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Abstract

Since interference is the main performance-limiting factor in most wire-
less networks, it is crucial to characterize the interference statistics.
The two main determinants of the interference are the network geom-
etry (spatial distribution of concurrently transmitting nodes) and the
path loss law (signal attenuation with distance). For certain classes of
node distributions, most notably Poisson point processes, and attenu-
ation laws, closed-form results are available, for both the interference
itself as well as the signal-to-interference ratios, which determine the
network performance.

This monograph presents an overview of these results and gives an
introduction to the analytical techniques used in their derivation. The
node distribution models range from lattices to homogeneous and clus-
tered Poisson models to general motion-invariant ones. The analysis
of the more general models requires the use of Palm theory, in par-
ticular conditional probability generating functionals, which are briefly
introduced in the appendix.

Full text available at: http://dx.doi.org/10.1561/1300000015



Contents

1 Introduction 1

1.1 Interference Characterization 4
1.2 Signal-to-Interference-Plus-Noise

Ratio and Outage 5

2 Interference in Regular Networks 7

2.1 General Deterministic Networks 7
2.2 One-Dimensional Lattices 8
2.3 Two-Dimensional Lattices 13
2.4 Outage 17

3 Interference in Poisson Networks 21

3.1 Shot Noise 22
3.2 Interference Distribution 23
3.3 SIR Distribution and Outage 34
3.4 Extremal Behavior 35
3.5 Power Control 36
3.6 Spread-Spectrum Communication 42
3.7 CSMA and Interference Cancellation 43
3.8 Interference Correlation 48

ix

Full text available at: http://dx.doi.org/10.1561/1300000015



4 Interference in Poisson Cluster Networks 61

4.1 Interference Characterization 65
4.2 Outage Analysis 71

5 Interference in General Motion-Invariant Networks 75

5.1 System Model 75
5.2 Properties of the Interference 77
5.3 Bounds on the Interference Distribution 79
5.4 Asymptotic Behavior of the Interference Distribution 85
5.5 Examples and Simulation Results 94

6 Conclusions 99

A Mathematical Preliminaries 103

A.1 Point Process Theory 103
A.2 Palm Distributions 112
A.3 Stable Distributions 116

Acknowledgments 119

Notations and Acronyms 121

References 123

Full text available at: http://dx.doi.org/10.1561/1300000015



1

Introduction

Due to the scarcity of the wireless spectrum, it is not possible in large
wireless networks to separate concurrent transmissions completely in
frequency. Some transmissions will necessarily occur at the same time
in the same frequency band, separated only in space, and the sig-
nals from many undesired or interfering transmitters are added to
the desired transmitter’s signal at a receiver. This interference can be
mitigated quite efficiently in systems with centralized control, where
a base station or access point can coordinate the channelization and
the power levels of the individual terminals, or where sophisticated
multi-user detection or interference cancellation schemes can be imple-
mented. However, many emerging classes of wireless systems, such as
ad hoc and sensor networks, mesh networks, cognitive networks, and
cellular networks with multihop coverage extensions, do not permit the
same level of centralized control but require a more distributed resource
allocation. For example, channel access schemes are typically based on
carrier sensing, and power control is performed on a pairwise rather
than a network-wide basis, if at all. In these networks, interference is
not tightly controllable and subject to considerable uncertainty. Con-
sequently, interference is the main performance-limiting factor in most

1
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2 Introduction

emerging wireless networks, and the statistical characterization of the
interference power becomes critical.

In this monograph, we derive results for the interference statistics in
large wireless networks that are subject to one or several sources of ran-
domness, including the node distribution, the channel access scheme,
and the channel or fading states. There are two main factors that shape
the interference: First, since interfering signals are only separated in
space, the spatial distribution of the concurrently transmitting nodes;
second, since the amount of interference caused depends on the signal
attenuation with distance, the path loss law. The first factor consists of
two parts, the node distribution on the one hand and the channel access
scheme (MAC) on the other. It is their combination that determines the
distribution of transmitting nodes. For example, even if the nodes are
very randomly distributed, a good MAC scheme will ensure a certain
spacing between concurrent transmitters or, better, between receivers
and interferers; hence the distribution of the transmitters at any given
moment may be fairly regular. Since the performance of a network is
determined by the signal-to-interference-and-noise ratios (SINRs) or, in
the pure interference-limited case, by the signal-to-interference ratios
(SIRs), the SIR distributions are also derived, usually in the form of
outage probabilities P(SINR < θ), which correspond to the cumulative
distributions.

The exact characterization of the interference or SIRs for general
node distributions and MAC schemes is a very challenging problem.
Since our focus in this monograph is on analytical results and on the
underlying mathematical techniques, the network models are partly
chosen for their tractability, not necessarily because they are the most
realistic ones. The analytical methods are best illustrated when applied
to simple models, and the results derived will provide bounds for more
elaborate ones, in particular when the models considered are in some
sense extreme, such as lattice networks on one end and “completely
spatially irregular” networks (Poisson networks) on the other. Also,
general design principles and guidelines can be inferred more easily
from analytical results, and it is our hope the analytical techniques are
described in enough detail to enable the reader to apply them to other
types of networks.

Full text available at: http://dx.doi.org/10.1561/1300000015



3

We restrict ourselves to the statistics of the (aggregate) interference
power when the sources of randomness include the node distribution,
the fading states of the channels, and the channel access scheme. We
will not be discussing the amplitude statistics of the interference, which
depend strongly on the type of signaling employed and may, condi-
tioned on the power, be well approximated by a Gaussian or not [22].
With Gaussian codebooks, the interference amplitude is certainly con-
ditionally Gaussian, and if it is treated as noise at the receiver, its
variance or power is the relevant statistic for the achievable link per-
formance. While not optimum in general, treating interference as noise
is, in fact, optimum in the Gaussian weak interference or noisy interfer-
ence regime [42]. In this regime, sophisticated multi-user detectors do
not perform better than simple single-user detectors, and the expected
value of log2(1 + SINR) is the actual (bandwidth-normalized) capacity.

