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An Introduction to Deep Survival
Analysis Models for Predicting
Time-to-Event Outcomes
George H. Chen

Carnegie Mellon University, USA; georgechen@cmu.edu

ABSTRACT

Many applications involve reasoning about time durations
before a critical event happens—also called time-to-event
outcomes. When will a customer cancel a subscription, a
coma patient wake up, or a convicted criminal reoffend?
Accurate predictions of such time durations could help down-
stream decision-making tasks. A key challenge is censoring:
commonly, when we collect training data, we do not get to
observe the time-to-event outcome for every data point. For
example, a coma patient has not woken up yet, so we do
not know the patient’s time until awakening. However, these
data points should not be excluded from analysis as they
could have characteristics that explain why they have yet
to or might never experience the event.

Time-to-event outcomes have been studied extensively
within the field of survival analysis primarily by the sta-
tistical, medical, and reliability engineering communities,
with textbooks already available in the 1970s and ’80s. Re-
cently, the machine learning community has made significant
methodological advances in survival analysis that take ad-
vantage of the representation learning ability of deep neural
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Vol. 17, No. 6, pp 921–1100. DOI: 10.1561/2200000114.
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networks. At this point, there is a proliferation of deep sur-
vival analysis models. How do these models work? Why?
What are the overarching principles in how these models
are generally developed? How are different models related?

This monograph aims to provide a reasonably self-contained
modern introduction to survival analysis. We focus on pre-
dicting time-to-event outcomes at the individual data point
level with the help of neural networks. Our goal is to pro-
vide the reader with a working understanding of precisely
what the basic time-to-event prediction problem is, how it
differs from standard regression and classification, and how
key “design patterns” have been used time after time to
derive new time-to-event prediction models, from classical
methods like the Cox proportional hazards model to modern
deep learning approaches such as deep kernel Kaplan-Meier
estimators and neural ordinary differential equation models.
We further delve into two extensions of the basic time-to-
event prediction setup: predicting which of several critical
events will happen first along with the time until this earliest
event happens (the competing risks setting), and predicting
time-to-event outcomes given a time series that grows in
length over time (the dynamic setting). We conclude with
a discussion of a variety of topics such as fairness, causal
reasoning, interpretability, and statistical guarantees.

Our monograph comes with an accompanying code repos-
itory that implements every model and evaluation metric
that we cover in detail: https://github.com/georgehc/
survival-intro

Full text available at: http://dx.doi.org/10.1561/2200000114
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1
Introduction

Predicting time durations before a critical event happens arises in nu-
merous applications. These durations are called time-to-event outcomes.
For example, an e-commerce company may be interested in predicting
a user’s time until making a purchase (e.g., Chapelle 2014). A video
streaming service may be interested in predicting when a customer will
stop watching a show (e.g., Hubbard et al. 2021). In healthcare, hospi-
tals may be interested in predicting when a patient’s disease will relapse
(e.g., Zupan et al. 2000). In criminology, courts may be interested in
predicting the time until a convicted criminal reoffends (e.g., Chung
et al. 1991). Accurate predictions for these time-to-event outcomes could
help in decision-making tasks such as showing targeted advertisements
or promotions in the e-commerce or video streaming examples, planning
treatments to reduce a patient’s risk of disease relapse in the healthcare
example, and making bail decisions in the criminology example.

A defining feature of time-to-event prediction problems is that
commonly, when we collect training data to learn a model from, we
do not get to see the true time-to-event outcome for every data point,
i.e., their time-to-event outcome is censored. As an example, some
training points (e.g., a coma patient) might not have experienced the

3
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4 Introduction

critical event of interest yet (e.g., waking up). Discarding the points
that have not experienced the event would be unwise: they could have
characteristics that make them much less likely to experience the event
(e.g., the patient’s brain activity is highly abnormal).

1.1 Survival Analysis and Time-to-Event Outcomes: Some History
and Commentary on Naming

Time-to-event outcomes have been studied for hundreds of years if
not longer, where the initial focus was on predicting time until death.
Early analyses introduced the use of “life tables”, which in a nutshell
contain counts such as numbers of births and deaths over time. Graunt
(1662) published what might be the first life table and looked at the
chance of survival for different age groups.1 This particular dataset from
London was challenging since the survival times (age at the time of
death) were not actually recorded, corresponding to a censoring problem.
Instead, Graunt largely guessed survival times based on causes of death,
which were recorded (albeit they were not necessarily accurate). A
few decades later, Halley (1693) analyzed a life table collected from
modern day Wrocław and computed the probability of dying within
the next year. Halley used these probabilities to determine how to price
an annuity (roughly, an expected payout over a person’s remaining
lifetime). For a historical account of life tables and more generally
reasoning about survival times, see for instance the book by Bacaër
(2011) and the bibliographical notes accompanying the different chapters
of Namboodiri and Suchindran (2013)—these readings altogether walk
through highlights from hundreds of years of research on survival times
leading up to modern time.

So much of the pioneering research on time-to-event outcomes was
on time until death that the enterprise of modeling time-to-event out-
comes is now commonly called survival analysis, with textbooks already
available decades ago (e.g., Mann et al. 1974; Kalbfleisch and Prentice

1As noted by Glass (1963) and Bacaër (2011) among others, there has been
some debate as to whether Graunt or his friend William Petty wrote the book but
regardless, Graunt’s book had five editions published between 1662 and 1676 (for
which our citation just uses the earliest year).

Full text available at: http://dx.doi.org/10.1561/2200000114



1.2. Machine Learning Models for Survival Analysis 5

1980; Cox and Oakes 1984; Fleming and Harrington 1991). Countless
other (text)books on survival analysis have since been written and have
mainly originated from statistical, medical, and reliability engineering
communities (e.g., Klein and Moeschberger 2003; Machin et al. 2006;
Selvin 2008; Kleinbaum and Klein 2012; Li and Ma 2013; Harrell 2015;
Klein et al. 2016; Ebeling 2019; Prentice and Zhao 2019; Gerds and
Kattan 2021; Collett 2023), and at this point, there is also a book
tailored to social scientists (Box-Steffensmeier and Jones, 2004).

We want to emphasize though that as the examples we opened the
monograph with showed, the critical event need not be death, meaning
that we might not be reasoning about “survival” literally. In fact, some
researchers work on survival analysis but in titling their papers choose
to opt for more general phrasing such as “time-to-event modeling”
(e.g., Chapfuwa et al. 2018). We further emphasize that the “time” in
“time-to-event outcome” does not literally have to measure time. For
example, a survival analysis model could be used to predict how many
units of an inventory item (e.g., a newspaper) to stock the next day
given past days’ sales counts, so that the “time-to-event outcome” here
measures an integer number of items (Huh et al., 2011). Ultimately,
“survival” analysis or “time-to-event” models have been broadly applied
to numerous applications far beyond reasoning about either “survival”
or “time-to-event” outcomes in a literal sense.

1.2 Machine Learning Models for Survival Analysis

The phrase “machine learning” was only coined in 1959 (Samuel, 1959),
the year after the highly influential paper by Kaplan and Meier (1958)
came out that analyzed a survival model based on life tables using
what is called the “product-limit” estimator (Böhmer, 1912). (Kaplan
and Meier’s estimator remains one of the major workhorses of modern
time-to-event data analysis; we will see it and deep learning versions of
it later in this monograph.) Suffice it to say, machine learning as a field
is young compared to survival analysis. Precisely when the first machine
learning survival analysis model came about is perhaps not entirely
straightforward to trace, in part because nowadays, what is considered
a “machine learning model” depends on who one asks. While we may

Full text available at: http://dx.doi.org/10.1561/2200000114



6 Introduction

consider k nearest neighbor and kernel survival analysis (Beran, 1981)
and survival trees (Ciampi et al., 1981; Gordon and Olshen, 1985) to be
machine learning models, would the authors of these original papers?

Fast-forwarding to present time, there is now an explosion in the
number of machine learning survival analysis models available. For
much larger lists of models than what we cover in this monograph,
see the excellent surveys by Wang et al. (2019) and Wiegrebe et al.
(2023). As part of their survey, Wiegrebe et al. (2023) provide an online
catalog of over 60 deep-learning-based survival models (which we will
just abbreviate throughout this monograph as deep survival models).2
This catalog is not exhaustive!

With so many machine learning models for survival analysis, what
exactly are the major innovations? When and why do different models
work? How do they relate to each other? What are overarching patterns
in model development? In answering these questions, we think that it is
extremely important to distinguish between innovations that are specific
to time-to-event prediction vs ones that are not. For the purposes of
this monograph, we want to focus on the former as they could help us
better understand what is special about time-to-event prediction that
helps us build better models.

