the first N − k layers and gW (·) consists of the remaining k
layers, for some k ∈ [N ]. For this setting, we can try to align the
distributions on the representation induced by the source and target
distributions.

For the purposes of this discussion, we will look at the relative
entropy D(P TZ ||PZ), but similar techniques can be applied to, e.g.,
the Wasserstein distance. First, consider a fixed function h : X → R,
and let P ThW

denote the pushforward of P TX with respect to h—i.e., the
distribution on R induced by h acting on P TX—and similarly for PhW

.
Furthermore, let P TY |hW

and PY |hW
denote the conditional target and

source distributions for the label, given the representation. Then, for a
fixed W , we have

LT (W ) = EPT
Z

[ℓ(W,Z)] = EPT
hW

PT
Y |hW

[ℓ(gW (hW (X)))] , (9.22)

L(W ) = EPZ
[ℓ(W,Z)] = EPhW

PY |hW
[ℓ(gW (hW (X)))] . (9.23)
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Therefore, by repeating the argument of Theorem 9.2 with this re-
formulation at the start, we obtain∣∣∣LT − L

∣∣∣ ≤ EPW

[√
2σ2D(P ThW

P TY |hW
||PhW

PY |hW
)
]
. (9.24)

The result in Theorem 9.4 can be adapted similarly. Next, note that
the relative entropy can be decomposed as

D(P ThW
P TY |hW

||PhW
PY |hW

)=D(P ThW
||PhW

)+D(P TY |hW
||PY |hW

). (9.25)

Consequently, we have two components of the discrepancy measure: the
representation discrepancy D(P ThW

||PhW
) and the conditional discrep-

ancy D(P TY |hW
||PY |hW

). The representation discrepancy is something
that we actually can aim to minimize by suitably designing our learn-
ing algorithm. While we do not have access to the underlying feature
distribution for neither the source nor the target, we have empirical
estimates based on the source features in Z and the unlabelled target
features XT . Thus, as part of choosing W , we can aim to minimize
the discrepancy between the pushforward of these empirical source and
target feature distributions with respect to hW .

Now, the relative entropy between the two conditional distributions
is not under our control in the same sense, but there are situations where
its contribution can be minor. For the setting of domain adaptation,
this term will be zero, as we assume that the conditional distribution
on the label given the features is identical for the source and target
distributions. This implies that the corresponding pushforward measures
are also equal. Under some additional assumptions, this relative entropy
can also be replaced by a term that is small for settings of practical
relevance. Specifically, as shown by Wang and Mao (2023a, Thm. 4.2), if
we assume that the loss is symmetric and satisfies the triangle inequality,
then for any fixed W we have

LT (W )−L(W ) ≤
√

2σ2D(P TX ||PX)+ min
w∗∈W

{LT (w∗)+L(w∗)}. (9.26)

Thus, the relative entropy between the conditional distributions can be
replaced by the smallest possible sum of source and target population
losses. If transfer learning is to be successful in the sense that we
should be able to find a hypothesis that works well for both the source
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and the target distributions—even given oracle knowledge of the true
distributions—this quantity has to be small.

We conclude this section by presenting a generalization bound for
supervised transfer learning, where the learning algorithm has access
to labelled data from the target distribution. This bound is in terms
of the f -mutual information and uses total variation as discrepancy
measure, and is due to Wu et al. (2022a). We shall assume that, in
addition to the source training set Z, the learning algorithm also has
access to a set of m labelled examples from the target distribution ZT =
(ZT1 , . . . , ZTm), with all elements drawn independently from P TZ . Thus, the
learning algorithm is characterized by a conditional distribution PW |ZZT .
We define the weighted training loss as

L̂ = EP
WZZT

[
α

m

m∑
i=1

ℓ(W,ZTi )
]

+ EP
WZZT

[
1 − α

n

n∑
i=1

ℓ(W,Zi)
]

(9.27)

= α

m

m∑
i=1

EP
WZT

i

[
ℓ(W,ZTi )

]
+ 1 − α

n

n∑
i=1

EPWZi
[ℓ(W,Zi)] . (9.28)

Here, the parameter α ∈ [0, 1] determines the relative emphasis that we
place on the data from the target distribution. When α = 1, it reduces
to the standard training loss for supervised learning. When α = 0, we
are instead back to a generic OOD setting with no target data to learn
from.

