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ABSTRACT

The 5th generation (5G) of wireless systems is being deployed
with the aim to provide many sets of wireless communica-
tion services, such as low data rates for a massive amount
of devices, broadband, low latency, and industrial wireless
access. Such an aim is even more complex in the next gen-
eration wireless systems (6G) where wireless connectivity
is expected to serve any connected intelligent unit, such as
software robots and humans interacting in the metaverse,
autonomous vehicles, drones, trains, or smart sensors mon-
itoring cities, buildings, and the environment. Because of
the wireless devices will be orders of magnitude denser than
in 5G cellular systems, and because of their complex quality
of service requirements, the access to the wireless spectrum
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will have to be appropriately shared to avoid congestion,
poor quality of service, or unsatisfactory communication
delays. Spectrum sharing methods have been the objective
of intense study through model-based approaches, such as
optimization or game theories. However, these methods may
fail when facing the complexity of the communication envi-
ronments in 5G, 6G, and beyond. Recently, there has been
significant interest in the application and development of
data-driven methods, namely machine learning methods, to
handle the complex operation of spectrum sharing. In this
survey, we provide a complete overview of the state-of-the-
art of machine learning for spectrum sharing. First, we map
the most prominent methods that we encounter in spectrum
sharing. Then, we show how these machine learning methods
are applied to the numerous dimensions and sub-problems
of spectrum sharing, such as spectrum sensing, spectrum
allocation, spectrum access, and spectrum handoff. We also
highlight several open questions and future trends.
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1
Introduction

Due to the rapidly increasing number of mobile data subscriptions
and the continuous increase in the average data volume per mobile
broadband subscription, the demand for wireless services and applica-
tions has been experiencing a large growth in recent years. Users of
enhanced mobile broadband (eMBB), Internet of Things (IoT), smart
factory, remote health care, connected unmanned aerial vehicle (UAV)
(drone), urban air mobility applications, intelligent transportation, and
smart home services demand high functional safety and rely on the
exchange of large amount of data with low latency and often with high
reliability. To meet these requirements, 5th generation (5G) systems are
deployed to support 10-100 times more connected devices, transmit 100
times more data, and support 1000 times the capacity compared with
the capabilities of 4th Generation (4G) systems [193]. For 6th genera-
tion (6G) systems, meeting new requirements on data volumes, coverage
and capacity, as well as on the massive number of connected devices
means that spectrum management will be even more challenging and
important [7, 191].

Recognizing the increasing demands for wireless services, and thereby
for spectrum resources in cellular and local area networks, several

3

Full text available at: http://dx.doi.org/10.1561/1300000073



4 Introduction

previous works have suggested that the static assignment of spectrum to
mobile network operators (MNOs) and/or specific wireless technologies
confine the utilization of spectrum resources. The key observation of
these works is that a certain geographical area, such as a single cell of
a cellular network, may occasionally be populated by users – including
connected vehicles, drones or IoT devices – belonging to different MNOs
[231]. In such scenarios, spectrum sharing among multiple players is
a flexible and efficient paradigm, which enables to better utilize the
spectrum, avoid spectrum shortage in sub millimeter-wave (mmWave)
bands, and enhance the return-of-investment in spectrum resources by
MNOs [198], [263]. Following these early works on spectrum sharing,
several technical and economical aspects of spectrum sharing have been
discussed in the literature [53, 57, 60, 64, 71]. One of the practical
results of these ideas is the protocols and mechanisms standardized by
the 3GPP and implemented by MNOs for sharing spectrum between
4G and 5G networks [28, 198].

Massive machine type communications (MTC), eMBB enablers
and ultra-reliable low-latency communication (URLLC) are technology
components that aim to fulfill the aforementioned 5G and emerging 6G
requirements [204, 205]. The MTC and a part of eMBB implementation
should be deployed in sub-6 GHz band due to cost reduction, since sub-6
GHz bands have favourable propagation characteristics [86]. However,
this spectrum is heavily used by other wireless systems, including cellular
and local area wireless networks using licensed and unlicensed spectrum
bands.

