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Abstract

We present a review of the problem of scheduled channel access in wire-
less networks with emphasis on ad hoc and sensor networks as opposed
to WiFi, cellular, and infrastructure-based networks. After a brief intro-
duction and problem definition, we examine in detail specific instances
of the scheduling problem. These instances differ from each other in a
number of ways, including the detailed network model and the objective
function or performance criteria. They all share the “layerless” view-
point that connects the access problem with the physical layer and,
occasionally, with the routing layer. This review is intended to provide
a reference point for the rich set of problems that arise in the allocation
of resources in modern and future networks.
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1

Introduction

This volume examines in some depth the fundamentals of the problem
of scheduling transmissions over a multi-user shared channel. The ori-
gins of this problem are found in the area of Multiple Access (MA)
[4, 35], where the traditional concept of simple “orthogonal” time-
division [20] was enriched through the ideas of random access (known,
more colloquially, as ALOHA [1, 32, 55]).

The original question was how to ensure the most productive use of
the channel (that is, maximize the total, or “sum” throughput) when
users have sporadic, “bursty”, need to transmit and cannot coordinate
their needs and actions amongst them. At the same time, the issue of
sharing a channel was examined at a deeply theoretical level through
an information-theoretic approach that aimed at determining the best
“joint” rates at which different users can transmit over the shared chan-
nel if they can design their codebooks jointly and transmit without
further coordination at the “protocol” level, that is without worrying
about when to transmit. The reason for the latter, and very important,
difference was that in the information-theoretic approach the sources
were not assumed to have “bursty” and sporadic need for the chan-
nel but were backlogged and simply needed to transmit all the time.
Of course, in that case, the receiver was assumed to be equipped with a

1
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2 Introduction

multi-user detector (a concept that was formalized much later through
the work of [71]) that was able to decode successfully the simultaneous
transmissions of all users.

The first approach, which has been more characteristic of the work
by what we call the “networking” community, has led to a large variety
of protocols and standards that try to achieve the goal of maximum
use of the channel through elaborate variations of practical exploitation
of possibilities, such as feedback, carrier sensing, storing unsuccessful
packets, often even relaying, etc. A large volume of literature exists
that documents the efforts in this direction, e.g., [24, 42, 45, 56, 58,
59, 61, 66, 67, 68] to sample a few. The second approach has seen a
similar voluminous body of work that has been mostly preoccupied
with determination of the Shannon capacity region in variations of the
shared channel model, such as pure multi-access, pure broadcast, relay,
and interference models (see e.g., [21, 22, 27, 41, 62, 72]).

In both cases, the two approaches have fallen short of their ultimate
goal due to the fundamentally complex nature of the problem. In the
first case the major difficulty arises from the “dimensionality” issue,
that is, the combinatorial nature of the problem, as the number of
users increases. In the second case, the difficulty lies in the tremendous
increase in analytical intractability of the Shannon-theoretic approach
as the channel model becomes more complicated and/or the number of
users increases.

The scheduling problem becomes more interesting and relevant to
practice when the two approaches are partially blended. In particular,
the first approach requires that transmissions from more than a sin-
gle user cannot co-exist successfully in the same time slot. However,
with multi-user detectors and by adjusting the transmission powers
and the bit rates it is possible for several users to be successful simul-
taneously. Thus the question is what subset of users should be acti-
vated in each time slot of a frame. It must, of course, be taken into
account that when more users are squeezed into the same slot their
individual transmission rates must be reduced in order for them to tol-
erate each-others interference (and/or their transmission powers must
be accordingly adjusted). Since the objective is to maximize bit/sec
rates rather than the, not so informative, packets/slot rates, a clear
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3

trade-off emerges. Is it preferable for more users to transmit simulta-
neously but at reduced individual rates or is it better to time-share
access by smaller sets of users that transmit, however, at higher indi-
vidual rates? The answer is not clear and it depends on the specific
environment, performance criterion, channel quality and gains, detec-
tor structure, modulation scheme, error control coding, etc.

In this volume, we follow this intermediate approach, more in the
line of what the community has been referring to as “cross-layer” or
“layerless” approach ([36, 40, 57, 63, 69]). Cross-layer approaches try
to exploit linkages between the OSI layers, while layerless approaches
consider, instead, the determination of variables of different layers
simultaneously. In this volume we adopt the basic networking view
of scheduling packet transmissions but, at the same time take into con-
sideration the bit-rates that correspond to multi-user reception capa-
bility through physical-layer models. The purpose of this volume is to
present a few samples of prior literature on the problem of schedul-
ing and then outline through detailed illustrations some specific results
that we have recently developed in addressing the problem in an inno-
vative way. It is by no means exhaustive. The main two overarching
ideas in our approach have been (i) to include physical-layer criteria
in the determination of the probability of successful transmission and
(ii) to opt for reducing the search space, rather than developing heuris-
tics, in the case of combinatorial optimization problems. That is, in
the “erasure” channel model (e.g., [19, 60, 70]), which has been gain-
ing increasing attention recently and in which the probability of packet
success is provided through a parameter value, we express this param-
eter value in terms of power, transmission bit-rate, and other variables
from traditional physical layer communication-theoretic analyses. Fur-
thermore, in the case of protocol of access optimization problems that
are purely of integer programming nature, we do not follow the alterna-
tive of inventing heuristic sub-optimal solutions but, rather, we insist
on rigorous optimization within the confines of a set of reduced solu-
tion space. We believe that the latter approach reveals insights that
intelligent heuristics often fail to provide.

