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Abstract

The network calculus is a framework for the analysis of communication net-
works, which exploits that many computer network models become tractable
for analysis if they are expressed in a min-plus or max-plus algebra. In a
min-plus algebra, the network calculus characterizes amounts of traffic and
available service as functions of time. In a max-plus algebra, the network cal-
culus works with functions that express the arrival and departure times or the
required service time for a given amount of traffic. While the min-plus net-
work calculus is more convenient for capacity provisioning in a network, the
max-plus network calculus is more compatible with traffic control algorithms
that involve the computation of timestamps. Many similarities and relation-
ships between the two versions of the network calculus are known, yet they
are largely viewed as distinct analytical approaches with different capabili-
ties and limitations. We show that there exists a one-to-one correspondence
between the min-plus and max-plus network calculus, as long as traffic and
service are described by functions with real-valued domains and ranges. Con-
sequently, results from one version of the network calculus can be readily
applied for computations in the other version. The ability to switch between
min-plus and max-plus analysis without any loss of accuracy provides addi-
tional flexibility for characterizing and analyzing traffic control algorithms.
This flexibility is exploited for gaining new insights into link scheduling al-
gorithms that offer rate and delay guarantees to traffic flows.

J. Liebeherr. Duality of the Max-Plus and Min-Plus Network Calculus. Foundations and
Trends R© in Networking, vol. 11, no. 3-4, pp. 139–282, 2016.
DOI: 10.1561/1300000059.
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1
Introduction

Network calculus is a methodology for performance evaluation of communi-
cation networks that expresses the analysis of networks in a min-plus or max-
plus algebra. In these algebras, the conventional addition and multiplication
operations are replaced by the minimum or maximum operation, respectively,
and addition. On the one hand, algebras with a minimum or maximum oper-
ation have weaker properties than algebras endowed with an addition and a
multiplication. For instance, the minimum and the maximum do not have in-
verse operations. On the other hand, taking minimums and maximums creates
strong ordering properties that can be analytically exploited. Network algo-
rithms that involve sequencing of traffic, e.g., scheduling with a sorted queue,
or ordering of events, e.g., window flow control, can often be described by
linear systems in a min-plus or max-plus algebra, but are non-linear in an
algebra with addition and multiplication.

The deterministic analysis of networks by Cruz in [13, 14] and its applica-
tion to Generalized Processor Sharing scheduling by Parekh and Gallager in
[28, 29] mark the beginning of network calculus research. The research was
motivated by the emergence of communication networks that provide service
guarantees even in adversarial worst-case scenarios. Within a few years, re-
searchers recognized that non-traditional algebras, so-called dioids, for mod-

2
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3

elling discrete-event dynamic systems [3] can provide the foundation for a
systems theory for communication networks [1, 6, 8]. The dioid algebras are
applied to non-decreasing functions that represent cumulative arrival, depar-
ture and service processes in a network. The essence of the systems theory is
that the departure traffic at a network element can be characterized by a con-
volution of functions describing the cumulative arrivals and the available ser-
vice. The convolution operation is performed either in a min-plus or max-plus
dioid algebra, leading to the min-plus and max-plus versions of the network
calculus. Detailed models have been developed for many types of network
elements, such as buffered links with FIFO or more complex scheduling al-
gorithms, delay elements, traffic regulators, and many more. Comprehensive
discussions can be found in textbooks on the topic [7, 9].

Network calculus analysis can select either a min-plus or max-plus alge-
bra setting, yet, overwhelmingly, the literature presents derivations in a min-
plus framework. In such a setting, arrivals and departures are represented as
functions of time, where a function value F (t) represents the amount of ar-
riving or departing traffic until time t. This representation is convenient when
performing computations with multiplexed traffic flows, since an aggregate
of traffic flows that are characterized by functions F1(t), F2(t), . . . , FN (t)
is simply the sum

∑
j Fj(t). Expressions for multiplexed traffic flows are

needed when determining capacity requirements for a network, e.g., the max-
imum number of flows that can be supported in a network subject to given
service requirements. The representation of traffic by functions of time is less
ideal when describing network control algorithms that assign timestamps to
traffic. An example is a traffic regulator that determines the earliest time when
a packet can be admitted to a network, or a scheduling algorithm that assigns
deadlines for the departure time of packets. Obtaining timestamps from a
function of the form F (t) requires to solve an inverse problem. In a max-plus
framework, arrivals and departures are characterized by functions F (ν) that
give the arrival time or departure time of the ν-th bit or packet. For exam-
ple, at a traffic regulator, the timestamp that determines when the ν-th bit or
packet can be admitted is simply the value of the departure time function at ν.
On the other hand, expressions for multiplexed traffic in the max-plus algebra
are cumbersome (as we will see in §3).

Ideally, network analysis should be able to reconcile the advantages of the
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4 Introduction

min-plus and max-plus network calculus algebras. That is, it should be able
to employ functions F (ν) when working with network mechanisms involv-
ing timestamps and functions F (t) when multiplexing traffic. Such mix-and-
match computations require that the functions F (t) and F (ν) can be related
to each other. Mappings between expressions in the min-plus and max-plus
network calculus, and vice versa, exist in the literature (see §13), however,
since the mappings are (generally) not one-to-one, performing them comes
at a loss of accuracy. At present, the prevailing view is that “many concepts
[of the min-plus algebra] can be mirrored in the max-plus algebra,” [20, p.
63], but also that not every result in the min-plus algebra can be extended to
a max-plus setting [9, Remark 6.2.7] and that there is a lacking correspon-
dence between concepts in the min-plus and max-plus algebra [7, §1.10].
On the other hand, according to dioid theory, the underlying min-plus and
max-plus algebras of integer or real numbers are isomorphic [3, 21]. Thus,
the question arises why the isomorphism does not extend to the min-plus and
max-plus network calculus, which are based on these algebras? Our objective
is to explore this question. We find that there exists a one-to-one relationship
between the min-plus and max-plus network calculus, as long as both ap-
proaches are using functions that have a real-valued, that is, continuous-time
or continuous-space, domains. Some of the previously observed differences
between max-plus and min-plus analysis can be traced to the use of functions
with a discrete-valued domain. After establishing the duality between the two
versions of the network calculus, we proceed to characterize scheduling al-
gorithms with rate and delay guarantees by service curves of the network
calculus.

The remainder is structured as follows. In §2, we show that the max-plus
convolution operation emerges when we describe the departures at a work-
conserving link in terms of the arrivals and the link capacity. We observe
that the expression for the departures is sensitive to the choice of measur-
ing traffic in discrete units (bits, bytes, or packets) or by a real-valued met-
ric. In §3–8, we present a self-contained description of the max-plus network
calculus. In §9, we summarize the definitions and main results of the min-
plus network calculus, which are later used for comparisons between the two
network calculus versions. In §10, we show that the min-plus algebra and
max-plus algebra for non-decreasing functions endowed with a minimum (or
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5

maximum) and a convolution operation are isomorphic to each other. We use
the isomorphism in §11 to establish a duality of service curves, traffic en-
velopes, and performance bounds. In §12, we express scheduling algorithms
for rate guarantees in terms of the continuous-space max-plus network cal-
culus, and establish a connection between well-known scheduling algorithms
and expressions in the max-plus algebra. In §13, we discuss the related liter-
ature with a focus on prior work on the max-plus network calculus, existing
mappings between the min-plus and max-plus network calculus, and its rela-
tionship to lattice theory. We present conclusions in §14.
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