To accommodate the emerging 5G and the upcoming 6G services an
appealing alternative is to utilize mmWave frequencies, which operate
between 10 and 300 GHz. Unfortunately, even this spectrum range
has availability problems, due to other service requirements, which are
already allocated in these frequencies [231]. Due to the pressing demand
for efficient ways to allocate and access spectrum, the concept of dynamic
spectrum sharing (DSS) has attracted significant research attention
[76, 123, 228, 294]. Currently, MNOs have to refarm their available
cellular frequency bands either to enable exclusive 5G operations or to
support shared operations of 4G and 5G infrastructures in the same or
overlapping frequency bands [4, 37]. As a natural step beyond currently

Full text available at: http://dx.doi.org/10.1561/1300000073
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available spectrum sharing solutions designed for 4G and 5G systems,
the more general concept of DSS facilitates the coexistence of cellular
and other technologies such as WiFi, UAV networks and cognitive
radio networks (CRNs), as illustrated in Figure 1.1. Indeed, DSS will
enable to share the same spectrum resources across multiple radio access
technologies allowing to gradually deploy new services that are best
served by different access technologies.

LTE-U

WiFi

Cognitve Radio Base Station

UAV network

MTC

Interference link

Figure 1.1: Coexistence of different technologies in a spectrum sharing scenario.

To serve a growing number of users and applications by spectrum
sharing between 4G and 5G systems – while maintaining high spectrum
utilization and meeting capital and operational expenditure constraints
– comes at the cost of considerable complexity. While operating 4G
and 5G systems in dedicated bands allows use of a wide range of self-
optimizing network (SON) functionalities, introducing DSS between 4G
and 5G systems increases the number of parameters to tune considerably.
However, this increasing complexity makes it difficult to continue using
the current resource allocation and optimization techniques. To cope
with such complexity, the 3GPP and the research community have
started to explore the use of machine learning (ML) and artificial
inteligence (AI) for spectrum sharing.

With an ML-based SON, the network self-adjusts and fine-tunes
a range of parameters according to the prevailing radio and traffic
conditions, alleviating the burden of manual optimization by the MNOs.
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6 Introduction

While SON algorithms are not standardized in 3GPP, SON implemen-
tations may be assisted by various ML algorithms, including those
employing supervised learning, unsupervised learning and reinforcement
learning (RL)-based schemes [30].

1.1 Spectrum Sharing State-of-the-Art Surveys

Spectrum sharing can be performed either in a centralized or distributed
manner. The former is characterized by a central unity, often called
spectrum server, which is responsible for optimizing the spectrum usage
among all users. In the latter, all network users participate in the
spectrum optimization process. It is a more practical solution for high
spectral demand since the computational complexity at the central
unity increases with the number of spectrum requests [152].

In a spectrum sharing scenario, the coexistence of different wireless
systems are supported by four mechanisms:

1. Spectrum sensing: in this mechanism, signal features are extracted
from the environment to determine the radio frequency occupancy
condition, i.e., which channels are in use and which ones are free.

2. Spectrum allocation: receives the channel characterization from
sensing mechanism or directly from the environment in case of
frequency planing. The main goal is to assign users on available
channels for data transmission.

3. Spectrum access: the user assignment is used in this stage to
provide channel access for allocated users in order to guarantee
the data transmission.

4. Spectrum handoff : responsible for user channel switching whenever
necessary. It sends a request to the spectrum allocation mechanism
to check and to assign a new channel to the user so it can continue
to access the medium sending its data.

This relationship between the four spectrum sharing mechanisms is
shown in Figure 1.2.