1.3 The Motivation for This Monograph

We set out to write this monograph for two key reasons:

• First, we wanted to provide a reasonably self-contained introduc-
tory text that covers the key concepts of survival analysis with a
focus on time-to-event prediction at the individual data point level
and that also exploits the availability of now standard neural net-
work software. We focus on neural network survival models (i.e.,
deep survival models) because these models are easy to modify
(e.g., to accommodate different data modalities, add loss terms,
set a custom learning rate schedule, etc). Note that every model
that we present in detail has publicly available source code (we
discuss software shortly in Section 1.6.4). For readers who are new

2https://survival-org.github.io/DL4Survival/
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1.3. The Motivation for This Monograph 7

to survival analysis but are already very comfortable working with
standard neural network software at the level of writing custom
models and loss functions, we hope that our monograph provides
enough survival analysis background to make implementing deep
survival models from “scratch” using standard neural network
software fairly straightforward.

• Second, we wanted to clearly convey how several major categories
of deep survival models are related, and how in deriving these
different survival models, we use some of the same key design
patterns or derivation techniques over and over again. We hope
that by leading the reader through many examples, these patterns
will become apparent.

To the best of our knowledge, no existing text provides the sort of
introduction to survival analysis that our monograph aims to be. The
surveys of machine learning survival models (Wang et al., 2019; Wiegrebe
et al., 2023) are not written nor intended for the purpose of giving the
reader a working knowledge of how to actually derive survival models
from first principles. Meanwhile, the vast majority of survival analysis
(text)books do not cover neural networks or deep learning due to how
new these are (an example of a textbook that covers neural networks
for survival analysis can be found in Chapter 11 of Dybowski and Gant
(2001), but this book pre-dates the invention of nearly all the deep
survival models we cover).

Overall, we hope that our introduction to survival analysis provides
the reader with a solid understanding of what precisely the time-to-
event problem setup is, why it is different from standard regression and
classification, and how to build survival models with the help of neural
networks. We also hope that the reader learns a little bit about where the
state-of-the-art is in terms of a variety of other topics that we mention
but do not discuss in detail, such as how fairness, causal reasoning, and
interpretability play into survival models, and what progress has been
made on theoretically analyzing some of these models.

Full text available at: http://dx.doi.org/10.1561/2200000114



8 Introduction

1.4 Monograph Overview and Outline

Our coverage is not meant to remotely be exhaustive in showcasing how
deep survival models have been used for time-to-event prediction. We
specifically cover the following:

• Basic Time-to-Event Prediction Setup (Section 2). We
first go over the standard time-to-event prediction problem setup.
We state its statistical framework, its prediction task, common
ways of writing a likelihood function to be maximized (maximum
likelihood is the standard way of learning time-to-event predic-
tion models), and how to evaluate prediction accuracy. Along the
way, we lead the reader through various example models to help
solidify concepts, all of which could be related to maximizing likeli-
hood functions: exponential and Weibull time-to-event prediction
models, DeepHit (Lee et al., 2018), Nnet-survival (Gensheimer
and Narasimhan, 2019), the Kaplan-Meier estimator (Kaplan
and Meier, 1958), and the Nelson-Aalen estimator (Nelson, 1969;
Aalen, 1978). Importantly, we distinguish between modeling time
as continuous vs discrete since the math involved is a bit different.
This section also discusses how time-to-event prediction relates to
classification and regression.

• Deep Proportional Hazards Models (Section 3). We next
cover perhaps the most widely used family of time-to-event pre-
diction models in practice, which are called proportional hazards
models. We define proportional hazards models in a general manner
in terms of neural networks. Special cases include the exponential
and Weibull models from Section 2, the classical Cox model (Cox,
1972), and DeepSurv (Faraggi and Simon, 1995; Katzman et al.,
2018). Proportional hazards models make a strong assumption
that, in some sense, decouples how time contributes to a predic-
tion and how a data point’s features contribute to a prediction.
This assumption often does not hold in practice. We present a
generalization of the DeepSurv model called Cox-Time (Kvamme
et al., 2019) that removes this proportional hazards assumption.

Full text available at: http://dx.doi.org/10.1561/2200000114



1.4. Monograph Overview and Outline 9

• Deep Conditional Kaplan-Meier Estimators (Section 4).
One of the standard models we encounter in Section 2 is the
Kaplan-Meier estimator, which is extremely popular in practice
and also different from deep proportional hazards models because
it is nonparametric (i.e., it does not assume the time-to-event
outcome’s distribution has a parametric form). However, it only
works to describe a population and does not provide predictions
for individual data points. We present deep learning versions of
the Kaplan-Meier estimator that can make predictions at the
individual level. Namely, we cover deep kernel survival analysis
(Chen, 2020) and its generalization called survival kernets (Chen,
2024); the latter can scale to large datasets, can in some sense be
interpreted in terms of clusters, and has a statistical guarantee
on accuracy for a special case of the model.

• Neural Ordinary Differential Equation Formulation of
Time-to-Event Prediction (Section 5). We then present a
model that can encode all the models we presented in preceding
sections, where we phrase the standard time-to-event prediction
problem in terms of a neural ordinary differential equation model.
We specifically go over the neural ODE time-to-event predic-
tion model by Tang et al. (2022b) called SODEN. In presenting
SODEN, we also mention some model classes that we did not
previously point out, such as deep accelerated failure time models
and deep extended hazard models (Zhong et al., 2021).

• Beyond the Basic Time-to-Event Prediction Setup: Mul-
tiple Critical Events and Time Series as Raw Inputs
(Section 6). Whereas all the previous sections used the basic
time-to-event prediction setup from Section 2, we now consider
two generalizations. First we consider the so-called competing risks
setting where there are multiple critical events of interest (e.g., for
a coma patient, we consider the patient waking up and the patient
dying as two different critical events; note that censoring could
still happen but is not considered as one of the critical events).
We aim to predict which critical event will happen first and also
the time until this earliest critical event happens. The example

Full text available at: http://dx.doi.org/10.1561/2200000114



10 Introduction

model we use here is DeepHit (Lee et al., 2018). Note that the
special case of there being one critical event reduces the problem
to the one from Section 2. We then generalize the competing
risks setting further by considering what happens when we want
to make predictions as we see more and more of a given a time
series (the dynamic setting). The example model we use here is
Dynamic-DeepHit (Lee et al., 2019).

• Discussion (Section 7). We end the monograph by discussing a
variety of topics that we either only briefly glossed over or that we
did not mention at all. For example, we discuss different kinds of
censoring, ways to encourage a survival model to be “fair”, causal
reasoning with survival models, interpretability of deep survival
models, issues of statistical guarantees, and more.

Specifically for the example models we cover in Sections 2 to 5, we show
how these models relate in Figure 1.1. When one model is a child of
another in this figure, it means that the child model could be represented
(possibly with a known approximation) by the parent model. Note that
in the figure, just because two models do not overlap does not mean that
they cannot represent the same underlying true time-to-event outcome
distribution. For example, even though deep extended hazard models
(Zhong et al., 2021) and survival kernets (Chen, 2024) do not overlap in
the figure, they can represent many of the same time-to-event outcome
distributions.

We emphasize that just because SODEN (Tang et al., 2022b) can
in principle represent all the other models we cover in Sections 2 to 4
(possibly with an approximation), that does not mean that one is best
off just using SODEN. An important point is that many of these models
are trained in different ways. SODEN’s training procedure may not
work the best for some of the simpler model classes that it can represent.
In particular, it invokes calls to an ordinary differential equation (ODE)
solver, which could be overkill if we just want to use one of the simpler
models (that has its own simpler training procedure which typically
is faster to run). By relying on an ODE solver, we could also run into
numerical stability issues that occasionally arise with ODE solvers.

Full text available at: http://dx.doi.org/10.1561/2200000114
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Weibull
time-to-event 

prediction model
Examples 2.2.3 & 5.1.1

Exponential 
time-to-event 

prediction 
model

Examples 
2.2.1 & 2.2.2

Deep 
accelerated 
failure time 

models
(Zhong et al., 

2021)
Section 5.1.2

Deep extended hazard models
(Zhong et al., 2021)

Section 5.1.3

SODEN (Tang et al., 2022b)
Sections 5.1 & 5.2

Discrete time models
Section 2.3 (converted to continuous time 

using the strategy in Section 5.1.4)

DeepHit
(Lee et al., 2018)
Example 2.3.1

Nnet-survival 
(Gensheimer and 

Narasimhan, 2019)
Example 2.3.2

Kaplan-Meier estimator
(Kaplan and Meier, 1958)

& Nelson-Aalen estimator
(Nelson, 1969; Aalen 1978)

Example 2.3.3
(These estimators can be 

converted from each other)

Kernel 
Kaplan-Meier 

estimator
(Beran, 1981)
Section 4.1

Deep kernel 
survival 
analysis

(Chen, 2020)
Section 4.2

Survival kernets (Chen, 2022)
Section 4.3

Deep 
proportional 

hazards models
Section 3

(parametric & 
semiparametric)

DeepSurv
(Faraggi and Simon, 

1995; Katzman et 
al., 2018)

Section 3.3

Cox model
(Cox, 1972)