This monograph is organized as follows:
Section 2 derives the interference for networks with deterministic node
placement, in particular lattices. Section 3 is devoted to Poisson net-
works, where the nodes are distributed as a Poisson point process
(PPP). The PPP model is by far the most popular, thanks to its ana-
lytical tractability. It lends itself for extended analyses, including the
impact of power control and spread-spectrum and interference cancel-
lation techniques, and the derivation of interference correlation coeffi-
cients. The following two sections provide generalizations to the Poisson
model. In Section 4, the interference properties in clustered Poisson
networks are studied, while Section 5 is devoted to general motion-
invariant node distributions.

Sections 2 and 3 only require a basic knowledge in probability, while
the results in Sections 4 and 5 were obtained using Palm theory, in
particular conditional probability generating functionals. The appendix
provides a brief introduction of the mathematical techniques used in
this monograph.

The results and analytical techniques derived in this monograph will
hopefully serve as guidelines for the design of large wireless systems
with random user locations. They provide answers to such questions as
how the interference statistics and outage probabilities are affected by
the user density and distribution, the path loss law, the fading statistics,
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4 Introduction

and power control. In turn, given system constraints such as outage or
rate requirements, they permit the tuning of the network parameters
for optimum performance.

1.1 Interference Characterization

The main quantity of interest is the (cumulated) interference. Measured
at a point y ∈ Rd it is given by

I(y) =
∑
x∈T

Pxhx`(‖y − x‖), (1.1)

where T ⊂ Rd denotes the set of all transmitting nodes, Px the transmit
power of node x, hx the (power) fading coefficient, and ` the path loss
function, assumed to depend only on the distance ‖y − x‖ from node x

to the point y.
In a large wireless system, the unknowns are T , hx, and perhaps

Px. The locations of the interfering nodes, together with the path loss
law, determine the interference to first order. The impact of fading is
smaller but certainly non-negligible, as we shall see. So, in essence, it is
the network geometry or, more precisely, the interference geometry, that
determines the distribution of the interference. The geometry consists of
the underlying node distribution that, together with the channel access
scheme, determines the locations of the interfering nodes, and the path
loss law, which determines the strength of the interfering power given
the distance.

The nodes may be arranged deterministically, for example in a lat-
tice, or in a random fashion, in which case the uncertainty in the nodes’
locations is usually represented by a stochastic point process Φ on R2 or
R3 or a subset thereof. Assuming that the point process is simple, i.e.,
there are no two nodes at the same position, we can write the point pro-
cess as a random set, Φ = {x1,x2, . . . ,xN}, where the (possibly random)
total number of nodes N may be finite or infinite. At any moment in
time, the MAC scheme selects a subset of nodes as transmitters. This
makes T in (1.1) and, in turn, the interference, time dependent. In
some cases, the interference is stationary, both in time and space, so
neither a time index nor a spatial location needs to be specified, and
we can simply talk about the distribution of the interference I.
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1.2 Signal-to-Interference-Plus-Noise Ratio and Outage 5

Throughout this monograph, unless otherwise specified, we will
assume unit transmit powers at all nodes and the fading to be iid
with E(h) = 1.

1.2 Signal-to-Interference-Plus-Noise Ratio and Outage

1.2.1 Definitions

The performance of a wireless network critically depends on the signal-
to-interference-plus-noise (SINR) levels at the receivers.

Definition 1.1(Signal-to-interference-plus noise ratio (SINR)).
The SINR for a receiver placed at the origin o in the two- or three-
dimensional Euclidean space is

SINR =
S

W + I
, (1.2)

where S is the desired signal power, W is the noise power, and I the
interference power given by (1.1).

For a fixed modulation and coding scheme and with interference
treated as noise, e.g., by using a simple linear receiver, a well accepted
model for packetized transmissions is that they succeed if the SINR
exceeds a certain threshold θ. So we define the success probability as
follows:

Definition 1.2 (Transmission success probability).

ps(θ) = P(SINR > θ). (1.3)

Its complement 1 − ps is the outage probability, which is the same as
the cumulative distribution function (CDF) of the SINR, and we may
express the achievable rate (with interference treated as noise) of a link
as

E log2(1 + SINR) = −
∫

log2(1 + x)dps(x),
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6 Introduction

assuming that the interference amplitude is Gaussian. In the weak-
interference regime, this expression is the actual bandwidth-normalized
capacity [42].

1.2.2 Outage in Rayleigh Fading

In the case of Rayleigh fading, the desired signal power S is exponen-
tially distributed. Assuming ES = 1,

ps(θ) = P(S > θ(W + I)) = exp(−θW )︸ ︷︷ ︸
pWs

·exp(−θI)︸ ︷︷ ︸
pIs

,

which shows that the success probability is the product of two factors,
a noise term pWs , exp(−θW ) that does not depend on the interference,
and an interference term pIs , exp(−θI) that does not depend on the
noise. This allows a significant simplification of outage analyses since
the joint impact of noise and interference is captured by the product of
the success probabilities in the noiseless and the interference-free cases.
Moreover, since exp(−θI) is the Laplace transform of the interference
evaluated at θ, i.e.,

pIs(θ) = LI(s)
∣∣
s=θ

, (1.4)

the interference component of the success probability can be calculated
by determining the Laplace transform of I, as was noted in [3, 31, 54].
It turns out that this is easier in many cases than determining the
distribution. In other words, the SIR distribution when S is Rayleigh
fading is known for more types of networks than the distribution of just
the interference itself.
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