The first formulation of the problem of scheduling for efficient access
to a shared channel, that we are aware of, appeared in [18]. A simple
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4 Introduction

collision channel model had been considered but with the possibility of
spatial re-use. That is, an “interference map” was assumed in terms of
a graph that described all the independent sets of nodes in the graph,
namely those sets of nodes that do not include “adjacent” nodes. The
objective was to determine the shortest length of a frame of slots that
would allow all nodes to transmit once in the frame without violating
the “interference” constraint imposed by the interference rules on the
graph. It was shown that the problem is NP-complete, and a distributed
heuristic was developed that showed decent performance compared
to the optimum that was computable in “small” instances of the
problem.

This problem was revisited in more generality through a continuous
approximation of the structure of the frame schedule in [26] where each
interference-free set of nodes could be activated for an arbitrary amount
of time and, again, the objective was the determination of the shortest
duration of a schedule that would accommodate a given demand. It
was shown that the continuous version of the problem could be solved
in polynomial time, but there was no characterization of the optimal
solution. A variation of this problem formulation that incorporated
some physical-layer attributes was studied in [10, 11, 12].

Subsequently there has been a great deal of variations of these for-
mulations that have focused mostly on heuristics and approximation
ratios. A totally new attack to the problem of scheduling was devel-
oped in [66] where, again for a graph-based model of constraint-node-
sets (i.e., sets of nodes that can transmit successfully at the same time),
the objective was to determine not a schedule anymore, but, rather, a
scheduling rule for these constraint-sets that guaranteed that if the
input load to the network could be accommodated without excessive
delays, then that rule of activation would assure that the delay objec-
tive would be met. The solution to this problem, which is intimately
related to the notion of stable throughput region in a network, and that
was the subject of the inaugural issue of the Foundations and Trends
in Networking series [23], came to be known as the back-pressure algo-
rithm and it has received extensive attention over the years with gen-
eralizations that include physical layer effects. In fact, the last section
in this volume includes a particular generalization of the back-pressure
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1.1 Network Model 5

result that introduces the notion of uncertainty in the knowledge of the
channel state [52].

In what follows we formulate a precise model for the sharing
of a common channel and examine several different variations of
the scheduling problem that include different optimization criteria
(e.g., proportional fairness), a minimum-time draining of the network
with an initial load, and an asymptotically optimal policy determina-
tion for a multicast version of the problem. Due to the combinato-
rial nature of the scheduling problem, we also discuss a method for
reducing the scheduling complexity. Finally, the general version of the
back-pressure algorithm with imperfect channel state information (as
alluded above) is presented and discussed.

The detailed work in the following sections represents research
performed by the authors that led to the Ph.D. dissertation of Dr.
Pantelidou and several recent journal publications and conference pre-
sentations. It is presented here in the general context of channel access
and in an integrated and unified way.

1.1 Network Model

We consider a wireless network of M , possibly mobile, nodes each of
which is equipped with a single transceiver (transmitter and receiver).
We denote by the set M = {1, . . . ,M} the set of all nodes in the net-
work. We also denote by L = {1, . . . ,L} the set of all links that can be
potentially established among the M network nodes. The number of
such links, L, can be as large as M × (M − 1). We consider a slotted-
time model where without loss of generality each slot t takes integral
values, i.e., t ∈ {0,1, . . .}. At time slot t, each network node n ∈M
transmits at a power level Pn(t). We denote by P(t) the vector of trans-
mission powers at every network node, i.e., P(t) = (Pn(t),∀n ∈M). We
assume that the power of the thermal noise is common for every node in
the network. This assumption is non-restrictive and is made merely to
simplify notation. We denote the power of the thermal noise by the vari-
able N0. Our results are valid also when the thermal noise is different at
the various network nodes. It is often taken to be the same at all nodes
for simplicity since it is not important and this will be the assumption
we also make throughout this volume. The process {G(t)}∞t=0 defines
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6 Introduction

the channel conditions between every pair of nodes in the network and
it is assumed to change only at the beginning of a time slot t. Specif-
ically, at time slot t the channel state G(t) = {G(n,m)(t), n,m ∈M}
gives the channel conditions between every pair of nodes n,m ∈M.
We assume that the channel follows a block fading model with block
length equal to the duration of a time slot. Hence, we assume that the
channel conditions are allowed to change only at the beginning of each
time slot and remain constant throughout the slot duration. The chan-
nel effects in our model can be due to node mobility, fading, pure path
loss, etc. We assume that the channel process takes values in a set G.