Theorem 9.5. Assume that, for any w ∈ W, the loss is bounded by σ
in L∞-norm, i.e.,

|ℓ(w,Z)|∞ = inf{s : P TZ (ℓ(w,Z) > s) = 0} ≤ σ. (9.29)

Then, we have∣∣∣LT − L̂
∣∣∣ ≤ 2ασ

m

∑
i∈[m]

TV(PWZi , PWPZT
i

)

+ 2(1 − α)σ
n

∑
i∈[n]

(
TV(PWZi , PWPZi) + TV(PZ , P TZ )

)
. (9.30)
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Proof. First, we decompose the generalization gap as∣∣∣LT−L̂
∣∣∣ =

∣∣∣∣∣LT − α

m

m∑
i=1

EP
WZT

i

[
ℓ(W,ZTi )

]
− 1 − α

n

n∑
i=1

EPWZi
[ℓ(W,Zi)]

∣∣∣∣∣
≤ α

m

m∑
i=1

∣∣∣∣EPWPZT
i

[
ℓ(W,ZT )

]
− EP

WZT
i

[
ℓ(W,ZTi )

]∣∣∣∣ (9.31)

+ 1 − α

n

n∑
i=1

∣∣∣∣EPWPZT
i

[
ℓ(W,ZT )

]
− EPWZi

[ℓ(W,Zi)]
∣∣∣∣ .

The terms in the first sum are individual-sample generalization gaps.
By applying Theorem 4.4 to each term, we can bound them as

EPWPZT
i

[
ℓ(W,ZT )

]
− EP

WZT
i

[
ℓ(W,ZTi )

]
≤ TV(PWZT

i
, PWPZT

i
). (9.32)

Proceeding similarly with the second sum, we can bound each term as

EPWPZT
i

[
ℓ(W,ZT )

]
− EPWZi

[ℓ(W,Zi)] ≤ TV(PWZi , PWPZT
i

). (9.33)

To isolate the effect of the distribution shift, we can decompose this
last upper bound as

TV(PWZi , PWPZT
i

) = 1
2

∫
W×Z

∣∣∣dPWZi − dPWPZT
i

∣∣∣ (9.34)

≤ 1
2

∫
W×Z

|dPWZi − dPWPZi | (9.35)

+ 1
2

∫
W×Z

∣∣∣dPWPZi − dPWPZT
i

∣∣∣
= TV(PWZi , PWPZi) + TV(PZ , P TZ ). (9.36)

The desired result is obtained by substituting (9.32), (9.33) and (9.36)
into (9.31).

While we only covered bounds in expectation, many of these results
can be extended to PAC-Bayesian and single-draw variants. Further
discussion regarding many of these topics, as well as practical algorithms
based on these bounds, are provided by Wu et al. (2022a), Aminian
et al. (2022a), and Wang and Mao (2023a).
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9.3 Federated Learning

Federated learning is a framework for describing distributed learning,
for instance in mobile networks (Kairouz et al., 2021). Specifically,
we assume that there are K separate nodes, each with access to its
own training set Zk = (Zk,1, . . . , Zk,n) of size n, for each k ∈ [K].
We assume that Zk,i ∼ PZ for all (k, i) ∈ [K] × [n], and denote the
collection of all training sets as Z = (Z1, . . . ,ZK). Each node uses
a learning algorithm PWk|Zk

to generate the hypothesis Wk on the
basis of Zk. These local models are then combined to form the final
model W through an aggregation algorithm PW |W1,...,Wk

. A common
choice is to use averaging, so thatW = 1

K

∑K
k=1Wk. Composing the local

learning algorithms and the aggregation algorithm induces a conditional
distribution on W given the full training set Z, denoted as PW |Z . As
usual, our aim is to bound the population loss LPZ

(W ).
One way to obtain generalization bounds is simply to consider PW |Z

as a learning algorithm acting on nK samples, and use a generalization
bound for standard supervised learning. Alternatively, assuming that the
aggregation algorithm performs averaging and that the loss is convex,
we have

LPZ
(W ) = EPZ

[
ℓ

(
1
K

K∑
k=1

Wk, Z

)]
(9.37)

≤ 1
K

K∑
k=1

EPZ
[ℓ(Wk, Z)] . (9.38)

This allows us to apply a standard generalization bound for each node.
Neither of these approaches, as noted by Barnes et al. (2022), exploits
the specific structure of federated learning, except potentially implicitly
through the information measures that appear in the bounds. We will
therefore focus here on the result in Barnes et al. (2022, Thm. 4), in
which an explicit improved dependence on the number of nodes K is
achieved.

