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ABSTRACT

With the fast expansion of communication networks and the

increasing dynamic of wireless communication activities, a

significant proportion of messages in wireless networks are

being transmitted using distributed protocols that feature

opportunistic channel access without full user coordination.

This challenges the basic assumption of long message trans-

missions among coordinated users in classical channel cod-

ing theory. In this monograph, we introduce channel coding

theorems for the distributed communication model where

users choose their channel codes individually. We show that,

although reliable message recovery is not always guaranteed

in distributed communication systems, the notion of funda-

mental limit still exists, and can indeed be viewed as an

extension to its classical correspondence.

Due to historical priority of developing wireline networks,

network architectures tend to achieve system modularity by

compromising communication and energy efficiency. Such a

Yanru Tang, Faeze Heydaryan and Jie Luo (2018), “Distributed Coding in A Multi-
ple Access Environment”, Foundations and Trends R© in Networking: Vol. 12, No. 4,
pp 260–412. DOI: 10.1561/1300000063.
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choice is reasonable for wireline systems but can be disas-

trous for wireless radio networks. Therefore, to reduce effi-

ciency loss, large scale communication networks often adopt

wireless communication only at the last hop. Because of

such a special structure, architectural inefficiency in wire-

less part of the network can be mitigated by enhancing the

interface between the physical and the data link layers. The

enhanced interface, to be proposed, provides each link layer

user with multiple transmission options, and supports effi-

cient distributed networking by enabling advanced commu-

nication adaptation at the data link layer. In this mono-

graph, we focus on the introduction of distributed channel

coding theory, which serves as the physical layer foundation

for the enhanced physical-link layer interface. Nevertheless,

early research results at the data link layer for the enhanced

interface are also presented and discussed.
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Introduction

A fundamental challenge in wireless networking is to efficiently share

the open wireless channel among highly dynamic users. Classical infor-

mation theory [20] and network theory [11] both have been investigat-

ing this key topic for half a century, but from two different angles and

along two separate paths that have not yet converged [22].

Because wireless medium often needs to be shared among devices

with tight bandwidth and power budgets, communication efficiency is

a central concern in wireless systems. Classical information theory [20],

particularly channel coding theory, addresses the “efficiency” concern

by characterizing the fundamental performance limitation of a wire-

less channel, and this consequently provides design guidance for wire-

less systems to achieve or to approach the theoretical efficiency limits.

However, information theory was originally developed in an environ-

ment when major wireless applications, such as mobile telephony and

TV broadcast, only involved transmitting long messages to or from a

small number of structured users. To achieve optimal efficiency, chan-

nel coding theory suggests that users in a communication party should

jointly choose their channel codes, which includes the joint optimization

of communication parameters such as information rate and transmis-

3
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4 Introduction

sion power [29][21][20]. This is termed the “coordinated” communica-

tion model in this monograph. Classical channel coding theory assumes

that, so long as the messages are long enough and their corresponding

coding schemes are optimized, overhead and possible inefficiency in

coordinating the communication party should be negligible.

Wireless devices nowadays are often connected into communication

networks which typically involve large numbers of users and a wide

range of network functions. Modularized architecture is a crucial re-

quirement for developing such large complex network systems [11]. Clas-

sical network theory addresses the “modularity” concern by proposing

layered network architectures such as the open systems interconnection

(OSI) model and its variations [96][69]. By partitioning communication

functions into abstraction layers with clearly defined interfaces, OSI

model allows system design and optimization to be focused on one or a

small number of neighboring layers without the worry of how the out-

come can fit into the general system. However, modularity usually does

not come without a cost, and compromising low priority resources is a

natural choice for achieving system modularity. Classical network the-

ory was originally developed in an environment when the key demand

was to connect computers to build the wireline internet infrastructure.

For wireline systems, bandwidth of a network cable and communication

power of a computer are relatively abundant. Consequently, classical

network theory emphasizes the support of a wide range of communica-

tion functions in the design of layering interfaces and network protocols,

but pays relatively less attention to the impact that the design propos-

als can have on communication efficiency of the involved systems.

With the computing power of mobile devices and wireless sensors

exceeding previous generation large computers, the demand of wireless

networking applications is increasing at a dramatic pace. However, de-

velopments of advanced wireless networks still suffer from the lack of a

theoretical foundation that addresses both concerns of “efficiency” and

“modularity” simultaneously. Because classical information theory and

network theory each only emphasizes one aspect of the concerns and

ignores the other one that is equally important, the need of a unifi-

cation of the two classical frameworks should be quite apparent [22].

