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ABSTRACT

The International Mobile Telecommunications (IMT)-2030
framework recently adopted by the International Telecom-
munication Union Radiocommunication Sector (ITU-R) en-
visions 6G networks to deliver intelligent, seamless connectiv-
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ity that supports reliable, sustainable, and resilient commu-
nications. To achieve this vision, Non-Terrestrial Networks
(NTN) represent a significant advancement by extending
connectivity beyond the Earth’s surface. These networks
integrate advanced communication technologies that go be-
yond conventional terrestrial infrastructure, enabling com-
prehensive global connectivity across domains such as the
Internet, Internet of Things (IoT), navigation, disaster re-
covery, remote access, Earth observation, and even scientific
initiatives like interplanetary communication.

Recent developments in the 3rd Generation Partnership
Project (3GPP) Releases 17-19, particularly within the Ra-
dio Access Network (RAN)4 working group addressing satel-
lite and cellular spectrum sharing and RAN2 enhancing
New Radio (NR)/IoT for NTN, highlight the critical role
NTN is set to play in the evolution of 6G standards. The
integration of advanced signal processing, edge and cloud
computing, and Deep Reinforcement Learning (DRL) for
Low Earth Orbit (LEO) satellites and aerial platforms, such
as Uncrewed Aerial Vehicles (UAV) and high-, medium-,
and low-altitude platform stations, has revolutionized the
convergence of space, aerial, and Terrestrial Networks (TN).
Artificial Intelligence (AI)-powered deployments for NTN
and NTN-IoT, combined with Next Generation Multiple
Access (NGMA) technologies, have dramatically reshaped
global connectivity.

This monograph provides a comprehensive exploration of
emerging NTN-based 6G wireless networks, covering vision,
alignment with 5G-Advanced and 6G standards, key princi-
ples, trends, challenges, real-world applications, and novel
problem solving frameworks. It examines essential enabling
technologies like AI for NTN (LEO satellites and aerial
platforms), DRL, edge computing for NTN, AI for NTN
trajectory optimization, Reconfigurable Intelligent Surfaces
(RIS)-enhanced NTN, and robust Multiple-Input-Multiple-

Full text available at: http://dx.doi.org/10.1561/1300000072



3

Output (MIMO) beamforming. Furthermore, it addresses
interference management through NGMA, including Rate-
Splitting Multiple Access (RSMA) for NTN, and the use of
aerial platforms for access, relay, and fronthaul/backhaul
connectivity.

Keywords: Non-Terrestrial Networks (NTN), 3rd Generation
Partnership Project (3GPP), Artificial Intelligence (AI),
Reconfigurable Intelligent Surfaces (RIS), Next Generation
Multiple Access (NGMA).
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1
Roadmap to 6G and Role of NTN:

Why NTN is Vital for the Evolution of 6G
Networks?

In a world where 2.9 billion people remain without internet access,
addressing the digital divide has never been more critical. This disparity
is particularly pronounced among certain demographics; in ten countries
across Africa, Asia, and South America, women are 30-50% less likely to
use the Internet than men. Although cell technology is the most widely
used communication system, it faces significant challenges, especially
in rural areas, even in developed countries. Non-terrestrial networks
(NTN) offer a promising solution to these challenges, introducing new
ways to connect the unconnected and enhance global communication
[59], [65], [76].

NTN refer to wireless communication systems operating above the
Earth’s surface, utilizing satellites in low earth orbit (LEO), medium-
earth orbit (MEO), and geostationary equatorial orbit (GEO), as well
as high altitude platform stations (HAPS) and uncrewed aerial vehicles
(UAV) [48], [144], [205]. These elements are crucial to achieve unin-
terrupted coverage and extend connectivity to remote areas lacking
traditional terrestrial network (TN) access. Currently, devices are clas-
sified into those connected to TN and those connected to satellites [10],
[75]. This means that users who need satellite connections must use an

4
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1.1. NTN Standardization in 3GPP 5

additional device in conjunction with their smartphone. However, in an
integrated system, all mobile devices will integrate both terrestrial and
satellite access. As technology progresses, satellites are expected to func-
tion as base station (BS). NTN plays a crucial role in expanding global
connectivity, supporting various industries, and advancing technological
capabilities. Therefore, the interconnection and inter-operation between
NTN and TN are of significant importance [21], [42].