To this end, we need to assume that the loss can be described as a
Bregman divergence. Specifically, for a continuously differentiable and
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strictly convex function f : Rm → R, the Bregman divergence between
two points p, q ∈ Rm is defined as

Bf (p, q) = f(p) − f(q) − ⟨∇f(q), p− q⟩, (9.39)
where ⟨·, ·⟩ is the inner product. Notably, this includes the squared loss,
obtained by setting f(·) to be the squared two-norm. With this, the
following can be established.
Theorem 9.6. Assume that the loss function is a Bregman diver-
gence ℓ(w, z) = Bf (w, z). Furthermore, assume that ℓ(w,Z) is σ-sub-
Gaussian under PZ for all w ∈ W. Then, if W = 1

K

∑K
k=1Wk,

EPWZ
[LPZ

(W ) − LZ(W )] ≤ 1
K2

∑
k∈[K]

√
I(Wk; Zk)

n
. (9.40)

Proof. Let Z ′ = (Z ′
1, . . . ,Z

′
K) be an independent copy of Z, and

let Z(k,i) equal Z for all elements except Z
(k,i)
k,i = Z ′

k,i. Then, we
have (Shalev-Shwartz et al., 2010, Lemma 11)

EPWZ
[LPZ

(W )]= 1
nK

∑
k,i

EPWZPZ′

[
ℓ(W,Z ′

k,i)
]

(9.41)

= 1
nK

∑
k,i

EPWZPZ′

[
f(W )−f(Z ′

k,i)−⟨∇f(Z ′
k,i),W−Z ′

k,i

]
,

since Z ′
k,i is independent from W . Here, the summation indices implicitly

run over k ∈ [K] and i ∈ [n]. Let W k,i be drawn according to PWk,i|Z(k,i) .
Then,

EPWZ
[LZ(W )] = 1

nK

∑
k,i

EP
W k,iZZ′

[
ℓ(W k,i, Z ′

k,i)
]

(9.42)

= 1
nK

∑
k,i

EP
W k,iZZ′

[
f(W k,i) − f(Z ′

k,i) (9.43)

− ⟨∇f(Z ′
k,i),W k,i−Z ′

k,i

]
,

since Z ′
k,i is in the training set of W k,i. It follows that

EPWZ
[LPZ

(W ) − LZ(W )]

= 1
nK

∑
k,i

EP
W W k,iZZ′

[
⟨∇f(Z ′

k,i),W k,i −W ⟩
]
. (9.44)
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Here, we used that EPW
[f(W )] = EP

W k,i

[
f(W k,i)

]
since W and W k,i

have the same marginal distributions. The key observation that leads to
the improved dependence on K, compared to an approach using (9.38),
is that W and W k,i are the average of K sub-models, but they differ
only in the kth sub-model. Hence, W k,i−W = 1

K (W i
k −Wk), where W i

k

denotes the kth submodel trained on Z
(i)
k . Therefore,

EPWZ
[LPZ

(W ) − LZ(W )]

= 1
nK2

∑
k,i

EP
W W k,iZZ′

[
⟨∇f(Z ′

k,i),W i
k −Wk⟩

]
. (9.45)

Hence, we can conclude that

EPWZ
[LPZ

(W )−LZ(W )]= 1
K2

∑
k∈[K]

EPWZ
[LPZ

(Wk)−LZk
(Wk)] . (9.46)

We obtain the desired result by applying Theorem 4.2.

If z = (x, y), this result also holds if ℓ(w, (x, y)) = Bf (⟨w, x⟩, y), with
a nearly identical proof. Intuitively, the improved dependence onK arises
because the dependence of the final hypothesis W on any individual
sample is dampened by 1/K due to the averaging. Naturally, this result
can be extended to incorporate disintegration, the individual-sample
technique, or by using other generalization bounds than Theorem 4.2
in the proof. For further discussion and extensions of these bounds, see
for instance the work of Yagli et al. (2020) and Barnes et al. (2022).