Full text available at: http://dx.doi.org/10.1561/1300000073
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Radio
Environment

Spectrum
Sensing

Signal
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Spectrum
Allocation

Spectrum
Usage

Spectrum
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Spectrum
Access

User
Assignment

Transmitted
Signal

Spectrum
Handoff

Channel
Conditions

Spectrum
Request

Figure 1.2: Relationship among spectrum sharing mechanisms.

The use of ML solutions as a tool for spectrum sharing has been
investigated by recent surveys [5, 13, 48, 59, 66, 94, 104, 118, 169, 206,
222, 245, 249, 269, 275, 309, 310].

Agrawal et al. [5], Arjoune et al. [13], Fernando et al. [66], and Syed et
al. [245] cover the state-of-the-art of spectrum sensing for cognitive radio
(CR). The main focus of [13] is the classification and review of different
sensing techniques using traditional and ML schemes, while Syed et al.
[245] provide a deep learning (DL) detailed survey for spectrum sensing.
Agrawal et al. [5] discuss recent spectrum sensing and dynamic spectrum
access (DSA) schemes and topics related to CR including ML solutions.
The authors highlight the efficiency, limitations and implementation
challenges of both narrowband and wideband sensing approaches. On
the other hand, Fernando et al. [66] present spectrum sensing in IoT
context, giving a brief discussion of recent papers in the area. These
works also discuss the open issues related to spectrum sensing and
the way how CR can be used to solve spectrum sharing problems in
next generation networks. However, these references do not discuss ML
issues in detail. To bridge this research gap, in this survey we provide
an overview of spectrum sensing ML works that address narrowband
and wideband spectrum sharing schemes, and present a mathematical
formulation of the ML-assisted spectrum sensing problem.

Full text available at: http://dx.doi.org/10.1561/1300000073



8 Introduction

Wang et al. [275] present a survey on spectrum allocation using
RL algorithms for CRNs. The authors analyze the advantages and
disadvantages of each RL algorithm by dividing them into two groups:
minor and major implementation improvements. They also address
challenges and open issues related to spectrum allocation for CRNs and
RL algorithms. However, the usage of ML methods for other spectrum
sharing networks such as long-term evolution on unlicensed spectrum
(LTE-U), UAV networks and non-orthogonal multiple access (NOMA)
systems, are not investigated in that paper.

Zhang et al. [310] present a survey on spectrum sharing techniques
that address the basic principles and state-of-the-art for CR, device-to-
device (D2D), in-band full-duplex (IBFD), NOMA and LTE-U technolo-
gies. The authors also discuss the challenges related to deploying each of
these techniques, as well as how they can be integrated into 5G networks.
Spectrum access is also the focus for Zhang et al. [309]. It presents the
basic principles and spectrum sharing solutions for the most popular
IoT technologies applicable in both licensed and unlicensed spectrum.
That paper also identifies future challenges of IoT systems and suggests
research directions for next generation technologies. However, none of
these references address ML solutions for spectrum access. Differently
from both works, in this survey we describe the DSA problem and
discuss ML solutions by surveying the most relevant recent works in
this area.

Tehrani et al. [249] study various scenarios on licensed cellular net-
works with different topologies in order to demonstrate the importance
of spectrum sharing for future networks. That paper provides an analy-
sis of spectrum sharing involving MNOs using licensed shared access for
wide area broadband services. The main concepts of spectrum sharing
are explained, and open issues for future research are suggested. How-
ever, such a paper does not discuss the potential and challenges related
to ML schemes for spectrum sharing.

Puspita et al. [206] focus on recent RL-based surveys for CRNs.
The work discusses how ML algorithms can be used to solve spectrum
sharing problems for CR. It also presents future research directions and
network solutions for upcoming CR technologies. The authors, however,
dedicate only a small section to discuss RL for CRN. Other ML schemes
such as supervised and unsupervised learning are not addressed.