Accelerated 
failure time 

models
(Prentice and 
Kalbfleisch, 

1979)
Section 5.1.2

Figure 1.1: An overview of the models we cover in detail in Sections 2 to 5. One model
being the child of another means that the child model could be represented (possibly
with a known approximation) by the parent model. Note that when interpreting
this diagram, two non-overlapping models could still possibly represent the same
underlying time-to-event outcome distribution. For example, deep extended hazard
models (Zhong et al., 2021) and survival kernets (Chen, 2024) are capable of modeling
many of the same time-to-event outcome distributions. Note that we also cover
Cox-Time (Kvamme et al., 2019), which does not easily fit in the diagram; Cox-Time
is a generalization of the semiparametric model called DeepSurv (Faraggi and Simon,
1995; Katzman et al., 2018), but Cox-Time can also represent models that are not
deep extended hazard models.
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Separately, it is good to keep in mind that deep survival models that
we cover allow the modeler to flexibly choose a “base” neural network
to use with the model. For example, when working with tabular data,
the modeler could choose the base neural network to be a multilayer
perceptron. When working with images, the modeler could choose the
base neural network to be a convolutional neural network or a vision
transformer. And so forth. Such base neural networks could be chosen
to be arbitrarily complicated (e.g., we could use as many layers and as
many hidden nodes as we would like). Consequently, many deep survival
models could in theory be considered equally expressive in what sorts of
time-to-event outcomes they can model. However, in practice, training
these deep models often requires using standard neural network tricks
such as using early stopping, weight decay, dropout, etc. Roughly, we
would train these models with some regularization to prevent overfitting,
and how this regularization impacts different models then depends on
their different modeling assumptions.

We remark that the example models we chose to present in this
monograph are not necessarily the “best”. Instead, they were chosen
largely for pedagogical considerations and also to showcase some classes
of models that are quite different from one another. There are plenty
of other time-to-event prediction models (deep-learning-based or not)
that work well! By understanding the fundamental concepts in our
monograph, the reader should be well-equipped to understand many of
these other models. As a reminder, the surveys by Wang et al. (2019)
and Wiegrebe et al. (2023) provide fairly extensive listings of many
existing machine learning models for time-to-event prediction.

1.5 Examples of Topics Beyond the Scope of Our Monograph

To elaborate a bit more on our scope of coverage, our monograph focuses
on survival models for prediction that are estimated via maximum like-
lihood estimation in a neural network framework. We acknowledge that
many survival analysis methods were originally derived for the purpose
of statistical inference (e.g., reasoning about population-level quantities
and constructing confidence intervals for these quantities) rather than
for prediction, including the classical Kaplan-Meier estimator (Kaplan
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and Meier, 1958) and the Cox model (Cox, 1972). Our emphasis in this
monograph, however, is on learning survival models for prediction, as
this is what neural survival models currently are well-suited for. As
such, we typically will not cover how to address questions of statistical
inference. For readers interested in learning more about statistical infer-
ence with survival models, we point out that the various (text)books
mentioned in Section 1.1 cover statistical inference results for classical
models.3

Next, many survival models are learned in a manner that is funda-
mentally not based on maximum likelihood estimation. For example,
countdown regression (Avati et al., 2020) defines a score function to
optimize that does not correspond to the usual survival likelihood used
in the literature. Meanwhile, Chapfuwa et al. (2018) train a survival
model using adversarial learning (with a generative adversarial network,
Goodfellow et al., 2014) rather than maximum likelihood. As another
example, random survival forests (Ishwaran et al., 2008) are trained in
a greedy manner, where one cannot easily write down a global objective
function that is being optimized.

In fact, many decision tree survival models are not optimized in a
neural network framework at all, such as the aforementioned random
survival forests (Ishwaran et al., 2008) as well as XGBoost (Chen and
Guestrin, 2016) (note that the official implementation of XGBoost
supports survival analysis), optimal survival trees (Bertsimas et al.,
2022), or optimal sparse survival trees (Zhang et al., 2024). While it is
possible to set up learning a decision tree survival model in a neural
network framework (Sun and Qiu, 2023), at the time of writing, this
line of research appears to still be in early development.

For ease of exposition, we do not cover latent variable models
for survival analysis (e.g., Nagpal et al. 2021a; Nagpal et al. 2021b;
Manduchi et al. 2022; Moon et al. 2022; Chen et al. 2024). These
particular models build on the ideas we present in this monograph
and further use tools not covered in this monograph, notably that of

3As a concrete example, the textbook by Klein and Moeschberger (2003) routinely
explains how to construct confidence intervals for various estimated quantities, such as
confidence intervals for survival functions obtained from the Kaplan-Meier estimator
(see Section 4.3 of their book) and the Cox model (see Section 8.8 of their book).
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variational inference (e.g., Blei et al. 2017). We think that a reader
who understands the fundamentals of our monograph and of variational
inference should be well-versed in understanding latent variable models
for survival analysis.

1.6 Preliminaries

Before we move onto other sections, we go over some prerequisite
knowledge that we will assume that the reader is familiar with. We
then explain how we view neural networks and the notation that we use
throughout the rest of the monograph. At the end of this section, we
provide links to some available software packages and to our companion
code repository for this monograph.

1.6.1 Prerequisites

We assume that the reader knows calculus, introductory probability and
statistics, and the basics of machine learning, especially neural networks,
including how to code them up and optimize them in standard neural
network software (e.g., PyTorch, Paszke et al., 2019, TensorFlow, Abadi
et al., 2015, JAX, Bradbury et al., 2018). For example, we assume
that the reader knows how to run minibatch gradient descent using
a standard neural network optimizer (e.g., Adam, Kingma and Ba,
2015). For a primer on neural networks, see, for instance, the interactive
textbook Dive into Deep Learning by Zhang et al. (2023).4

In terms of neural network architectures that the reader should
already know to understand our monograph, we have intentionally tried
to keep this listing short:

• (Sections 2 to 5 and the first half of Section 6) The reader should
know multilayer perceptrons for classification and regression (cor-
responding to the case where raw input data are fixed-length
feature vectors). For example, the reader should know that soft-
max activation yields a probability distribution, and that the
function defined by an inner product f(x; θ) := x⊤θ for x, θ ∈ Rd

4https://D2L.ai
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is a special case of a multilayer perceptron. (Note that we present
the material in a general manner where the raw inputs need not
be fixed-length feature vectors.)

• (Second half of Section 6) In the latter half of Section 6, in addition
to multilayer perceptrons, the reader should also know recurrent
neural networks (RNNs). RNNs enable us to work with variable-
length time series as raw inputs.5

1.6.2 How We View Neural Networks

As we mentioned in Section 1.4, deep survival models that we cover
all depend on a base neural network. By analogy, if we were tackling a
classification problem with k classes using deep learning, then the stan-
dard strategy is to specify a base neural network (such as a multilayer
perceptron) and then we feed the output of the base neural network to
a linear layer (also called a full-connected layer or a dense layer) with k
output nodes and softmax activation (so that the output of the overall
network consists of predicted probabilities of the k classes).6 Then when
we learn the network, we use a classification loss function (e.g., cross
entropy loss). The final linear layer added with k output nodes and
softmax activation is referred to as a “prediction head”. If instead of
classification, we were looking at a regression problem (predicting a
single real number), then we could set the prediction head to be a linear
layer with 1 output node and no nonlinear activation.

When working with deep survival models for time-to-event pre-
diction, the idea is the same. We first specify a base neural network.
Afterward, to get the overall network to predict a time-to-event outcome,
it is as simple as choosing a “survival layer” at the end (to serve as
the prediction head) and using an appropriate survival loss. Depending
on the survival layer chosen, there are restrictions on what the output
of the base neural network is. For example, when we cover the Cox

5While we do not explicitly cover nor assume that the reader knows transformers,
we point out that transformers can also handle variable-length inputs (so that in our
coverage, RNNs can actually be replaced by transformers).

6This strategy would require the base neural network to output some number
of nodes that should be at least k (if it is less than k, then we would have trouble
representing all k classes).
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proportional hazards model, we will see that the base neural network
should be set to output a single real number (which could be interpreted
as a risk score), and there is actually no additional layer to add. The
loss function is then specified a particular way for model training using
these “risk scores”.

Every survival model we cover could be thought of as a different
possible survival layer to use as the prediction head. Each model comes
with a loss function. For the models we cover, the loss function will
always be a negative log likelihood loss with possibly some other loss
terms added, depending on the model.

Extremely importantly, we will typically not spell out details of how
to set the base neural network aside from what we require of its output,
meaning that we usually intentionally leave the specific architecture
choices up to the modeler. We do this precisely because standard tricks
can be used for how to choose the base neural network (as we mentioned
above, we could choose a multilayer perceptron when working with
tabular data, a convolutional neural network or a vision transformer
when working with images, etc). This also means that advances in neural
network technology that are not specific to time-to-event prediction
could also trivially be incorporated. For example, if we were to work
with multimodal data such as the raw inputs being both images and
text, then we could choose the base neural network to be based off a
model such as CLIP (Radford et al., 2021). An important implication is
that when we cover an existing deep survival model in detail, even if the
original authors of the model provided architecture details in their paper,
we omit the architecture details that are not essential to understanding
the design of their overall model.