9.4 Reinforcement Learning

So far, we have assumed that the training data is independent from the
learning algorithm. In this section, we instead look at reinforcement
learning, wherein the learner collects observations by taking observation-
dependent actions in an environment. Specifically, in Section 9.4.1, we
present extensions of PAC-Bayesian bounds from i.i.d. data to mar-
tingales, allowing us to capture interactions in reinforcement learning.
Then, in Section 9.4.2, we discuss information-theoretic bounds for
Markov decision processes (MDP), which constitute an important class
of reinforcement learning problems.
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9.4.1 PAC-Bayesian Bounds for Martingales

We begin by presenting a PAC-Bayesian bound for martingales (de-
scribed in Section 3.3.4) due to Seldin et al. (2012b). This can be used
to apply generalization bounds like those in Section 5.2 developed for
i.i.d. training samples to various types of interactive settings.

Theorem 9.7. Let Mi for i ∈ [n] be a martingale sequence of random
functions Mi : W → [−1, 1] such that E[Mi+1(w)|M≤i(w)] = 0 for
all w ∈ W, where M≤i(w) = (M1(w), . . . ,Mi(w)). Suppose that the
randomness of each Mi is captured by a random variable Zi, and
let M̄t =

∑t
i=1Mi and Z = (Z1, . . . , Zn). Fix a prior distribution QW

on W and a δ ∈ (0, 1). Then, for every distribution PW |Z on W, with
probability at least 1 − δ over PZ ,∣∣∣∣∣EPW |Z

[
M̄n(W )

n

]∣∣∣∣∣ ≤

√
D(PW |Z ||QW ) + log 4en

δ

2n . (9.47)

Proof. By the Donsker-Varadhan variational representation of the rela-
tive entropy, we have, for a fixed λ > 0,

EPW |Z

[
λM̄n(W )

n

]
≤ D(PW |Z ||QW ) + logEQW

[
e

λM̄n(W )
n

]
. (9.48)

By Markov’s inequality, we have with probability at least 1 − δ

logEQW

[
e

λM̄n(W )
n

]
≤ logEQWPZ

[1
δ
e

λM̄n(W )
n

]
(9.49)

≤ log 1
δ

+ λ2

8n, (9.50)

where the last step is due to Theorem 3.34. After repeating this argument
for −M̄n and using the union bound, we find that with probability at
least 1 − δ,∣∣∣∣∣EPW |Z

[
M̄n(W )

n

]∣∣∣∣∣ ≤
D(PW |Z ||QW ) + log 2

δ

λ
+ λ

8n. (9.51)

To complete the proof, we need to select λ. We will do this by op-
timizing the bound over a grid of candidate values, using a union
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bound to ensure that the result is valid for all possible values.14 First,
note that if D(PW |Z ||QW ) > 2n, the right-hand side of (9.51) is
lower-bounded by 1 for all λ, meaning that the resulting bound is
vacuous (since M̄n(W ) ≤ n). Hence, the result in (9.47) holds trivially
in this case. Thus, we only consider D(PW |Z ||QW ) ≤ 2n. Specifically,
assume that D(PW |Z ||QW ) ∈ [k − 1, k] for k ∈ [2n]. Then, by (9.51),
we have ∣∣∣∣∣EPW |Z

[
M̄n(W )

n

]∣∣∣∣∣ ≤
k + log 2

δ

λ
+ λ

8n. (9.52)

For a fixed k, this is minimized by λ = 2
√

2n(k + log 2
δ ), which gives

∣∣∣∣∣EPW |Z

[
M̄n(W )

n

]∣∣∣∣∣ ≤

√
k + log 2

δ

2n . (9.53)

By the union bound, this holds simultaneously for k ∈ [2n] with prob-
ability at least 1 − 2nδ. Hence, by substituting δ with δ/(2n), noting
that k ≤ D(PW |Z ||QW ) + 1,∣∣∣∣∣EPW |Z

[
M̄n(W )

n

]∣∣∣∣∣ ≤

√
D(PW |Z ||QW ) + 1 + log 4n

δ

2n (9.54)

with probability at least 1 − δ. From this, the desired result follows.

By suitably selecting M̄i—for instance, as the difference between
the loss for a training instance and its expectation—this bound can
be instantiated for various settings with martingale data, extending
the applicability of PAC-Bayesian bounds beyond i.i.d. data. For in-
stance, Seldin et al. (2011) and Seldin et al. (2012a) apply these bounds
to the case of multiarmed bandits. It is worth noting that Seldin et
al. (2012b) derive additional bounds using martingale versions of the
concentration for binary relative entropy in Theorem 3.29 as well as
Bernstein’s inequality.