Full text available at: http://dx.doi.org/10.1561/1300000063



1.1. The Single-hop Cellular Structure 5

Indeed, such a vision has been recognized for decades, as witnessed by

a long list of publications ranging from cross layer utility optimizations

[76][93][27] to understanding networking phenomena from information

theoretic perspectives [31][60][5][56], from the milestone results on wire-

less network scaling law [38][39][92], to the celebrated development of

fountain channel coding [15][54][74][70][88], and to the historical dis-

covery of network coding [2][52][49][91][43]. These results investigated

efficiency problems in various layers of the network architecture from

different perspectives. However, not all the problems are specific to

wireless networks and therefore are not necessarily among the list of

pressing concerns due to the increasing demand of wireless network-

ing. Most of the research results mentioned above also did not suggest

explicit architectural revisions to address the corresponding efficiency

problems.

The viewpoint that we are going to introduce in this monograph

is unique in the following senses. The associated architectural problem

lies in the physical and the data link layers. It is an efficiency bottleneck,

but only for wireless part of the networks. Furthermore, the research

investigations to be presented are motivated and centered around a

particular proposal of interface enhancement between the physical and

the data link layers. The proposal was originally suggested in [58][87]

and then in [55], but has never been thoroughly presented and ex-

plained. Therefore, this monograph serves as the first rigorous, in a

relative sense, introduction of the research vision and the correspond-

ing research results.

1.1 The Single-hop Cellular Structure

Direct extensions of classical information theoretic and network theo-

retic frameworks to wireless networking have their own inherited chal-

lenges at the bottom two layers, especially when there is a lack of

balanced respect to the efficiency and the modularity concerns. Under-

standing these challenges is essential for identifying the missing pieces

needed for the potential unification of the classical frameworks.

On one hand, channel coding theory provides design guidance by

characterizing performance limitations such as channel capacity of a

Full text available at: http://dx.doi.org/10.1561/1300000063



6 Introduction

communication system. While such efforts have been highly successful

in single user [71][72][81] and structured multiuser systems such as mul-

tiple access [1][53][90][94] and broadcast systems [19][9][10][30][89], the

picture does not look so bright when it comes to a general multiuser

network. Deriving channel capacity or capacity region of a general mul-

tiuser system is often extremely challenging. Even if one can be confi-

dent about solving the capacity problems, an equally important concern

is the assumption of the coordinated communication model which has

infiltrated into many aspects of the channel coding problem formula-

tions [22]. More specifically, because a wireless network often involves a

significant number of users with dynamic short message transmissions,

the assumption that all users can be fully coordinated with a negligible

overhead is no longer justified in such an environment. Performance

limitations obtained in classical channel coding theory provide little

guidance to the design and optimizations of distributed and partially

distributed communication systems, which are commonly seen in wire-

less networks [11].

On the other hand, while extending the existing network architec-

ture to wireless systems appeared to be more practical, not all exten-

sions can stand the test of time. With revisions to handle wireless-

specific problems such as the hidden and the exposed nodes problems

[7], wireless devices can be effectively connected to carry out network-

ing functions. Such extension enabled the exponential growth of Wi-Fi

networks [77], which belong to the class of single-hop wireless networks

in the sense that either the transmitter or the receiver in each trans-

mission is directly connected to a wireline network. In Wi-Fi networks,

wireless routers and client devices are often organized into a cellular-

type structure with each micro cell being managed by one router and

with interference between different cells well controlled via channel or

space separations. By scheduling communication activities within each

cell, and exploiting multiple access, broadcast and multiple antenna

communication techniques, communication efficiency can be managed

at an acceptable level. However, when it comes to multi-hop wireless

networks, such as multi-hop bluetooth networks [61] and WiMax net-

works [3], the stories are quite different. While wireless devices can

Full text available at: http://dx.doi.org/10.1561/1300000063



1.1. The Single-hop Cellular Structure 7

be connected effectively, most of the proposed multi-hop wireless net-

works failed to become popular mainly due to their low communication

efficiency. Although it is well known that the throughput of wireless sys-

tems often does not scale well [38][39][92], the fact that only Wi-Fi-type

networks can sustain an acceptable level of efficiency is primarily due

to the architectural design details that intentionally or unintentionally

compromised bandwidth and energy efficiency of many of the wireless

systems.