Another reason why we do not state very specific neural network
architectures to use is because the technology has rapidly been changing!
The latest trends in neural network architectures today might be out of
fashion tomorrow. To complicate matters, depending on the dataset used
in a time-to-event prediction task, which specific architecture works the
best might vary, and also which neural network optimizer we should use
and with what learning schedule might also vary. Our monograph does
not dwell on these engineering details, which are important in practice
but are not needed in understanding the core high-level concepts.
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1.6.3 Notation

We typically use uppercase letters (e.g., X) to denote random variables
and lowercase letters (e.g., x) to denote deterministic quantities such
as constants or specific realized values of random variables. Functions
could either be uppercase or lowercase, where we have tried to stick
to common conventions used in survival analysis literature (e.g., the
so-called conditional survival function is represented by uppercase S).
Bold letters (e.g., f) are usually used to represent parametric functions
such as neural networks. We also frequently use the notation [m] :=
{1, 2, . . . ,m}, where m is a positive integer. When we use the “log”
function, we always mean natural log.

Optimization problems regularly appear in the monograph. When
we write θ̂ := arg minθ L(θ), where L is a loss function with parameter
variable θ, this minimization would be carried out using (some variant
of) minibatch gradient descent and, technically, we are usually not
finding a solution that achieves the global minimum.

1.6.4 Software Packages and Datasets

As our exposition assumes that the reader is familiar with standard
neural network software that have developer communities that primarily
work in Python, we list some Python survival analysis packages in
Table 1.1. This list is not exhaustive. We list packages for both deep and
non-deep survival models since we think that trying both is important
in practice. Per package, we list some (not all) of the models and
evaluation metrics implemented. We anticipate that over time, many
of these packages will add functionality. Overall, the current state of
software packages that support deep survival models is a bit scattered:
no single package is—in our opinion—sufficiently comprehensive, and at
the time of writing, some packages have not been regularly maintained.

Currently, the packages in Table 1.1 do not implement all the models
that we cover in detail. SODEN (Tang et al., 2022b), deep kernel survival
analysis (Chen, 2020), survival kernets (Chen, 2024), and Dynamic-
DeepHit (Lee et al., 2019) are not currently included in the software
packages in Table 1.1, but their code is available from the original
authors; see the links in Table 1.2.
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Table 1.1: Some software packages used for survival analysis/time-to-event predic-
tion. Models in blue and evaluation metrics in red are ones that we cover in detail in
this monograph.

Package Link Some supported methods (not exhaustive)

scikit-survival
(Pölsterl, 2020)

https://github.com/
sebp/scikit-survival

Kaplan-Meier estimator1, Nelson-Aalen es-
timator2, Cox model3, various survival tree
ensemble methods including random sur-
vival forests4, concordance index5, time-
dependent concordance index (truncated)6,
time-dependent AUC7, Brier score8

lifelines
(Davidson-Pilon,
2019)

https://github.com/
CamDavidsonPilon/
lifelines

Kaplan-Meier estimator1, Nelson-Aalen es-
timator2, Cox model3 and regularized vari-
ants, accelerated failure time (AFT) mod-
els9, concordance index5

xgboost
(Chen and
Guestrin, 2016)

https://github.com/
dmlc/xgboost

XGBoost supports using Cox and acceler-
ated failure time loss functions

glmnet_python
(Simon et al.,
2011)

https://github.com/
bbalasub1/glmnet_
python

Cox model3 and regularized variants; this
is the official port of glmnet from R

pycox
(Kvamme et al.,
2019)

https://github.com/
havakv/pycox

unified PyTorch implementations of
DeepSurv10, Cox-Time11, Nnet-survival12,
DeepHit13, N-MTLR14, time-dependent
concordance index (not truncated)15,
Brier score8

pysurvival
(Fotso et al.,
2019)

https://github.com/
square/pysurvival

N-MTLR implementation by original
author14, random survival forests4

auton-survival
(Nagpal et al.,
2022b)

https://github.
com/autonlab/
auton-survival

DeepSurv10, Deep Survival Machines16,
Deep Cox Mixtures17

SurvivalEVAL
(Qi et al., 2024a)

https://github.com/
shi-ang/SurvivalEVAL

concordance index5, Brier score8,
D-calibration18, margin18 and pseudo-
observation19 MAE scores

torchsurv
(Monod et al.,
2024)

https://github.com/
Novartis/torchsurv

Cox model3, Weibull AFT model9, concor-
dance index5, time-dependent AUC7, Brier
score8

1Kaplan and Meier (1958) 2Nelson (1969) and Aalen (1978) 3Cox (1972) 4Ishwaran et al. (2008)
5Harrell et al. (1982) 6Uno et al. (2011) 7Uno et al. (2007) and Hung and Chiang (2010)
8Graf et al. (1999) 9Prentice and Kalbfleisch (1979) 10Faraggi and Simon (1995) and Katzman et al. (2018)
11Kvamme et al. (2019) 12Gensheimer and Narasimhan (2019) 13Lee et al. (2018) 14Fotso (2018)
15Antolini et al. (2005) 16Nagpal et al. (2021a) 17Nagpal et al. (2021b) 18Haider et al. (2020)
19Qi et al. (2023)
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Table 1.2: Some models that we cover that are not currently implemented in the
packages in Table 1.1.

Model Link

Deep kernel survival analysis (Chen, 2020) https://github.com/georgehc/dksa

Survival kernets (Chen, 2024) https://github.com/georgehc/survival-kernets

SODEN (Tang et al., 2022b) https://github.com/jiaqima/SODEN

Dynamic-DeepHit (Lee et al., 2019) https://github.com/chl8856/Dynamic-DeepHit

In terms of publicly available survival datasets, the pycox software
package comes with datasets that are all sufficiently large for learning
neural network models (mostly in the thousands of data points along
with one dataset with roughly 3 million points). The scikit-survival
and lifelines packages also come with datasets; some are a bit small
though (a few hundred or fewer points).

Companion code repository. To help readers with starting to work
with deep survival analysis models in Python, we provide Python code
that accompanies our monograph in the following code repository:

https://github.com/georgehc/survival-intro

This repository includes sample code for every model and every eval-
uation metric that we discuss in detail. Our code shows how to train
different deep survival models, use them to predict time-to-event out-
comes, and evaluate the quality of the predictions using some standard
evaluation metrics. Our code is primarily in the form of Jupyter note-
books, which include a mix of code cells and explanations for different
parts of the code. As we progress through the monograph, we point to
specific Jupyter notebooks in our code repository for readers interested
in seeing how concepts we cover get translated into code.

Our code has been written with pedagogy in mind. We stick to using
standard PyTorch conventions, and we have written our notebooks at
a level that exposes the main neural net optimization loop (minibatch
gradient descent) and highlights where base neural networks appear in
various deep survival models. Our code aims to make various prepro-
cessing and model training steps more transparent, so that if one wants
to modify any part of these, doing so should be straightforward.
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Moreover, for ease of exposition, our notebooks that accompany
Sections 2 through 5 all use the same standard dataset SUPPORT
(Knaus et al., 1995), for which we predict the time until death of
severely ill hospitalized patients with various diseases.7 Our notebooks
that accompany Section 6 use the PBC dataset (Fleming and Harrington,
1991), which is on predicting the time until death and the time until
transplantation of patients with primary biliary cirrhosis of the liver;
here, death and transplantation are viewed as competing events where
we only observe whichever one happens first for a training patient (or
alternatively, if neither has happened for a training patient, then we at
least know the last check-up time with the patient).

Importantly, in our Jupyter notebooks, we do not extensively op-
timize hyperparameters for any particular deep survival model to try
to push the prediction performance of the model to be as good as
possible. Thus, the final evaluation scores obtained in our notebooks
should not be interpreted as the best possible scores achievable by the
different models we implement. Furthermore, our code is not written
to be “production-grade” with, for instance, extensive sanity checks or
unit tests.

Lastly, we anticipate occasionally updating our code notebooks to
accommodate updates to software packages, to improve exposition or
clarity, or to fix bugs that are discovered. The latest version will be
available at the GitHub link provided above.

7For these particular code notebooks, we also provide an example of how to
modify the code to work with different data, with the concrete example being training
on the Rotterdam tumor bank dataset (Foekens et al., 2000) and then testing on the
German Breast Cancer Study Group dataset (Schumacher et al., 1994); these two
datasets are on predicting survival times of breast cancer patients.

Full text available at: http://dx.doi.org/10.1561/2200000114



References

Aalen, O. O. and S. Johansen. (1978). “An empirical transition matrix
for non-homogeneous Markov chains based on censored observations”.
Scandinavian Journal of Statistics: 141–150.

Aalen, O. O. (1978). “Nonparametric inference for a family of counting
processes”. The Annals of Statistics. 6(4): 701–726.

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M.
Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P.
Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. (2015).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems. url: https://www.tensorflow.org/.