Full text available at: http://dx.doi.org/10.1561/1300000073
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Janu et al. [104] address the usage of ML for cooperative spectrum
sensing and DSS. The authors characterized the surveyed papers based
on the applied ML methods (supervised, unsupervised or RL) and on the
evaluation performance metrics of the adopted approaches, showing their
advantages and limitations. It also addresses DSS scenarios providing
useful discussion on spectrum allocation and spectrum access. However,
the authors did not survey ML papers on these topics, which are covered
in Samanta et al. [222]. In this work, the authors provide an overview
of ML techniques focusing on addressing 5G network issues such as
resource allocation, spectrum access and security aspects. Although
relevant spectrum sharing topics are discussed in this work, a spectrum
sensing discussion is missing.

Hu et al. [94] and Kaur et al. [118] provide an extensive review of
works related to spectrum sensing, allocation, access and handoff in the
context of CRNs. They also present a summary of existing survey works
on CRN and discuss design aspects of CR control mechanisms and
energy efficiency. Although the former includes a large set of spectrum
sharing works, ML papers are out of the scope of that survey. On the
other hand, the latter presents a comprehensive review of ML works for
spectrum sharing, however beamforming and security are not addressed.

Since mmWave has arisen as a key technology to accommodate new
services in next generation systems, ElHalawany et al. [59] presented
an extensive survey on ML-based beamforming for mmWave scenario.
The authors provided an overview and applicability of ML techniques,
summarized mmWave beamforming strategies and provided insightful
discussion about ML usage for mmWave beamforming. Although sub
6GHz frequencies were out of the scope, there are important recent
references not covered by the authors. In our work, we cover relevant
ML works for beamforming design in all range of frequencies.

The exponential growth of data traffic in next generation networks
motivates recent surveys to explore spectrum sharing security. Lu et al.
[169] surveyed RL strategies for the physical layer, focusing on jammers,
eavesdroppers, spoofers and inference attackers. Although the authors
provided a large overview of security techniques and defense strategies,
unsupervised and supervised learning classification strategies were not
considered. Falsification attacks, for example, rely on camouflaging the

Full text available at: http://dx.doi.org/10.1561/1300000073



10 Introduction

attacker as an authorized node. Classification methods were proved to
be efficient to combat this strategy [48, 269]. Wang et al. [269] review
spectrum sharing for various types of network frameworks. They also
investigate the state-of-the-art ML of security threats and defensive
strategies in different network layers. Instead of considering all network
aspects, Dangi et al. [48] address security issues focusing on network slice
lifecycle. The authors present insightful discussions on ML strategies
for network slicing and an existing related surveys mapping. Although
Dangi et al. [48] and Wang et al. [269] have many contributions in the
security field, they did not survey works related with spectrum sharing
mechanisms.

To summarize the above discussion on recent related works, Table
1.1 presents the main aspects and Table 1.2 summarizes the main
contributions covered by each work. Differently from other surveys, our
work covers the fundamentals of ML methods, which are prevalent in the
topic of spectrum sharing and are expected to play a key role in emerging
6G systems. The main reason for this is that 6G systems will cope with
the increasing traffic demands, complexity and scalability requirements
by employing cognitive and learning technologies, as inherent parts
of both lower and upper layers of the system. Also, we provide a
mathematical description of ML methods, highlight the conceptual
differences among them, and discuss spectrum sharing applications
for which ML techniques have already been successfully applied. We
also provide an in-depth comparison of the proposals available in the
literature, identify research gaps in the existing solutions, and discuss
open questions related to spectrum sharing that will be important in
the upcoming generation of wireless systems.

Another point also provided by our survey is the evaluation of the
most active keywords in the recent literature. We provide in Figure 1.3
a density illustration of the works cited in this survey, showing the most
relevant topics (keywords) considered in the surveyed literature. The
darker the color where the keyword is being shown the more frequent
the keyword is in the considered database. The neighborhood of the
keywords is related to their joint occurrence in the references and there-
fore the figure allows us to see which topics are more correlated. Finally,

Full text available at: http://dx.doi.org/10.1561/1300000073



1.1. Spectrum Sharing State-of-the-Art Surveys 11

Table 1.1: Spectrum sharing surveys aspects overview.