In certain sections of this volume we will assume that the channel is
time-invariant. This is not only to make the solution of the scheduling
instances tractable, but also to illustrate how the scheduling decisions
are affected by the underlying channel conditions. Furthermore, in the
rest of the volume, except for Section 5, we will ignore routing and
assume single-hop networks where the M network nodes are separated
in a set of sources of traffic, T , and a set of destinations of traffic, D,
such thatM = T ∪ D and T ∩ D = ∅. The single-hop network assump-
tion, albeit simplifying, is interesting and highly non-trivial since it
captures the fundamental problems that arise due to interference, when
multiple nodes attempt simultaneous channel access.

Depending on the optimization criterion, in the rest of this volume
we will assume three different cases, namely (a) sources that are sat-
urated and always have data to transmit whenever they are activated,
(b) sources with a finite amount of data traffic, and (c) sources with
bursty arrivals. We will also consider three different traffic types, namely
unicast traffic that originates from a single source and is destined to a
single destination, multicast traffic that originates from a single source
and is destined to multiple destinations, and anycast traffic that orig-
inates from a single source and is destined to any node within the set
of destinations.

1.2 A Criterion for Successful Transmission

The fact that the wireless medium is shared by the network nodes
poses limitations on the set of nodes that can concurrently transmit
successfully.
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1.2 A Criterion for Successful Transmission 7

In this volume, we incorporate these constraints on medium access
through the Signal to Interference plus Noise Ratio (SINR) criterion.
This model is of course approximate since it models the interference
as Gaussian noise. However, it is intuitive, reasonable, and increasingly
accurate as the number of interferers increases. We will say that a link
exists when the transmission powers of the network nodes are given by
the power vector P(t) = (Pn(t),n ∈M) and when a node n transmits
to node m (or that the transmission from n to m is successful) if the
ratio of the received signal power to the sum of the thermal noise and
the total interference at m exceeds a certain threshold γm, i.e.,

SINRP(t)
(n,m)(t) :=

Pn(t)G(n,m)(t)

N0 +
∑M

n′=1,n′ 6=nPn′(t)G(n′,m)(t)
≥ γm. (1.1)

The exact value of the SINR threshold γm depends on various fac-
tors, such as the transmission rate, the target probability of bit error,
the coding and modulation techniques employed at the transmission,
etc. In this volume, we will only consider the dependence of this thresh-
old on the transmission rate and assume that the rest of the parameters
affecting it are fixed. It is well-known that the maximum transmission
rate is an increasing function of the SINR threshold (see e.g., [25]).
This gives rise to the following trade-off: By lowering the transmission
rate, the corresponding value of the threshold decreases and hence more
transmissions can jointly satisfy the condition of (1.1). On the other
hand, by increasing the transmission rate the SINR threshold increases,
thereby restricting the number of nodes that can concurrently access
the channel successfully. Thus, it is not clear whether allowing more
concurrent transmissions (less time-sharing) at lower rates is prefer-
able to allowing fewer concurrent transmissions (more time-sharing) at
higher rates. Shedding light in this trade-off will be one of the main
objectives of this volume.

In this volume, we will consider this trade-off in a network where T
sources of traffic wish to access the wireless medium. Under this set-
ting, one extreme is to increase the threshold values so that only a sin-
gle source can successfully transmit at any given time, that is, as in a
Time Division Multiple Access (TDMA) fashion. Another extreme is to
decrease the thresholds to the maximum values that allow all sources to
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8 Introduction

successfully access the channel concurrently. In the latter case although
more sources access the channel simultaneously, their rates will be sig-
nificantly lower than the corresponding rates under TDMA operation.
However, since they transmit continuously rather than in a TDMA
fashion it is not clear how the long-term average rates of these two
schemes compare to each other. These two extreme cases of operation
will also be in the focus of this volume.

1.3 Organization of the Volume

The rest of the volume is organized as follows. In Section 2 we consider
the minimum-length scheduling problem in single-hop wireless networks
under unicast traffic. We present a rate control and scheduling policy
that operates under the objective to empty a finite amount of traffic
in the network queues in minimum time. We consider both the cases
of static and time-varying networks. Next, in Section 3 we make a dif-
ferent assumption on the network traffic and performance criterion. In
particular, we assume that the sources are sources of multicast traffic.
Furthermore, we assume that they are saturated, that is, they always
have data to send whenever they are activated. We obtain an on-line,
gradient-based rate and power control algorithm that maximizes the
overall network utility under this network setting. Since the schedul-
ing problem is combinatorially complex, in the sequel, in Section 4
we present an approach to reduce complexity by restricting the set of
possible scheduling and rate control decisions that the network con-
trol policy can take. In Section 5 we generalize the network topologies
we consider and focus on general, multi-hop wireless networks under
bursty arrivals. We consider the problem where the network control
policies do not have perfect knowledge of the underlying channel con-
ditions but take decisions only based on a, perhaps highly inaccurate,
estimate. We introduce a class of policies that maximizes the stable
throughput region of the network under channel uncertainty. Finally,
in Section 6 we present our conclusions.
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