Allison, P. D. (1982). “Discrete-time methods for the analysis of event
histories”. Sociological Methodology. 13: 61–98.

Angelopoulos, A. N. and S. Bates. (2023). “A gentle introduction to con-
formal prediction and distribution-free uncertainty quantification”.
Foundations and Trends® in Machine Learning. 16(4): 494–591.

Antolini, L., P. Boracchi, and E. Biganzoli. (2005). “A time-dependent
discrimination index for survival data”. Statistics in Medicine. 24(24):
3927–3944.

164

Full text available at: http://dx.doi.org/10.1561/2200000114

https://www.tensorflow.org/


References 165

Avati, A., T. Duan, S. Zhou, K. Jung, N. H. Shah, and A. Y. Ng. (2020).
“Countdown regression: Sharp and calibrated survival predictions”.
In: Uncertainty in Artificial Intelligence. PMLR. 145–155.

Bacaër, N. (2011). A Short History of Mathematical Population Dy-
namics. Vol. 618. Springer.

Beran, R. (1981). “Nonparametric regression with randomly censored
survival data”. Technical report, University of California, Berkeley.

Bertsimas, D., J. Dunn, E. Gibson, and A. Orfanoudaki. (2022). “Opti-
mal survival trees”. Machine Learning. 111(8): 2951–3023.

Blanche, P., M. W. Kattan, and T. A. Gerds. (2019). “The c-index is
not proper for the evaluation of-year predicted risks”. Biostatistics.
20(2): 347–357.

Blanche, P., A. Latouche, and V. Viallon. (2013). “Time-dependent
AUC with right-censored data: a survey”. Risk Assessment and
Evaluation of Predictions: 239–251.

Blei, D. M., A. Kucukelbir, and J. D. McAuliffe. (2017). “Variational
inference: A review for statisticians”. Journal of the American Sta-
tistical Association. 112(518): 859–877.

Boag, J. W. (1949). “Maximum likelihood estimates of the proportion of
patients cured by cancer therapy”. Journal of the Royal Statistical
Society Series B: Statistical Methodology. 11(1): 15–53.

Böhmer, P. E. (1912). “Theorie der unabhängigen Wahrscheinlichkeiten”.
In: Rapports Memoires et Proces verbaux de Septieme Congres In-
ternational dActuaires Amsterdam. Vol. 2. 327–343.

Bommasani, R. et al. (2021). “On the opportunities and risks of foun-
dation models”. arXiv preprint arXiv:2108.07258.

Box-Steffensmeier, J. M. and B. S. Jones. (2004). Event History Model-
ing: A Guide for Social Scientists. Cambridge University Press.

Bradbury, J., R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D.
Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-
Milne, and Q. Zhang. (2018). JAX: composable transformations of
Python+NumPy programs. Version 0.3.13. url: http://github.com/
jax-ml/jax.

Breslow, N. (1972). Discussion of the paper by D R Cox (1972). Journal
of the Royal Statistical Society, Series B. 34(2):216–217.

Full text available at: http://dx.doi.org/10.1561/2200000114

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax


166 References

Brown, C. C. (1975). “On the use of indicator variables for study-
ing the time-dependence of parameters in a response-time model”.
Biometrics. 31(4): 863–872.

Buolamwini, J. and T. Gebru. (2018). “Gender shades: Intersectional
accuracy disparities in commercial gender classification”. In: Con-
ference on Fairness, Accountability and Transparency. PMLR. 77–
91.

Candès, E., L. Lei, and Z. Ren. (2023). “Conformalized survival anal-
ysis”. Journal of the Royal Statistical Society Series B: Statistical
Methodology. 85(1): 24–45.

Chagny, G. and A. Roche. (2014). “Adaptive and minimax estimation
of the cumulative distribution function given a functional covariate”.
Electronic Journal of Statistics. 8(2): 2352–2404.

Chapelle, O. (2014). “Modeling delayed feedback in display advertis-
ing”. In: ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 1097–1105.

Chapfuwa, P., S. Assaad, S. Zeng, M. J. Pencina, L. Carin, and R.
Henao. (2021). “Enabling counterfactual survival analysis with bal-
anced representations”. In: Proceedings of the Conference on Health,
Inference, and Learning. 133–145.

Chapfuwa, P., C. Li, N. Mehta, L. Carin, and R. Henao. (2020). “Survival
cluster analysis”. In: Proceedings of the ACM Conference on Health,
Inference, and Learning. 60–68.

Chapfuwa, P., C. Tao, C. Li, C. Page, B. Goldstein, L. C. Duke, and
R. Henao. (2018). “Adversarial time-to-event modeling”. In: Inter-
national Conference on Machine Learning. PMLR. 735–744.

Chen, G. H. (2019). “Nearest neighbor and kernel survival analysis:
Nonasymptotic error bounds and strong consistency rates”. In: In-
ternational Conference on Machine Learning. PMLR. 1001–1010.

Chen, G. H. (2020). “Deep kernel survival analysis and subject-specific
survival time prediction intervals”. In: Machine Learning for Health-
care Conference. PMLR. 537–565.

Chen, G. H. (2023). “A General Framework for Visualizing Embedding
Spaces of Neural Survival Analysis Models Based on Angular Infor-
mation”. In: Conference on Health, Inference, and Learning. PMLR.
440–476.

Full text available at: http://dx.doi.org/10.1561/2200000114



References 167

Chen, G. H. (2024). “Survival Kernets: Scalable and Interpretable Deep
Kernel Survival Analysis with an Accuracy Guarantee”. Journal of
Machine Learning Research. 25(40): 1–78.

Chen, G. H., L. Li, R. Zuo, A. Coston, and J. C. Weiss. (2024). “Neural
topic models with survival supervision: Jointly predicting time-to-
event outcomes and learning how clinical features relate”. Artificial
Intelligence in Medicine.

Chen, G. H. and D. Shah. (2018). “Explaining the Success of Nearest
Neighbor Methods in Prediction”. Foundations and Trends® in
Machine Learning. 10(5-6): 337–588.

Chen, R. T., Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. (2018).
“Neural ordinary differential equations”. In: Advances in Neural
Information Processing Systems.

Chen, T. and C. Guestrin. (2016). “XGBoost: A scalable tree boosting
system”. In: ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 785–794.

Chilinski, P. and R. Silva. (2020). “Neural likelihoods via cumulative
distribution functions”. In: Conference on Uncertainty in Artificial
Intelligence. PMLR. 420–429.

Chung, C.-F., P. Schmidt, and A. D. Witte. (1991). “Survival analysis:
A survey”. Journal of Quantitative Criminology. 7: 59–98.

Ciampi, A., R. S. Bush, M. Gospodarowicz, and J. E. Till. (1981).
“An approach to classifying prognostic factors related to survival
experience for non-Hodgkin’s lymphoma patients: Based on a series
of 982 patients: 1967–1975”. Cancer. 47(3): 621–627.

Collett, D. (2023). Modelling Survival Data in Medical Research, Fourth
Edition. Chapman and Hall/CRC.

Cover, T. and P. Hart. (1967). “Nearest neighbor pattern classification”.
IEEE Transactions on Information Theory. 13(1): 21–27.

Cox, D. R. (1972). “Regression models and life-tables”. Journal of the
Royal Statistical Society: Series B. 34(2): 187–202.

Cox, D. R. and D. Oakes. (1984). Analysis of Survival Data. CRC press.
Craig, E., C. Zhong, and R. Tibshirani. (2021). “Survival stacking:

casting survival analysis as a classification problem”. arXiv preprint
arXiv:2107.13480.

Full text available at: http://dx.doi.org/10.1561/2200000114



168 References

Cui, Y., M. R. Kosorok, E. Sverdrup, S. Wager, and R. Zhu. (2023).
“Estimating heterogeneous treatment effects with right-censored
data via causal survival forests”. Journal of the Royal Statistical
Society Series B: Statistical Methodology. 85(2): 179–211.

Curth, A., C. Lee, and M. van der Schaar. (2021). “SurvITE: Learn-
ing heterogeneous treatment effects from time-to-event data”. In:
Advances in Neural Information Processing Systems.

Daley, D. J. and D. Vere-Jones. (2003). An Introduction to the Theory
of Point Processes: Volume I: Elementary Theory and Methods.
Springer.

Daley, D. J. and D. Vere-Jones. (2008). An Introduction to the Theory of
Point Processes: Volume II: General Theory and Structure. Springer.

Damera Venkata, N. and C. Bhattacharyya. (2022). “When to Intervene:
Learning Optimal Intervention Policies for Critical Events”. In:
Advances in Neural Information Processing Systems.

Danks, D. and C. Yau. (2022). “Derivative-based neural modelling of
cumulative distribution functions for survival analysis”. In: Interna-
tional Conference on Artificial Intelligence and Statistics. PMLR.
7240–7256.

Davidson-Pilon, C. (2019). “lifelines: survival analysis in Python”. Jour-
nal of Open Source Software. 4(40): 1317.