14In the original proof, Seldin et al. (2012b) use a dyadic grid and a weighted
union bound over an infinite range. We restrict ourselves to a finite range, similar
to Rodríguez-Gálvez et al. (2023), in order to simplify the proof.
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9.4.2 Markov Decision Processes

In reinforcement learning, the learner is viewed as an “agent” that
interacts with an environment and takes actions according to a strategy,
also known as policy, obtaining rewards on this basis. The goal of this is
to learn a good policy for how to select actions depending on the state
of the environment. A defining characteristic of reinforcement learning
is that the environment is only partially observed through the agent’s
interaction with it. A specific example of this is the setting of contextual
bandits, where the PAC-Bayesian bounds for martingales can be applied,
as demonstrated by Seldin et al. (2011). Here, following Gouverneur
et al. (2022), we will focus on Bayesian regret in an MDP, presenting a
bound that extend the result obtained by Xu and Raginsky (2022) for
supervised learning.

In order to formally describe an MDP, we need the following defi-
nitions. We let S denote a set of states, let A denote a set of actions,
and let Y denote a set of outcomes. At each time t ∈ [T ], the learner
observes the state St ∈ S and takes an action At ∈ A, after which
the environment produces an outcome Yt ∈ Y. This leads to the re-
ward Rt = r(Yt, At) ∈ R. The environment is characterized by a random
variable θ ∈ Θ, drawn according to Pθ. More specifically, it consists of
a transition kernel PSt+1|St,At,θ, an outcome kernel PYt|St,θ, an initial
state distribution PS|θ, from which S1 is drawn, and the reward func-
tion r : Y × A → R. The stochastic mapping from the state St and
action At to the reward Rt is characterized by the kernel PRt|St,At,θ.
The goal is to learn a policy φ = {φt : S × (S,A,R)t → A}t∈[T ],
which selects an action At on the basis of St and the observed his-
tory H≤t = (H1, . . . ,Ht−1), where Ht = (St, At, Rt). Specifically, the
policy should be chosen to obtain a high cumulative expected re-
ward rc(φ), defined as

rc(φ) = E

∑
t∈[T ]

r(Yt, φt(St, H≤t))

 . (9.55)

We refer to the maximal expected cumulative reward as the Bayesian
cumulative reward, and denote it by Rc = supφ rc(φ), where the supre-
mum is taken over all policies that lead to a finite expectation in (9.55).
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We will compare this to the maximal expected cumulative reward that
can be obtained by an oracle that has knowledge of θ. Specifically, we
consider decision rules ψ = {ψt : S × Θ → A}t∈[T ] and define the oracle
Bayesian cumulative reward as

RoB = sup
ψ

E

∑
t∈[T ]

r(Yt, ψt(St, θ))

 . (9.56)

We let ψ∗ = {ψ∗
t }t∈[T ] denote the policy that achieves the supremum

in (9.56), and assume that it exists. With this, we are ready to define
the key quantity that we wish to bound: the minimum Bayesian regret
(MBR) given by

MBR = RoB −Rc. (9.57)
This quantity is the difference between the reward that is obtainable
based only on observing the system through interactions and the one
that is obtainable when the underlying system parameters are known.

In order to bound the MBR, we will consider a specific learning
algorithm, related to Thompson sampling (Thompson, 1933; Russo and
Van Roy, 2016). One approach to selecting ϕt is to use H≤t to compute
an estimate θ̂t through a kernel Pθ̂t|H≤t

, and then select an action on the
basis of (St, θ̂t). Since this is a special instance of a learning algorithm,
the resulting cumulative expected reward cannot be greater than the
Bayesian cumulative reward.

Rc = sup
φ

E

∑
t∈[T ]

r(Yt, φt(St, H≤t))

 (9.58)

≥ sup
ψ

E

∑
t∈[T ]

r(Yt, ψt(St, θ̂t))

 (9.59)

≥ E

∑
t∈[T ]

r(Yt, ψ∗
t (St, θ̂t))

 . (9.60)

We now introduce Y ∗
t and S∗

t as the outcomes and states that are ob-
tained through ψ∗ acting on the MDP with the true θ as input. Similarly,
we let Ŷt, Ŝt, and Ĥt denote the outcomes, states, and histories that are
obtained through ψ∗ acting on the MDP with the estimated {θ̂t}t∈[T ]
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as input. Now, by expanding the expression above, we find that the
MBR can be bounded as

MBR ≤ RoB − E

∑
t∈[T ]

r(Yt, ψ∗
t (St, θ̂t))

 (9.61)

=
∑
t∈[T ]

EPθθ̂tĤ≤t

[
EPY ∗

t
S∗

t
ŶtŜt|θθ̂tĤ≤t

[
r(Y ∗

t , ψ
∗
t (S∗

t , θ))−r(Ŷt, ψ∗
t (Ŝt, θ̂t))

]]
.