Because of the difficulties in extending classical theoretical frame-

works, major network systems tend to use wireline networks as their

backbone and to use wireless links only at the last hop. Wireless devices

are often organized into a cellular-type structure to best exploit oper-

ational guidance from both classical information theory and classical

network theory. In this monograph, we term this special structure the

“single-hop cellular structure”, as illustrated in Figure 1.1. There have

Figure 1.1: The single-hop cellular structure.

been continuous demands and research efforts to extend wireless sys-

tems beyond the single-hop cellular structure [22][37]. However, most

of these efforts face a clear dilemma. That is, while the inefficiency

of the current network architecture limited its capability in support-

ing complex wireless network structures, a complete redesign of the

network architecture is also in lack of a strong incentive because the

current architecture does work reasonably well for the wireline part of

Full text available at: http://dx.doi.org/10.1561/1300000063



8 Introduction

the networks. This dilemma does not necessarily imply that an ultimate

unification of the classical theories will not happen. It does however sug-

gest that consummation of the classical frameworks should be carried

out in well motivated steps.

In the rest of the monograph, we will only consider wireless net-

works with the single-hop cellular structure due to its dominance in

current wireless systems. Because a wireless channel usually has a much

lower capacity than a wireline cable, with the objective of addressing

the throughput bottleneck, we also choose to focus on the bottom two

layers of the network, i.e., the physical and the data link layers. Note

that once a data packet travels one hop into the wireline network, band-

width and energy efficiency is no longer the primary concern, and hence

research challenges at the higher layers become fundamentally different.

Nevertheless, even with just two layers and a special network structure,

the necessity of unifying information theory and network theory for

wireless systems is still quite convincing.

1.2 The Missing Support of Distributed Communication

Data networks often have large numbers of bursty short messages that

need to be disseminated in a timely manner [11][22]. Coordinating all

users in a communication party in such an environment can be infea-

sible or expensive in terms of overhead. A significant proportion of

the messages in current wireless networks are therefore transmitted us-

ing distributed communication protocols, where an individual user can

adjust its communication parameters, such as a transmission/idling de-

cision, without sharing such a decision with other users including its

targeted receiver [58]. Such a communication model is incompatible

with the joint coding design assumption of the classical channel coding

theory. Distributed communication can also cause key issues that do

not appear in a coordinated communication system. For example, with-

out full user coordination, data packets transmitted from multiple users

can experience collision at their receivers [60]. Collision detection and

collision resolution therefore are core problems at the physical and the

data link layers [11]. However, these problems are completely ignored

in classical channel coding theory [20].

Full text available at: http://dx.doi.org/10.1561/1300000063



1.2. The Missing Support of Distributed Communication 9

One may think that classical network theory and current network

architecture provide reasonable support for distributed communication

and networking at the bottom two layers. Unfortunately, this is true

only for wireline systems when communication efficiency is not a key

concern. Current layering architecture assumes that a link layer user

can only determine whether a packet should be transmitted or not

[11]. Other communication details are handled at the physical layer.

In distributed communication when physical layer does not have full

capability of joint channel code optimization, data link layer has to get

involved into communication adaptation. A simple example is the col-

lision resolution protocols such as the exponential backoff-based DCF

protocol in IEEE 802.11 [12]. However, with each link layer user only

having binary transmission/idling options, advanced wireless capabil-

ities such as rate, power and antenna beam adaptations all become

irrelevant at the data link layer. This can lead to a quite significant ef-

ficiency reduction in the throughput performance of a wireless system.

For example, let us consider a multiple access system with K ho-

mogenous users and a single receiver. Assume unit channel gain from

each user to the receiver, and additive Gaussian noise with zero mean

and variance N0. Assume that each user has a transmission power of P .