Do, H., Y. Chang, Y. S. Cho, P. Smyth, and J. Zhong. (2023). “Fair
Survival Time Prediction via Mutual Information Minimization”.
In: Machine Learning for Healthcare Conference.

Downey, A. B. (2011). Think stats. O’Reilly Media, Inc.
Du, N., H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and

L. Song. (2016). “Recurrent marked temporal point processes: Em-
bedding event history to vector”. In: ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 1555–1564.

Duchi, J., T. Hashimoto, and H. Namkoong. (2022). “Distributionally
robust losses for latent covariate mixtures”. Operations Research.

Duchi, J. C. and H. Namkoong. (2021). “Learning models with uniform
performance via distributionally robust optimization”. The Annals
of Statistics. 49(3): 1378–1406.

Dybowski, R. and V. Gant. (2001). Clinical Applications of Artificial
Neural Networks. Cambridge University Press.

Full text available at: http://dx.doi.org/10.1561/2200000114



References 169

Ebeling, C. E. (2019). An Introduction to Reliability and Maintainability
Engineering. Waveland Press.

Ezquerro, A., B. Cancela, and A. López-Cheda. (2023). “On the Relia-
bility of Machine Learning Models for Survival Analysis When Cure
Is a Possibility”. Mathematics. 11(19): 4150.

Faraggi, D. and R. Simon. (1995). “A neural network model for survival
data”. Statistics in Medicine. 14: 73–82.

Fine, J. P. and R. J. Gray. (1999). “A proportional hazards model for
the subdistribution of a competing risk”. Journal of the American
Statistical Association. 94(446): 496–509.

Fleming, T. R. and D. P. Harrington. (1991). Counting Processes and
Survival Analysis. John Wiley & Sons.

Foekens, J. A., H. A. Peters, M. P. Look, H. Portengen, M. Schmitt,
M. D. Kramer, N. Brünner, F. Jänicke, M. E. Meijer-van Gelder, S. C.
Henzen-Logmans, W. L. J. van Putten, and J. G. M. Klijn. (2000).
“The urokinase system of plasminogen activation and prognosis in
2780 breast cancer patients”. Cancer Research. 60(3): 636–643.

Földes, A. and L. Rejtö. (1981). “Strong uniform consistency for non-
parametric survival curve estimators from randomly censored data”.
The Annals of Statistics. 9(1): 122–129.

Fornili, M., F. Ambrogi, P. Boracchi, and E. Biganzoli. (2014). “Piece-
wise exponential artificial neural networks (PEANN) for modeling
hazard function with right censored data”. In: Computational Intel-
ligence Methods for Bioinformatics and Biostatistics: 10th Interna-
tional Meeting, CIBB 2013, Nice, France, June 20-22, 2013, Revised
Selected Papers 10. Springer. 125–136.

Fotso, S. (2018). “Deep neural networks for survival analysis based on
a multi-task framework”. arXiv preprint arXiv:1801.05512.

Fotso, S. et al. (2019). PySurvival: Open source package for Survival
Analysis modeling. url: https://www.pysurvival.io/.

Gensheimer, M. F. and B. Narasimhan. (2019). “A scalable discrete-time
survival model for neural networks”. PeerJ. 7: e6257.

Gerds, T. A. and M. W. Kattan. (2021). Medical Risk Prediction Models:
With Ties to Machine Learning. Chapman and Hall/CRC.

Full text available at: http://dx.doi.org/10.1561/2200000114

https://www.pysurvival.io/


170 References

Glass, D. V. (1963). “John Graunt and his Natural and political ob-
servations”. Proceedings of the Royal Society of London. Series B,
Biological Sciences. 159(974): 2–37.

Gneiting, T. and A. E. Raftery. (2007). “Strictly proper scoring rules,
prediction, and estimation”. Journal of the American Statistical
Association. 102(477): 359–378.

Goldstein, M., X. Han, A. Puli, A. Perotte, and R. Ranganath. (2020).
“X-CAL: Explicit calibration for survival analysis”. In: Advances in
Neural Information Processing Systems.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, and Y. Bengio. (2014). “Generative adversarial
nets”. In: Advances in Neural Information Processing Systems.

Gordon, L. and R. A. Olshen. (1985). “Tree-structured survival analysis”.
Cancer Treatment Reports. 69(10): 1065–1069.

Graf, E. (1998). “Explained variation measures for survival data”. PhD
thesis.

Graf, E., C. Schmoor, W. Sauerbrei, and M. Schumacher. (1999). “As-
sessment and comparison of prognostic classification schemes for
survival data”. Statistics in Medicine. 18(17-18): 2529–2545.

Graunt, J. (1662). Natural and Political Observations Mentioned in a
Following Index and Made upon the Bills of Mortality.

Gray, R. J. (1988). “A class of K-sample tests for comparing the
cumulative incidence of a competing risk”. The Annals of Statistics:
1141–1154.

Groha, S., S. M. Schmon, and A. Gusev. (2020). “A general framework
for survival analysis and multi-state modelling”. arXiv preprint
arXiv:2006.04893.

Haider, H., B. Hoehn, S. Davis, and R. Greiner. (2020). “Effective Ways
to Build and Evaluate Individual Survival Distributions”. Journal
of Machine Learning Research. 21(85): 1–63.

Halley, E. (1693). “An estimate of the degrees of the mortality of
mankind; drawn from curious tables of the births and funerals at the
city of Breslaw; with an attempt to ascertain the price of annuities
upon lives”. Philosophical Transactions of the Royal Society of
London. 17: 596–610.

Full text available at: http://dx.doi.org/10.1561/2200000114



References 171

Harrell, F. E. (2015). Regression Modeling Strategies: With Applications
to Linear Models, Logistic and Ordinal regression, and Survival
Analysis. Spinger.

Harrell, F. E., R. M. Califf, D. B. Pryor, K. L. Lee, and R. A. Rosati.
(1982). “Evaluating the yield of medical tests”. Journal of the Amer-
ican Medical Association. 247(18): 2543–2546.

Harrell Jr, F. E., K. L. Lee, and D. B. Mark. (1996). “Multivariable
prognostic models: issues in developing models, evaluating assump-
tions and adequacy, and measuring and reducing errors”. Statistics
in Medicine. 15(4): 361–387.

Hashimoto, T., M. Srivastava, H. Namkoong, and P. Liang. (2018).
“Fairness without demographics in repeated loss minimization”. In:
International Conference on Machine Learning. PMLR. 1929–1938.

Hawkes, A. G. (1971). “Spectra of some self-exciting and mutually
exciting point processes”. Biometrika. 58(1): 83–90.

He, K., X. Zhang, S. Ren, and J. Sun. (2015). “Delving deep into
rectifiers: Surpassing human-level performance on imagenet classifi-
cation”. In: Proceedings of the IEEE International Conference on
Computer Vision. 1026–1034.

Hochreiter, S. and J. Schmidhuber. (1997). “Long short-term memory”.
Neural Computation. 9(8): 1735–1780.

Hu, S. and G. H. Chen. (2024). “Fairness in Survival Analysis with
Distributionally Robust Optimization”. Journal of Machine Learning
Research. 25(246): 1–85.

Hubbard, D., B. Rostykus, Y. Raimond, and T. Jebara. (2021). “Beta
survival models”. In: Survival Prediction - Algorithms, Challenges
and Applications. PMLR. 22–39.

Huh, W. T., R. Levi, P. Rusmevichientong, and J. B. Orlin. (2011).
“Adaptive data-driven inventory control with censored demand based
on Kaplan-Meier estimator”. Operations Research. 59(4): 929–941.

Hung, H. and C.-T. Chiang. (2010). “Estimation methods for time-
dependent AUC models with survival data”. Canadian Journal of
Statistics. 38(1): 8–26.

Ishwaran, H., U. B. Kogalur, E. H. Blackstone, and M. S. Lauer. (2008).
“Random survival forests”. The Annals of Applied Statistics. 2(3):
841–860.

Full text available at: http://dx.doi.org/10.1561/2200000114



172 References

Jeanselme, V., N. Agarwal, and C. Wang. (2024). “Review of Language
Models for Survival Analysis”. In: AAAI 2024 Spring Symposium
on Clinical Foundation Models.

Jeanselme, V., B. Tom, and J. Barrett. (2022). “Neural Survival Clus-
tering: Non-parametric mixture of neural networks for survival clus-
tering”. In: Conference on Health, Inference, and Learning. PMLR.
92–102.

Jeanselme, V., C. H. Yoon, B. Tom, and J. Barrett. (2023). “Neural
Fine-Gray: Monotonic neural networks for competing risks”. In:
Conference on Health, Inference, and Learning. PMLR. 379–392.

Kalbfleisch, J. D. and R. L. Prentice. (1980). The Statistical Analysis
of Failure Time Data. John Wiley & Sons.

Kaplan, E. L. and P. Meier. (1958). “Nonparametric estimation from
incomplete observations”. Journal of the American Statistical Asso-
ciation. 53(282): 457–481.