Now, observe that the following Markov chain holds:

Y ∗
t , S

∗
t ) − θ − (Ŷt, Ŝt) − Ĥ≤t − θ̂t. (9.62)

From this, it follows that for each t ∈ [T ], the first term of the inner
expectation is distributed according to PY ∗

t ,S
∗
t |θ, while the second is

distributed according to PŶt,Ŝt|H≤t
. Therefore, we can use change of

measure techniques to relate the two terms, by following the same
arguments as in Section 4 (and in particular, Section 4.2). This leads
to the following result (Gouverneur et al., 2022, Prop. 1).

Theorem 9.8. Assume that, for all t ∈ [T ], r(Ŷt, ψ∗
t (Ŝt, θ)) is σ2

t -sub-
Gaussian under PŶt,Ŝt|Ĥ≤t

for all θ ∈ Θ. Then,

MBR ≤
∑
t∈[T ]

EPθĤ≤t

[√
2σ2

tD(PY ∗
t ,S

∗
t |θ ||PŶt,Ŝt|Ĥ≤t

)
]
. (9.63)

More discussion of these results, including applications to special
cases and results in terms of the Wasserstein distance, can be found in
the work of Gouverneur et al. (2022).

9.5 Bibliographic Remarks and Additional Perspectives

The result in Theorem 9.1 is due to Chen et al. (2021). Information-
theoretic generalization bounds for meta learning can also be found
in the work of Jose and Simeone (2021a) and Jose et al. (2022b), and
were extended to the case of e-CMI in Hellström and Durisi (2022b).
Additional works that provide PAC-Bayesian and information-theoretic
generalization bounds for meta learning include, e.g., Pentina and Lam-
pert (2014), Amit and Meir (2018), Rothfuss et al. (2021), Liu et al.
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(2021b), Farid and Majumdar (2021), Meunier and Alquier (2021),
Flynn et al. (2022), Rezazadeh (2022), Jose et al. (2022a), and Riou
et al. (2023). The bounds for OOD generalization in Theorems 9.2 to 9.4
are due to Wang and Mao (2023a), while Theorem 9.5 is due to Wu et al.
(2022a). Jose et al. (2022b) considered a combination of transfer learning
and meta learning, while Jose and Simeone (2023) analyzed transfer
learning for quantum classifiers. Additional results for transfer learning
and domain adaptation can be found in the works of Germain et al.
(2016b), Achille et al. (2021), Jose and Simeone (2021c), Aminian et al.
(2022b), and Bu et al. (2022). Relatedly, He et al. (2022) derived bounds
for iterative semi-supervised learning. Theorem 9.6 is due to Barnes
et al. (2022), with earlier work by Yagli et al. (2020). Sefidgaran et al.
(2022a) derived generalization bounds for distributed learning using
rate-distortion techniques. The extension of PAC-Bayesian bounds to
martingales in Theorem 9.7 is due to Seldin et al. (2012b); Seldin et al.
(2011) applied these to contextual bandits. Theorem 9.8 is due to Gou-
verneur et al. (2022). Additional PAC-Bayesian results for reinforcement
learning can be found in the work of Fard and Pineau (2010) and Wang
et al. (2019b).