6G is expected to offer significantly superior connectivity compared
to earlier generations, featuring higher data rates, reduced latency, and
improved reliability. NTN could supplement terrestrial 6G infrastructure
by extending coverage to remote and under-served areas, where deploy-
ing traditional TN is challenging or economically impractical [74], [77],
[164], [198]. Within a 6G ecosystem, these NTN will operate alongside
TN to provide seamless connectivity across various geographical regions,
supporting initiatives such as the United Nations’ 17 sustainable devel-
opment goals (SDG). The integration of NTN within 6G networks will
facilitate a wide range of new applications and use cases, many of which
are extensions of current 5G applications, but have been limited by
the performance constraints of existing networks. An illustration of the
convergence and coexistence of NTN and TN is shown in Figure 1.1.

1.1 NTN Standardization in 3GPP

The 3rd Generation Partnership Project (3GPP) is the global standard-
ization body of cellular radio systems and their core networks. It was
constituted in 1998 by seven telecommunication standard development
organizations, aiming to develop the 3G mobile standards in an interna-
tionally aligned format to leverage creation of a standards eco-system
that would facilitate global scale and create an enduring platform for its
future evolution. Thanks to its success, it continued its standardization
work to date, while keeping its original name – even though we are far
beyond the 3rd Generation radio standard by now, peeking towards 6G.

The work in 3GPP is structured into three technical specification
groups (TSGs), which are defined as:

Full text available at: http://dx.doi.org/10.1561/1300000072
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Figure 1.1: An illustration of convergence/co-existence of NTN and TN.

• Radio access network (RAN)

• Service and System Aspects (SA)

• Core network and terminals (CT)

Each of the TSGs is sub-structured into working groups (WGs),
where each WG focuses on a different level of the network or system,
respectively, and they are simply numbered serially (i.e., RAN1 to
RAN5 and SA1 to SA5). The work in the WGs is carried out in so-
called study items (SI) and work items (WI), where a SI constitutes
preparatory and pre-evaluation work for topics and aspects that are
aimed to be covered by future releases of the standard. The outcome of
a SI is summarized in a technical report (TR), labeled with a specific
5-digit number in a 2-level format, e.g. 22.822. If a common consensus
is reached to follow-up the work from the SI, typically a WI follows,
where at the end a technical specification (TS) is published carrying its
own 5-digit number.
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1.1. NTN Standardization in 3GPP 7

The outcome of the standardization work is published in so-called
Releases, where a Release provides a full functional description of the
features and processes characterizing the cellular radio system and
its core network. A Release consists of several TSs, which specify the
normative requirements for the cellular radio system and are issued by
the corresponding TSGs. A specific SI or WI, respectively, is usually
defined for the duration of the working phase of a particular Release;
hence, a SI and a WI referring to the same topic will typically be in
subsequent Releases – though they may even appear in the same Release
if the duration of the SI in particular is defined significantly shorter
than the duration of the Release’s working phase.

The complete roadmap of NTN integration into the 3GPP cellular
radio system from its beginning up to date is comprehensively described
in [139], and will be summarized here in sufficient detail. Figure 1.2
provides a brief overview of the three most recent Releases of 3GPP
focusing on the integration of NTN and TN. First considerations on
NTN integration started in 3GPP Release 14 already, where the main
driving factors were:

• Coverage extensions to areas with poor or without cellular cover-
age.

• Services supported more efficiently by satellites, such as multi-
cast/broadcast.

• Provision of a backup network in disaster zones with damaged
cellular network.

• Higher resiliency of NTN.

• Cost reduction through a unified radio interface for TN and NTN.

1.1.1 Release 15

Release 15 was the first to standardize the normative requirements for
5G new radio (NR), which was initially focusing on TN and various
architectural options. The stage 1 TS 22.261 included a requirement
for 5G to support multiple access technologies, stipulating that the 5G

Full text available at: http://dx.doi.org/10.1561/1300000072
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• Frequency Division Duplex (FDD)
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• Hybrid Automatic Repeat Request (HARQ)
• User Equipment (UE)

3GPP NTN Standardization

Release 17 Release 18 Release 19

Figure 1.2: An illustration of 3GPP timeline indicating the start of NTN incorpo-
ration and future perspective.

system should be able to support mobility between supported access
networks. However, due to time constraints, the standardization of
satellite support was not included in Release 15. Despite this omission,
TSG RAN initiated a SI entitled “Study on NR to Support NTN”. This
study focused on several key areas:

• NTN use cases for enhanced mobile broadband (eMBB) and
massive machine type communication (mMTC) service.

• Adapting the 3GPP channel model from Release 14 to accommo-
date NTN.