Katzman, J. L., U. Shaham, A. Cloninger, J. Bates, T. Jiang, and Y.
Kluger. (2018). “DeepSurv: personalized treatment recommender
system using a Cox proportional hazards deep neural network”.
BMC Medical Research Methodology. 18(24).

Keya, K. N., R. Islam, S. Pan, I. Stockwell, and J. Foulds. (2021). “Eq-
uitable allocation of healthcare resources with fair survival models”.
In: Proceedings of the 2021 SIAM International Conference on Data
Mining (SDM). SIAM. 190–198.

Kingma, D. P. and J. Ba. (2015). “Adam: A method for stochastic
optimization”. In: International Conference for Learning Represen-
tations.

Klein, J. P. and M. L. Moeschberger. (2003). Survival Analysis: Tech-
niques for Censored and Truncated Data, Second Edition. Springer.

Klein, J. P., H. C. Van Houwelingen, J. G. Ibrahim, and T. H. Scheike.
(2016). Handbook of Survival Analysis. CRC Press.

Kleinbaum, D. G. and M. Klein. (2012). Survival Analysis: A Self-
Learning Text, Third Edition. Springer.

Full text available at: http://dx.doi.org/10.1561/2200000114



References 173

Knaus, W. A., F. E. Harrell, J. Lynn, L. Goldman, R. S. Phillips, A. F.
Connors, N. V. Dawson, W. J. Fulkerson, R. M. Califf, N. Desbiens,
P. Layde, R. K. Oye, P. E. Bellamy, R. B. Hakim, and D. P. Wagner.
(1995). “The SUPPORT prognostic model: Objective estimates of
survival for seriously ill hospitalized adults”. Annals of Internal
Medicine. 122(3): 191–203.

Kovalev, M. S., L. V. Utkin, and E. M. Kasimov. (2020). “SurvLIME: A
method for explaining machine learning survival models”. Knowledge-
Based Systems.

Koziol, J. A. and Z. Jia. (2009). “The concordance index C and the
Mann–Whitney parameter Pr(X > Y ) with randomly censored
data”. Biometrical Journal: Journal of Mathematical Methods in
Biosciences. 51(3): 467–474.

Kpotufe, S. and N. Verma. (2017). “Time-accuracy tradeoffs in ker-
nel prediction: controlling prediction quality”. Journal of Machine
Learning Research.

Krzyziński, M., M. Spytek, H. Baniecki, and P. Biecek. (2023).
“SurvSHAP(t): Time-dependent explanations of machine learning
survival models”. Knowledge-Based Systems.

Kvamme, H., Ø. Borgan, and I. Scheel. (2019). “Time-to-Event Predic-
tion with Neural Networks and Cox Regression”. Journal of Machine
Learning Research. 20(129): 1–30.

Kvamme, H. and Ø. Borgan. (2021). “Continuous and discrete-time
survival prediction with neural networks”. Lifetime Data Analysis.
27(4): 710–736.

Lambert, J. and S. Chevret. (2016). “Summary measure of discrim-
ination in survival models based on cumulative/dynamic time-
dependent ROC curves”. Statistical Methods in Medical Research.
25(5): 2088–2102.

Lee, C., J. Yoon, and M. Van Der Schaar. (2019). “Dynamic-DeepHit: A
deep learning approach for dynamic survival analysis with competing
risks based on longitudinal data”. IEEE Transactions on Biomedical
Engineering. 67(1): 122–133.

Lee, C., W. Zame, J. Yoon, and M. Van Der Schaar. (2018). “DeepHit:
A deep learning approach to survival analysis with competing risks”.
In: Proceedings of the AAAI Conference on Artificial Intelligence.

Full text available at: http://dx.doi.org/10.1561/2200000114



174 References

Lei, J., M. G’Sell, A. Rinaldo, R. J. Tibshirani, and L. Wasserman.
(2018). “Distribution-free predictive inference for regression”. Jour-
nal of the American Statistical Association. 113(523): 1094–1111.

Lei, J., A. Rinaldo, and L. Wasserman. (2015). “A conformal prediction
approach to explore functional data”. Annals of Mathematics and
Artificial Intelligence. 74(1-2): 29–43.

Li, J. and S. Ma. (2013). Survival Analysis in Medicine and Genetics.
CRC Press.

Li, M., H. Namkoong, and S. Xia. (2021). “Evaluating model perfor-
mance under worst-case subpopulations”. In: Advances in Neural
Information Processing Systems.

Liu, W., R. Lin, Z. Liu, L. Xiong, B. Schölkopf, and A. Weller. (2021).
“Learning with hyperspherical uniformity”. In: International Con-
ference On Artificial Intelligence and Statistics. PMLR. 1180–1188.

Lundberg, S. M. and S.-I. Lee. (2017). “A unified approach to inter-
preting model predictions”. In: Advances in Neural Information
Processing Systems.

Machin, D., Y. B. Cheung, and M. Parmar. (2006). Survival Analysis:
A Practical Approach. John Wiley & Sons.

Manduchi, L., R. Marcinkevičs, M. C. Massi, T. Weikert, A. Sauter, V.
Gotta, T. Müller, F. Vasella, M. C. Neidert, M. Pfister, B. Stieltjes,
and J. E. Vogt. (2022). “A deep variational approach to clustering
survival data”. In: International Conference on Learning Represen-
tations.

Mann, N. R., R. E. Schafer, and N. D. Singpurwalla. (1974). Methods
for Statistical Analysis of Reliability and Life Data. John Wiley &
Sons.

Mantel, N. (1966). “Evaluation of survival data and two new rank order
statistics arising in its consideration”. Cancer Chemotherapy Reports.
50(3): 163–170.

Molnar, C. (2022). Interpretable Machine Learning. A Guide for Making
Black Box Models Explainable. 2nd ed. url: https://christophm.
github.io/interpretable-ml-book.

Monod, M., P. Krusche, Q. Cao, B. Sahiner, N. Petrick, D. Ohlssen,
and T. Coroller. (2024). TorchSurv: A Lightweight Package for Deep
Survival Analysis. doi: https://doi.org/10.48550/arXiv.2404.10761.

Full text available at: http://dx.doi.org/10.1561/2200000114

https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://doi.org/https://doi.org/10.48550/arXiv.2404.10761


References 175

Moon, I., S. Groha, and A. Gusev. (2022). “SurvLatent ODE: A Neural
ODE based time-to-event model with competing risks for longitu-
dinal data improves cancer-associated Venous Thromboembolism
(VTE) prediction”. In: Machine Learning for Healthcare Conference.

Nagpal, C., M. Goswami, K. Dufendach, and A. Dubrawski. (2022a).
“Counterfactual phenotyping with censored time-to-events”. In:
ACM SIGKDD Conference on Knowledge Discovery and Data Min-
ing. 3634–3644.

Nagpal, C., X. Li, and A. Dubrawski. (2021a). “Deep survival machines:
Fully parametric survival regression and representation learning for
censored data with competing risks”. IEEE Journal of Biomedical
and Health Informatics. 25(8): 3163–3175.

Nagpal, C., W. Potosnak, and A. Dubrawski. (2022b). “auton-survival:
An open-source package for regression, counterfactual estimation,
evaluation and phenotyping with censored time-to-event data”. In:
Machine Learning for Healthcare Conference. PMLR. 585–608.

Nagpal, C., S. Yadlowsky, N. Rostamzadeh, and K. Heller. (2021b).
“Deep Cox mixtures for survival regression”. In: Machine Learning
for Healthcare Conference. PMLR. 674–708.

Namboodiri, K. and C. M. Suchindran. (2013). Life Table Techniques
and Their Applications. Academic Press.

Nelson, W. (1969). “Hazard plotting for incomplete failure data”. Jour-
nal of Quality Technology. 1: 27–52.

Papadopoulos, H., K. Proedrou, V. Vovk, and A. Gammerman. (2002).
“Inductive confidence machines for regression”. In: European Con-
ference on Machine Learning. Springer. 345–356.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E.
Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. (2019). “PyTorch: An Imperative
Style, High-Performance Deep Learning Library”. In: Advances in
Neural Information Processing Systems.

Peng, Y. and B. Yu. (2021). Cure Models: Methods, Applications, and
Implementation. CRC Press.

Full text available at: http://dx.doi.org/10.1561/2200000114



176 References

Pölsterl, S. (2020). “scikit-survival: A Library for Time-to-Event Anal-
ysis Built on Top of scikit-learn”. Journal of Machine Learning
Research. 21(1): 8747–8752.

Prentice, R. L. and J. D. Kalbfleisch. (1979). “Hazard rate models with
covariates”. Biometrics: 25–39.

Prentice, R. L. and S. Zhao. (2019). The Statistical Analysis of Multi-
variate Failure Time Data: A Marginal Modeling Approach. CRC
Press.

Putzel, P., H. Do, A. Boyd, H. Zhong, and P. Smyth. (2021). “Dynamic
survival analysis for EHR data with personalized parametric distri-
butions”. In: Machine Learning for Healthcare Conference. PMLR.
648–673.