We conclude by mentioning alternative learning models and their
connections to PAC-Bayesian and information-theoretic generalization
bounds. Seeger (2002) applied PAC-Bayesian bounds to Gaussian pro-
cess classification, while Shawe-Taylor and Hardoon (2009) considered
the problem of maximum entropy classification. Unsupervised learning
models, such as various types of clustering, were studied by, e.g., Seldin
and Tishby (2010), Higgs and Shawe-Taylor (2010), and Li et al. (2018).
Alquier and Lounici (2011) considered the sparse regression model
in high dimension, while Guedj and Robbiano (2018) derived PAC-
Bayesian bounds for the bipartite ranking problem in high dimension.
Ralaivola et al. (2010) derived bounds for non-i.i.d. data, with appli-
cations to certain ranking statistics, while Li et al. (2013) extended
PAC-Bayesian bounds to the nonadditive ranking risk. Jose and Sime-
one (2021b) used PAC-Bayesian bounds to analyze machine unlearning,
where a learning algorithm has to “forget” specific samples. Online
learning, where the learner has to sequentially select hypotheses to
minimize losses set by a potentially adversarial environment (a recent
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introduction is provided by Orabona, 2023), is intimately related to
PAC-Bayesian and information-theoretic bounds. In particular, there is
a formal relationship between the Gibbs posterior and the exponential
weights algorithm. PAC-Bayesian bounds for a version of online learn-
ing were studied by Haddouche and Guedj (2022). Recently, Lugosi
and Neu (2022) and Lugosi and Neu (2023) established a method for
converting regret bounds from online learning to PAC-Bayesian and
information-theoretic bounds, allowing them to (essentially) recover
established results and derive new ones. Caro et al. (2024) consider the
quantum learning setting, and derive generalization bounds in terms
of information-theoretic quantities. Finally, Sharma et al. (2023) ex-
ploited PAC-Bayesian generalization bounds in the context of inductive
conformal prediction, allowing the calibration data set to be used for
learning the hypothesis and score function, while Zecchin et al. (2024)
use information-theoretic metrics to characterize the expected size of
conformal prediction sets.
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10
Concluding Remarks

In this monograph, we provided a broad overview of information-
theoretic and PAC-Bayesian generalization bounds. We highlighted
the connection between these fields; presented a wide array of bounds
for different settings in terms of different information measures; detailed
analytical applications of the bounds to specific learning algorithms; dis-
cussed recent applications to iterative methods and neural networks; and
covered extensions to alternative settings. We hope that this exposition
demonstrates the versatility and potential of the information-theoretic
approach to generalization results.

Still, there are many unanswered questions and directions to explore.
On the one hand, as shown by Haghifam et al. (2021) and Haghifam
et al. (2023), there are certain settings where the information-theoretic
approaches discussed in this monograph yield provably suboptimal
bounds. On the other hand, there are bounds in terms of the evaluated
mutual information that equal the population loss for interpolating
settings (Haghifam et al., 2022; Wang and Mao, 2023c), as discussed
in Section 6.5, and by appropriately adapting standard information-
theoretic bounds, optimal characterizations of the generalization gap
in the Gaussian location model can be derived (Zhou et al., 2023a).

185
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This raises the question of which settings the information-theoretic
approach to generalization is suitable for, and whether or not it can be
extended further through new ideas, or whether alternative approaches
are necessary.

As discussed in Section 8.2, information-theoretic and PAC-Bayesian
bounds have been shown to be numerically accurate in certain settings
with neural networks. However, the utility and interpretation of these
results is not entirely clear. Dziugaite and Roy (2017) connect their
bound to the flatness of the loss landscape; Harutyunyan et al. (2021)
draw parallels to stability; and Lotfi et al. (2022) point towards com-
pressibility, exploring its relation to, e.g., equivariance and transfer
learning. Pinning down these connections more precisely, and develop-
ing the bounds to such an extent that they can guide model selection a
priori, are intriguing avenues to explore.

Regarding the structure of the bounds themselves, Foong et al.
(2021) and Hellström and Guedj (2024) explore the question of what
the tightest attainable bound is. For instance, what is the best com-
parator function to use in Theorem 5.2? Can the log

√
n dependence

in Theorem 5.4 be removed? Another question is whether the most
suitable information measure for a given setting can be determined. As
discussed throughout, the specific information measure that arises in a
bound is just a consequence of the change of measure technique that is
used in its derivation.

Finally, several interesting extensions to other settings and connec-
tions to other approaches can be explored. While we covered some topics
in Section 9, the relation to, for instance, active learning, wherein the
information carried by a sample is a central quantity (Settles, 2012),
and online learning, the analysis of which shares many tools with the
information-theoretic approach (Orabona, 2023), is a promising direc-
tion. For instance, recently, Lugosi and Neu (2023) showed that any
regret bound for online learning implies a corresponding generalization
bound for statistical learning.

While this discussion is far from comprehensive, addressing these
questions and exploring the aforementioned connections may provide a
fruitful path forward. We hope that this monograph will be valuable in
pursuing these goals.
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