• Providing a detailed description of deployment scenarios for NTN
while analyzing the necessary modifications to support satellite
or HAPS operations in NR.

The results of this SI were summarized in TR 38.811. For eMBB,
NTN use cases involve providing broadband connectivity to cells or
relay nodes in under-served regions, in conjunction with terrestrial
wireless or wireline access, though with limited user throughput. It

Full text available at: http://dx.doi.org/10.1561/1300000072



1.1. NTN Standardization in 3GPP 9

also encompasses establishing broadband connections between the core
network and cells in isolated areas, which is especially valuable for public
safety applications. In addition, it facilitates the broadband connectivity
between the core network and cells on moving platforms. For mMTC,
NTN aims to ensure global connectivity between internet of things (IoT)
devices and the NTN and to provide connectivity to a BS that serves
IoT devices within a local area network (LAN).

The 3GPP adopted the common terms for characterizing the two
main NTN architectures: Regenerative and transparent payload, as
illustrated in Figure 1.3 and explained below.

5G Core Data NW

Gateway

5G Core

O-CU

Data NW

ISL

Se
rv

ic
e 

L
in

k

Feeder Link

Se
rv
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e 

L
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gNB

Gateway

Regenerative Transparent (Bent Pipe)

Figure 1.3: Transparent versus Regenerative payload.

Transparent payload A spaceborne or airborne platform that lacks
on-board processing capabilities modifies the frequency carrier of the
incoming uplink radio frequency (RF) signal, then filters and amplifies
it before re-transmitting it on the downlink. In essence, this platform
functions as an analog RF repeater.

Regenerative payload A spaceborne or airborne platform that handles
RF filtering, frequency conversion, and amplification, along with on-
board processing tasks, essentially operates as a BS.

1.1.2 Release 16

In Release 16, TSG RAN and SA initiated one new SI each. The SI
led by SA1, entitled “Study on using satellite access in 5G,” analyzed
12 concrete use cases for using satellite access in NR, which were

Full text available at: http://dx.doi.org/10.1561/1300000072



10 Roadmap to 6G and Role of NTN

summarized in TR 22.822. This SI assessed their conditions, impacts,
interactions with existing services and features, and potential stage 1
requirements. These requirements included roaming between TN and
satellite networks, broadcast and multicast with a satellite overlay, IoT
via satellite networks, temporary use of satellite components, optimal
routing or steering over satellites, satellite transborder service continuity,
global satellite overlay, indirect connections through a 5G satellite access
network, 5G fixed backhaul between NR and the 5G core, 5G moving
platform backhaul, 5G to premises, and satellite connections of remote
service centers to offshore wind farms.

The RAN3 led SI focused on solutions for NR to support NTN,
including support of NTN-TN service continuity and multi-connectivity
scenarios for NTN-TN or for two NTN in parallel, which lead to TR
38.821. This SI built upon the key impacts identified in Release 15, ex-
amining the implications for RAN protocols and architecture in greater
depth and beginning to assess possible solutions. The investigation
concentrated on satellite access via transparent GEO and LEO satellite
networks, with HAPS-based access being considered a special case of
NTN due to its lower Doppler and variation rates. The usage scenarios
included pedestrians and users in vehicles, such as high-speed trains
or airplanes. Reference scenarios evaluated included GEO and LEO
satellites with both steering and moving beams, for both transparent
and regenerative payloads. The RAN3 working group advised that the
normative work should prioritize GEO-based satellite access with trans-
parent payloads and LEO-based satellite access with either transparent
or regenerative payloads. The outcome of both SIs yield proposals for
the normative work to focus on with corresponding recommendations.

1.1.3 Release 17

Release 17 was the first release with normative requirements for NTN in
3GPP specifications [150]. In this release, the corresponding activities
have also started to support narrow band-IoT (NB-IoT) and enhanced
machine type communication (eMTC) type of devices via NTN in 4G
long term evolution (LTE).

Full text available at: http://dx.doi.org/10.1561/1300000072



1.1. NTN Standardization in 3GPP 11

The Release 17 WI “Stage 1 of 5GSAT” led by SA1 translated the
findings from the corresponding Release 16 SI into stage 1 requirements,
which were captured in TS 22.261. These requirements include the
following: The 5G system must support service continuity between
TN and satellite networks owned by the same or different operators
with agreements and must facilitate roaming. User equipment (UE)
with satellite access should support optimized network selection and
re-selection to public land mobile networks (PLMN) with satellite access
based on home operator policy, and must support mobility across various
access networks. UE must be able to provide or assist in providing their
location to the 5G network, and the system must determine a UE
location to provide services according to regulatory requirements. There
must be support for low power mobile IoT communications and satellite
links between the RAN and core network, accommodating satellite
backhaul latencies. Support for meshed connectivity between satellites
with inter-satellite link (ISL) is required, as well as the selection of
communication links based on quality of service (QoS) fulfillment.