Qi, S.-A., N. Kumar, M. Farrokh, W. Sun, L.-H. Kuan, R. Ranganath,
R. Henao, and R. Greiner. (2023). “An Effective Meaningful Way to
Evaluate Survival Models”. In: International Conference on Machine
Learning. Vol. 202. PMLR. 28244–28276.

Qi, S.-a., W. Sun, and R. Greiner. (2024a). “SurvivalEVAL: A Com-
prehensive Open-Source Python Package for Evaluating Individual
Survival Distributions”. In: Proceedings of the 2023 AAAI Fall
Symposia. Vol. 2. No. 1.

Qi, S.-a., Y. Yu, and R. Greiner. (2024b). “Conformalized Survival
Distributions: A Generic Post-Process to Increase Calibration”. In:
International Conference on Machine Learning. Vol. 235. Proceedings
of Machine Learning Research. PMLR. 41303–41339.

R Core Team. (2021). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing. Vienna, Austria.
url: https://www.R-project.org/.

Radford, A., J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G.
Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever.
(2021). “Learning transferable visual models from natural language
supervision”. In: International Conference on Machine Learning.
PMLR. 8748–8763.

Rahman, M. M. and S. Purushotham. (2022). “Fair and Interpretable
Models for Survival Analysis”. In: ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 1452–1462.

Full text available at: http://dx.doi.org/10.1561/2200000114

https://www.R-project.org/


References 177

Raykar, V. C., H. Steck, B. Krishnapuram, C. Dehing-oberije, and P.
Lambin. (2007). “On Ranking in Survival Analysis: Bounds on the
Concordance Index”. In: Advances in Neural Information Processing
Systems.

Ribeiro, M. T., S. Singh, and C. Guestrin. (2016). ““Why should I
trust you?” Explaining the predictions of any classifier”. In: ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining. 1135–1144.

Rindt, D., R. Hu, D. Steinsaltz, and D. Sejdinovic. (2022). “Survival
regression with proper scoring rules and monotonic neural networks”.
In: International Conference on Artificial Intelligence and Statistics.
PMLR. 1190–1205.

Samuel, A. L. (1959). “Some studies in machine learning using the game
of checkers”. IBM Journal of Research and Development.

Schumacher, M., G. Bastert, H. Bojar, K. Huebner, M. Olschewski,
W. Sauerbrei, C. Schmoor, C. Beyerle, R. L. Neumann, and H. F.
Rauschecker. (1994). “Randomized 2 x 2 trial evaluating hormonal
treatment and the duration of chemotherapy in node-positive breast
cancer patients. German Breast Cancer Study Group.” Journal of
Clinical Oncology. 12(10): 2086–2093.

Selvin, S. (2008). Survival Analysis for Epidemiologic and Medical
Research. Cambridge University Press.

Shchur, O., M. Biloš, and S. Günnemann. (2020). “Intensity-Free Learn-
ing of Temporal Point Processes”. In: International Conference on
Learning Representations.

Shen, X., J. Elmer, and G. H. Chen. (2023). “Neurological Prognosti-
cation of Post-Cardiac-Arrest Coma Patients Using EEG Data: A
Dynamic Survival Analysis Framework with Competing Risks”. In:
Machine Learning for Healthcare Conference. PMLR. 667–690.

Simon, N., J. Friedman, T. Hastie, and R. Tibshirani. (2011). “Regular-
ization paths for Cox’s proportional hazards model via coordinate
descent”. Journal of Statistical Software. 39(5): 1.

Steinberg, E., J. A. Fries, Y. Xu, and N. Shah. (2024). “MOTOR: A
Time-To-Event Foundation Model For Structured Medical Records”.
In: International Conference on Learning Representations.

Full text available at: http://dx.doi.org/10.1561/2200000114



178 References

Sun, X. and P. Qiu. (2023). “NSOTree: Neural Survival Oblique Tree”.
arXiv preprint arXiv:2309.13825.

Tang, W., K. He, G. Xu, and J. Zhu. (2022a). “Survival Analysis via
Ordinary Differential Equations”. Journal of the American Statistical
Association.

Tang, W., J. Ma, Q. Mei, and J. Zhu. (2022b). “SODEN: A Scalable
Continuous-Time Survival Model through Ordinary Differential
Equation Networks”. Journal of Machine Learning Research. 23(34):
1–29.

Tibshirani, R. (1997). “The lasso method for variable selection in the
Cox model”. Statistics in Medicine. 16(4): 385–395.

Tutz, G. and M. Schmid. (2016). Modeling Discrete Time-to-Event Data.
Springer.

Uno, H., T. Cai, M. J. Pencina, R. B. D’Agostino, and L.-J. Wei.
(2011). “On the C-statistics for evaluating overall adequacy of risk
prediction procedures with censored survival data”. Statistics in
Medicine. 30(10): 1105–1117.

Uno, H., T. Cai, L. Tian, and L.-J. Wei. (2007). “Evaluating prediction
rules for t-year survivors with censored regression models”. Journal
of the American Statistical Association. 102(478): 527–537.

Van der Maaten, L. and G. Hinton. (2008). “Visualizing data using
t-SNE”. Journal of Machine Learning Research. 9(11).

Vershynin, R. (2018). High-Dimensional Probability: An Introduction
with Applications in Data Science. Cambridge University Press.

Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,
S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat,
Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M.
Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy
1.0 Contributors. (2020). “SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python”. Nature Methods. 17: 261–272. doi:
10.1038/s41592-019-0686-2.

Vovk, V., A. Gammerman, and G. Shafer. (2005). Algorithmic Learning
in a Random World. Springer Science & Business Media.

Full text available at: http://dx.doi.org/10.1561/2200000114

https://doi.org/10.1038/s41592-019-0686-2


References 179

Wang, P., Y. Li, and C. K. Reddy. (2019). “Machine learning for survival
analysis: A survey”. ACM Computing Surveys (CSUR). 51(6): 1–36.

Wang, T. and P. Isola. (2020). “Understanding Contrastive Represen-
tation Learning through Alignment and Uniformity on the Hyper-
sphere”. In: International Conference on Machine Learning.

Wiegrebe, S., P. Kopper, R. Sonabend, and A. Bender. (2023).
“Deep Learning for Survival Analysis: A Review”. arXiv preprint
arXiv:2305.14961.

Xu, J. and Y. Peng. (2014). “Nonparametric cure rate estimation with
covariates”. Canadian Journal of Statistics. 42(1): 1–17.

Xu, Y., N. Ignatiadis, E. Sverdrup, S. Fleming, S. Wager, and N.
Shah. (2023). “Treatment heterogeneity with survival outcomes”.
In: Handbook of Matching and Weighting Adjustments for Causal
Inference. Chapman and Hall/CRC. 445–482.

Yanagisawa, H., K. Miyaguchi, and T. Katsuki. (2022). “Hierarchical
lattice layer for partially monotone neural networks”. In: Advances
in Neural Information Processing Systems.

Yu, C.-N., R. Greiner, H.-C. Lin, and V. Baracos. (2011). “Learning
patient-specific cancer survival distributions as a sequence of de-
pendent regressors”. In: Advances in Neural Information Processing
Systems.

Zhang, A., Z. C. Lipton, M. Li, and A. J. Smola. (2023). Dive into Deep
Learning. Cambridge University Press.

Zhang, Q., A. Lipani, O. Kirnap, and E. Yilmaz. (2020). “Self-attentive
Hawkes process”. In: International Conference on Machine Learning.
PMLR. 11183–11193.

Zhang, R., R. Xin, M. Seltzer, and C. Rudin. (2024). “Optimal Sparse
Survival Trees”. In: International Conference on Artificial Intelli-
gence and Statistics. PMLR. 352–360.

Zhang, W. and J. C. Weiss. (2022). “Longitudinal fairness with censor-
ship”. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence.

Zhong, Q., J. Mueller, and J.-L. Wang. (2022). “Deep learning for the
partially linear Cox model”. The Annals of Statistics. 50(3): 1348–
1375.

Full text available at: http://dx.doi.org/10.1561/2200000114



180 References

Zhong, Q., J. W. Mueller, and J.-L. Wang. (2021). “Deep extended
hazard models for survival analysis”. In: Advances in Neural Infor-
mation Processing Systems.

Zou, H. and T. Hastie. (2005). “Regularization and variable selection
via the elastic net”. Journal of the Royal Statistical Society Series
B. 67(2): 301–320.

Zuo, S., H. Jiang, Z. Li, T. Zhao, and H. Zha. (2020). “Transformer
Hawkes process”. In: International Conference on Machine Learning.
PMLR. 11692–11702.

Zupan, B., J. Demšar, M. W. Kattan, J. R. Beck, and I. Bratko. (2000).
“Machine learning for survival analysis: a case study on recurrence
of prostate cancer”. Artificial Intelligence in Medicine. 20(1): 59–75.

Full text available at: http://dx.doi.org/10.1561/2200000114