From classical channel coding theory [20], we know that, if each user

encodes its own message at a rate of 1
2 log2

(
1 + P

N0

)
bits/symbol, then

reliable message recovery is only possible if the users transmit sequen-

tially. Sum rate of the system therefore is upper bounded by the single

user channel capacity of C1 = 1
2 log2

(
1 + P

N0

)
bits/symbol, irrespec-

tive of the user number K. Alternatively, if users transmit in parallel

with an individual rate of 1
2K

log2

(
1 + KP

N0

)
, then sum rate of the sys-

tem can approach the sum channel capacity of CK = 1
2 log2

(
1 + KP

N0

)

bits/symbol, which grows unboundedly in K. A similar conclusion ap-

plies to the same system with a distributed communication model as

well. Assume that each user has bursty short messages and cannot

afford the overhead of joint coding optimization. If each message is en-

coded at a rate only slightly less than C1
1, then sum rate of the system

1Note that the rate needs to be smaller than C1 in order to support reliable
decoding with a finite codeword length [28].
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is upper bounded by C1 bits/symbol. Alternatively, if messages arrive

with a statistics such that on average K̃ users should have messages

to transmit at any moment, then it is generally beneficial to encode

each message at a rate close to 1
2K̃

log2

(
1 + K̃P

N0

)
to support parallel

transmissions from up to K̃ users. However, because traffic statistics is

unknown at the design stage of a protocol and may also vary in time, in

the case of distributed communication, maintaining a high throughput

efficiency requires users to have reasonable flexibility of adapting their

communication parameters, such as communication rate, at the data

link layer. Such a capability is not supported by the physical-link layer

interface in the current network architecture.

1.3 An Enhanced Physical-Link Layer Interface

The nature of distributed communication implies that communication

parameters cannot be jointly and fully optimized at the physical layer.

However, system traffic at the data link layer may still be more or less

stationary. To improve communication efficiency, data link layer should

exploit advanced wireless capabilities to adapt transmission schemes ac-

cordingly, and this needs to be done under the constraint of maintaining

a layered (or modularized) network architecture.

To achieve such an objective, we propose an enhancement to the

physical-link layer interface [55]. In the enhanced interface, each link

layer user can be equipped with multiple transmission options as op-

posed to the binary transmission/idling options. Different transmission

options may correspond to different communication settings such as

different power, rates or antenna beams. We generally assume that

each link layer user should have a handful of possibly device-dependent

transmission options. To maintain the layered architecture, under the

distributed communication model, we assume that link layer proto-

col should inform the physical layer whether a message needs to be

transmitted, and if so, which transmission option should be used. Such

decisions are not controlled or optimized at the physical layer. We as-

sume that a physical layer receiver should decode the message only if a

Full text available at: http://dx.doi.org/10.1561/1300000063



1.3. An Enhanced Physical-Link Layer Interface 11

pre-determined error probability threshold can be met [11][55]. Other-

wise the receiver should report collision to the data link layer. At the

data link layer, we assume that a user can only choose from the list of

provided transmission options, as opposed to being able to adapt the

communication parameters arbitrarily.

While the interface enhancement appears to be minor, it involves

key research questions whose answers cannot be found in the classical

frameworks. At the physical layer, due to possible lack of user coordina-

tion, reliable message delivery cannot always be guaranteed. However,

it is a fundamental requirement in the layered architecture that any

message forwarded to the data link layer must be reliable [11]. Fur-

thermore, because transmission decisions are made at the data link

layer, i.e., they are not controlled by a physical layer protocol, any as-

sumption of such a control, such as information rate optimization, may

not be valid in physical layer channel coding. With these constraints,

whether the notion of fundamental limit still exists for a distributed

communication system is a key question that needs to be answered. In

Sections 2 and 3 of this monograph, we will show that not only the

notion of channel capacity still exists for a distributed system, it can

indeed be viewed as an extension to the corresponding result in clas-

sical channel coding theory. Meanwhile, at the data link layer when

a user is equipped with multiple transmission options, one needs to

understand how packet transmission schemes should be adapted in re-

sponse to the events of transmission success and packet collision. In

existing link layer protocols, when only a single transmission option

(plus an idling option) is available, a common practice in response to

packet collision is to reduce the packet transmission probability of each

user [42][11][12]. From classical channel coding theory, we know that

a more efficient approach could be reducing the communication rate

of each user [20]. However, while transmission options with different

power and rate combinations may be available, there is no guarantee

that the ideal option should be on the list. Furthermore, different link

layer networks may also have different utility optimization objectives.

Whether a general link layer distributed medium access control frame-

work exists to optimize transmission schemes under these constraints

Full text available at: http://dx.doi.org/10.1561/1300000063



12 Introduction

is an important question that needs to be answered. Although we are

not yet able to provide rigorous answers to this question, in Section

4, we present early research results to show that a stochastic approx-

imation framework could be a good starting point to investigate the

corresponding link layer problems.
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