The SA2 led WI focused on the integration of satellite components
in the 5G architecture, resulting in the three specifications documents
TS 23.501 (System architecture for the 5G system), TS 23.502 (proce-
dures for the 5G system) and TS 23.501 (Policy and charging control
framework for the 5G system).

TSG RAN led WI “Solutions for NR to support NTN”, where the
purpose was to adapt the basic features of 5G NR to match the charac-
teristics of the satellite channel. The focus was solely on the transparent
architecture, and it was assumed that the UE are global navigation
satellite system (GNSS) capable, allowing them to obtain precise po-
sition information. As operating bands for satellite communication in
the frequency range FR1 (i.e., 410 MHz – 7125 MHz), the frequency
division duplexing (FDD) bands n255 (L-band), operating the uplink
at 1626 - 1660 MHz and the downlink at 1525 - 1659 MHz, and n256
(S-band), operating the uplink at 1980 - 2010 MHz and the downlink at
2170 - 2200 MHz, have been introduced. For HAPS, it was concluded
that the FDD band n1 (uplink: 1920 - 1980 MHz, downlink: 2110 - 2170
MHz) can be applied, allowing NR UEs as defined by TS 38.101-1 to
support HAPS without any additional changes.

Full text available at: http://dx.doi.org/10.1561/1300000072



12 Roadmap to 6G and Role of NTN

New solutions and extensions of existing protocols proposed by the
WI to support NTN operations cover several areas. Among those are
enhancements in timing, synchronization, and hybrid automatic repeat
request (HARQ) to cover long round trip delay; mobility management
to ensure seamless handovers between NTN and terrestrial networks,
utilizing satellite ephemeris and common parameters for the Timing
Advance (TA); switchover procedures for the service link (i.e., between
the UE and the NTN node) and the feeder link (i.e., between the ground
station and the NTN node).

1.1.4 Release 18

In Release 18, the RAN-led SI entitled “Study on self-evaluation to-
wards the submission of the International Mobile Telecommunications
(IMT)-2020 submission of the 3GPP satellite radio interface technology”
evaluated the NR functionalities of Release 17 that facilitate 5G via
satellite, as well as the corresponding LTE-based solutions for NB-IoT.
In this SI, three different usage scenarios were considered for the analysis
in a rural environment:

• eMBB-s (Enhanced Mobile Broadband - satellite),

• HRC-s (High Reliability Communications - satellite),

• mMTC-s (Massive Machine Type Communications – satellite).

Furthermore, SI “Study on requirements and use cases for network
verified UE location for NTN in NR” pointed out the need for network-
based methods to verify the reported UE location within large NTN cells,
taking into account regulatory mandates for public alerts, emergency
communications, and legal interception. Network-based verification with
an accuracy of 5-10 km was mandated, prompting normative work in
Release 18.

The operation bands for satellite communication have been extended
by the new FDD band n254, which operates the uplink at 1610 - 1626
MHz (L-band) and the downlink at 2484 - 2500 MHz (S-band), while
the maximum channel bandwidth supported for NR NTN in FR1 has
been extended to 30 MHz. Moreover, the WI “NR NTN enhancements”

Full text available at: http://dx.doi.org/10.1561/1300000072



1.1. NTN Standardization in 3GPP 13

led by RAN2 aimed to enhance features from earlier releases, such
as coverage enhancements as well as improved NR uplink coverage by
enabling repetitions in the control channel and bundling reference signals
for channel estimation. It also defined Rx/Tx time measurements for
network verified UE location and introduced enhancements for NTN-TN
and NTN-NTN mobility and service continuity, such as broadcasting
geographical TN areas with frequency information, improved conditional
handover triggers, and satellite switch with re-sync. Furthermore, NR-
NTN operation in the above 10 GHz bands (targeting frequency range
FR2) was considered, resulting in the introduction of FDD bands n510,
n511, n512 in the Ka band, operating uplink in the 17 - 20 GHz range
and downlink in 27 - 30 GHz range, with Rx/Tx requirements for
very small aperture terminal (VSAT) UE types and radio resource
management (RRM) for electronically/mechanically-steered beam UEs.