Work Spectrum Sharing Additional Aspects
Sensing Allocation Access Handoff ML Beamforming Security

[13] ✓ − − − ✓ − −
[245] ✓ − − − ✓ − −
[5] ✓ − ✓ − ✓ − −
[66] ✓ − ✓ − ✓ − −
[275] − ✓ − − ✓ − −
[310] − − ✓ − − − −
[309] − − ✓ − − − −
[249] ✓ ✓ ✓ − − − −
[206] − − ✓ − ✓ − −
[104] ✓ − − − ✓ − −
[222] − ✓ ✓ − ✓ − ✓
[94] ✓ ✓ ✓ ✓ − − −
[118] ✓ ✓ ✓ ✓ ✓ − −
[59] − − − − ✓ ✓ −
[169] − ✓ − − ✓ − ✓
[269] − ✓ − − ✓ − ✓
[48] − − − − ✓ − ✓

Our work ✓ ✓ ✓ ✓ ✓ ✓ ✓

only the keywords that are mentioned in at least 5 (five) references are
displayed in the density map.

The major contributions of the present survey are summarized as
follows:

• We cover the recent spectrum sharing surveys state-of-the-art
addressing the strong points and pointing out the main gaps of
each work, providing a comparison among various ML papers
on spectrum sensing, allocation, access and handoff scenarios
highlighting the main contributions of each work.

• We outline ML methods providing a general discussion and a
mathematical formulation in the context of spectrum sharing
networks describing the benefits of these approaches.

• We discuss the contributions of ML to fundamental aspects on
spectrum sharing security and beamforming applications.

• We identify existing challenges on spectrum sharing and we point
out how ML can be used as a potential solution to overcome those
issues. We also point to future open research on spectrum sharing
using ML applications.
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12 Introduction

Table 1.2: Spectrum sharing surveys key contributions summary.

Work Key Contribution
[13] A survey on narrowband and wideband spectrum sensing schemes for

CRNs.
[245] A survey on DL spectrum sensing schemes for CRNs.
[5] A review on spectrum sensing and DSA for cognitive radar networks. It

provides a detailed spectrum sensing classification and a spectrum
management framework.

[66] A systematic review on the relationship between spectrum sensing,
clustering algorithms, and energy-harvesting for CRNs in IoT context.

[275] An overview of the state-of-the-art of RL algorithms for spectrum
allocation on CRNs.

[310] A brief discussion on spectrum sharing techniques for CR, D2D, IBFD,
NOMA and LTE-U technologies.

[309] Discussion of spectrum sharing solutions for popular IoT technologies.
[249] Study of potential scenarios that can benefit from spectrum sharing.
[206] Brief survey on RL works for spectrum sharing on CRNs, including the

discussion of efficient spectrum management on 5G technology.
[104] A survey on ML algorithms in the cooperative spectrum sensing (CSS) and

DSS domain for CRNs.
[222] A deep learning discussion to tackle 5G and beyond wireless systems issues.
[94] A survey on spectrum sharing for CR towards 5G networks, including a

taxonomy from the perspective of Wider-Coverage, Massive-Capacity,
Massive-Connectivity, and Low-Latency.

[118] Provides a classification and a survey for ML techniques on spectrum
sharing scenario.

[59] Provides an overview of mmWave beamforming design with ML.
[169] Surveys RL techniques for physical layer attacks in 6G systes.
[269] Investigates the state-of-the-art ML defensive strategies, such as primary

user emulation, spectrum sensing data falsification, jamming and
eavesdropping attacks.

[48] A survey on security issues for 5G networking slicing.
Our

work
An extensive up to date survey on ML for spectrum sharing. Particularly,

1. We present several works that use ML as a tool for spectrum sharing
problem, including beamforming and security aspects.

