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Abstract

Wireless multi-hop networks have become an important part of many modern
communication systems. Opportunistic routing aims to overcome the deficien-
cies of conventional routing on wireless multi-hop networks, by specifically
utilizing wireless broadcast opportunities and receiver diversity. Opportunis-
tic routing algorithms, which are specifically optimized to incorporate into the
routing decisions a model of wireless transmission, take advantage of schedul-
ing, multi-user, and receiver diversity gains and result in significant reduction
in the expected cost of routing per packet. The ability of the algorithm to
take advantage of the aspects of wireless transmission, however, depends on
the scalability and the additional overhead associated with the opportunistic
routing as well as the availability of side information regarding wireless chan-
nel statistics, topology, etc. This manuscript sheds light on the performance
gains associated with incorporating into the routing strategy the nature of
wireless transmission and devises algorithms and solutions to realize these
gains in a scalable, practical, and low cost manner.

This manuscript first provides an overview of various opportunistic
distance-vector algorithms that have been developed to incorporate wireless
transmission and routing opportunities. Furthermore, an optimal opportunis-
tic distance metric is proposed whose construction follows from a dynamic
programming characterization of the problem. The performance of the opti-
mal routing is then examined against the performance of several other known
routing algorithms. To allow for a scalable and distributed solution, the dis-
tributed computation of this optimal distance-metric is provided. The perfor-
mance of a distributed implementation of the optimal opportunistic routing
algorithm is also examined via simulation.

In addition to the construction of the opportunistic schemes in central-
ized and distributed fashions, this manuscript also addresses how learning the
wireless medium can be efficiently incorporated in the structure of routing
algorithm. Finally, this manuscript examines the dynamic congestion-based
distance metric and its performance against other congestion aware solutions
in the literature.

T. Javidi and E. Van Buhler. Opportunistic Routing in Wireless Networks.
Foundations and TrendsR© in Networking, vol. 11, no. 1-2, pp. 1–137, 2016.
DOI: 10.1561/1300000021.
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1
Introduction

Wireless multi-hop networks have become an important part of many
modern communication systems. Some of the earliest examples were
military communication networks utilizing wireless relays in remote
areas. More recently, many industries have used wireless multi-hop net-
works to create a multitude of fascinating tools and systems. Take, for
example, the health-care industry. Body-area networks utilize many
small sensors that transmit data wirelessly from node to node until
it reaches a data collection node. This design allows for a robust low
power network, keeping the sensors small and low cost. The same goes
for environmental monitoring, such as distributed water quality sens-
ing. The ever-growing Internet of Things (IoT) brings mesh networks
into the home with products such as ZigBee and many others. As data
collection and communication grows, it will be increasingly important
to maximally utilize the wireless resources.

Motivated by classical routing solutions in the Internet, conven-
tional routing attempts to find a fixed path along which the packets
are forwarded [46]. Such fixed path schemes fail to take advantage of the
broadcast nature and opportunities provided by the wireless medium,
and result in unnecessary packet retransmissions. To the best knowl-

2
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1.1. Overview and Organization 3

edge of the authors, the first articles that noticed the benefits of oppor-
tunistic receiver selection and selection diversity were those of Lott and
Teneketzis [36] and Larsson [34]. Much research interest followed and
several opportunistic routing algorithms were developed [56, 12, 27].
Later, in [37], Lott and Teneketzis further developed their framework
which unified many of the algorithms. In opportunistic routing, deci-
sions are made in an online manner by choosing the next relay based on
the actual transmission outcomes as well as a rank ordering of neighbor-
ing nodes. In other words, opportunistic routing mitigates the impact
of poor wireless links by exploiting the broadcast nature of wireless
transmissions and the path diversity.

The purpose of this manuscript is to provide the motivation for
opportunistic routing, and present several different algorithms which
achieve better performance, in most scenarios, than conventional short-
est path routing. For select algorithms, we’ll prove their properties and
examine their advantages and disadvantages through theory, examples,
and simulations.

1.1 Overview and Organization

We end the introduction with an overview of this study. In Chapter 2 we
take a closer look at opportunism and receiver diversity in the context
of wireless multi-hop networks. Examples are provided to further clarify
the concepts.

In Chapter 3, we bring to our focus the problem of opportunis-
tic routing in the multi-hop wireless network context. We start with
a background on the concept of distance-vector routing, which is the
basis of the algorithms studied in this manuscript. Then, using a prob-
abilistic description of wireless links, we cast opportunistic routing as a
distributed Markov decision problem (MDP) and introduce a stochas-
tic variant of distributed dynamic programming [6] which provides a
unifying framework for various versions of opportunistic routing such
as Selection Diversity Forwarding (SDF) [34], Geographic Random For-
warding (GeRaF) [56], Stochastic Routing [36] and EXOR [12] where
the variations are due to the authors’ choices of routing cost.

Full text available at: http://dx.doi.org/10.1561/1300000021



4 Introduction

In many multi-hop wireless networks, the centralized algorithm de-
scribed in Chapter 3 is not practical to implement. In Chapter 4, we
examine three algorithms which compute the optimal distance metric
in an asynchronous distributed fashion. Theoretical foundations for the
algorithms are provided.

In Chapter 5, we address the problem of opportunistically rout-
ing packets in a wireless multi-hop network when zero or erroneous
knowledge of transmission success probabilities and network topology
is available. Using a reinforcement learning framework, we introduce
a distributed adaptive opportunistic routing algorithm (d-AdaptOR)
that minimizes the expected average cost for routing a packet from a
source node to a destination.

In Chapter 6, we embark upon the issue of congestion by contrasting
the opportunistic MDP-based schemes with some back-pressure oppor-
tunistic schemes [42]. We propose a modification of the MDP frame-
work to arrive at a congestion-aware policy called Opportunistic Rout-
ing with Congestion Diversity (ORCD) that exhibits significant delay
improvements over existing candidates in the literature [22]. While the
idea of combining back-pressure with shortest path computation is not
a new one, the exact form according to which ORCD (and its vari-
ants) integrate these concepts significantly differs from the addition of
the two measures proposed in [18] or constraining back-pressure rout-
ing to those nodes with a low number of hops [33]. Through extensive
simulations and numerical examples, we underline the advantages of
ORCD and its variants over existing solutions, while from a theoreti-
cal standpoint, we intuitively relate the structure of ORCD to that of
throughput optimal routing.

In Chapter 7, we describe an 802.11 compatible implementa-
tion for the various opportunistic routing protocols discussed in this
manuscript. This set of practical considerations becomes a vehicle to
verify and critique the channel models associated with opportunism
and receiver diversity. In particular, practical modification of the algo-
rithms such as opportunistic routing with partial receiver diversity and
equal power-rate allocation are shown to be sufficient.

Full text available at: http://dx.doi.org/10.1561/1300000021
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