In TSG SA, several new SIs were started. Among those, the SI
“Study on 5G core enhancement for satellite access phase 2” focused
on handling mobility management and optimizing power savings under
conditions of intermittent coverage, while the SI “Study on security
aspects of satellite access” explored security and privacy issues related
to mobility management and power conservation amid discontinuous
coverage. The SI “Study on support of satellite backhauling in 5G
system” concentrated on the use of satellite backhaul for mission critical
scenarios with HRC-s enabled by satellite edge computing and local data
switch – which requires a regenerative payload for its realization. The
WIs driven by TSG SA focused on satellite backhauling in 5G systems,
where the results were captured in TS 22.261 and TS 23.501 - 503.

1.1.5 Release 19

In current Release 19, TSG RAN leads the WI “NTN for IoT phase 3”,
which aims to achieve several objectives for 2025. The link is improved
by supporting additional satellite payload parameters for satellite con-
stellations operating in FR1-NTN and FR2-NTN, improving the uplink
capacity and throughput of FR1-NTN by using overlaid repetitions
based on orthogonal cover codes (OCC), signaling the intended service
area of a broadcast service via NR NTN, and supporting for the first
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time in a WI regenerative payloads, featuring 5G system functions
on the NTN node. Furthermore, the support of reduced capability
(RedCap) devices (e.g., handheld or IoT) for NR NTN operating in
FR1-NTN will be specified.

TSG SA is leading several SIs in Release 19. The SI “Study on
Satellite Access - Phase 3” focuses on use cases and requirements
to further improve the 5G system by satellite. Key subjects to be
investigated are store and forward (S&F) satellite operation for delay
tolerant communication services (enabling services for discontinuous
satellite coverage), direct UE-satellite-UE communication without using
any feeder link to route the communication signal through a ground
station (yielding significantly reduced communication delays), GNSS-
independent operation (to enable satellite access to UEs without GNSS
receiver/no access to GNSS services), and positioning enhancements
for satellite access (3GPP based methods for satellite-only access). The
normative part of this work will be done in a corresponding WI (starting
at a later stage), and results will be captured in TS 22.261.

Further SIs led by TSG SA are as follows: An SI on integration
of satellite components in the 5G architecture focuses on regenerative
payloads, S&F satellite operation and UE-satellite-UE communication.
An SI on management aspects of NTN investigates management capa-
bilities to support new network architectures or functions for satellite
regenerative payloads, considering various satellite constellations. An-
other SI delves into security aspects of 5G satellite access, and finally,
an SI focusing on application enablement will explore application layer
solutions for satellite access. Last but not least, a workplan to support
the Ku-band (downlink: 10.7 - 12.75 GHz, uplink: 12.75 - 13.25 GHz or
13.75 - 14.5 GHz) has been agreed.

1.2 NTN Evolution

NTN, particularly through direct-to-mobile (D2M) technology, leverage
satellites to provide cellular connectivity directly to standard mobile
devices. This approach offers several significant advantages. Firstly,
it allows users to utilize their existing devices, ensuring accessibility
without the need for additional specialized equipment. This can be
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transformative in disaster scenarios, where traditional infrastructure
might be compromised. For instance, SMS has proven to offer the best
performance-to-resource ratio in emergencies, and with NTN, SMS and
other essential services can reach even the most remote areas reliably.

Beyond emergency communication, NTN unlocks vast opportunities
for the IoT on a global scale. Remote sensors, powered by NTN con-
nectivity, can monitor a plethora of environmental and infrastructural
parameters in real-time. For example, earthquake warning systems can
benefit immensely from NTN, where sensors deployed in seismically
active but isolated regions can relay crucial data instantaneously, pro-
viding timely alerts that can save lives and mitigate damage. This
capability is not limited to natural disaster monitoring; agricultural
sectors in rural areas can also utilize IoT devices to optimize farming
practices, from soil moisture sensors to weather monitoring stations,
thereby enhancing productivity and sustainability [60], [71].

Furthermore, NTN benefits extend beyond technological advance-
ments and emergency response. In regions with low internet penetration,
NTN can serve as a catalyst for social and economic empowerment –
particularly among women. By providing reliable internet access to re-
mote and under-served areas, NTN can facilitate education, healthcare,
and entrepreneurial opportunities. Women, who are currently underrep-
resented among the internet users from a global perspective, can gain
access to online resources, educational tools, and networks that were
previously out of reach for them, thereby promoting gender equality
and fostering inclusive development.
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