2. We include a ML review section and summary tables that provide
useful insights on ML techniques for spectrum sharing.

3. We also highlight spectrum sharing challenges and future research
directions.

Full text available at: http://dx.doi.org/10.1561/1300000073



1.1. Spectrum Sharing State-of-the-Art Surveys 13

Figure 1.3: Density of the keywords presented in the cited references of this survey.

This survey is structured as follows. Section 2 introduces ML schemes
which can be used in the context of spectrum sharing. More than just
a recall about the main ML methods, the goal is to provide a more
suitable description of the methods for the applications of spectrum
sharing. Although the literature has a high number of introductory texts
about machine learning and the topics covered in Section 2 could be just
assumed to be known by the reader, the section is intended to be a self-
contained introduction to the most important ML methods. This will
allow the unfamiliar reader to see the details of some of the strategies
available in the literature to be able to understand the underlying
concepts that are used for the solution of the spectrum sharing problems.
Hence, the reader already familiar with the ML strategies and models
can skip Section 2 without any loss of continuity. Sections 3, 4 and 5
review the most relevant works in the literature covering ML solutions
for spectrum sensing, allocation and access, respectively. Section 6
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addresses ML usage on spectrum handoff, beamforming and spectrum
sharing security. Subsequently, Section 7 discusses the main issues and
challenges on spectrum sharing and highlights important points on
spectrum sharing for future research. Finally, Section 8 concludes this
survey. A list of key acronyms and abbreviations used throughout the
survey is given in Table 1.3.

Table 1.3: List of key acronyms.

Acronym Definition Acronym Definition
AE Autoencoder LRMM Log-Rayleigh Mixture Model
AI Artificial Intelligence LSTM Long Short-Term Memory

ANN Artificial Neural Network MAB Multi-Armed Bandit
BS Base Station MARL Multi-Agent Reinforcement

Learning
BF Beamforming MDP Markov Decision Process

CBF Coordinated Beamforming ML Machine Learning
CSI Channel State Information MM Mixture Model

CSIT Channel State Information at
the Transmitter

mmWave Millimeter-Wave

CNN Convolutional Neural Network NOMA Non-Orthogonal Multiple
Access

CRN Cognitive Radio Network NR New Radio
CSS Cooperative Spectrum Sensing PU Primary User

DDQN Double Deep Q Network PR Primary Receiver
DL Deep Learning PSO Particle Swarm Optimization

DNN Deep Neural Network QoE Quality of Experience
DRL Deep Reinforcement Learning QoS Quality of Service
DSA Dynamic Spectrum Access RAN Radio Access Network
DSS Dynamic Spectrum Sharing RAT Radio Access Technology

eMBB Enhanced Mobile Broadband RF Random Forest
eNB Evolved Node B RNN Recurrent Neural Network
FDA Fisher Discriminant Analysis RL Reinforcement Learning

GMM Gaussian Mixture Model ROC Receiver Operating
Characteristics

HBF Hybrid Beamforming RSS Received Signal Strength
HMM Hidden Markov Model SAE Stacked Autoencoder
IBFD In-Band Full-Duplex SGD Stochastic Gradient Descent

IDS Intrusion Detection System SINR Signal-to-Interference-plus-
Noise Ratio

IoT Internet of Things SU Secondary User
ITU International

Telecommunication Union
SVM Support Vector Machine

k-NN k-Nearest Neighbor UAV Unmanned Aerial Vehicle
KPI Key Performance Indicator UE User Equipment
LTE Long-Term Evolution URLLC Ultra-Reliable Low-Latency

Communication
LTE-U Long-Term Evolution on

Unlicensed Spectrum
VUE Vehicular User Equipment
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1.2 Summary

In this section, we introduced the spectrum sharing problem. Specifically,
we contextualized the need for the use of spectral sharing in 5G and
beyond networks and we pointed out ML as one of the enables to do
it efficiently. We also presented the state of the art of recent spectrum
sharing surveys, along with the contributions of our work.

In the next section, we will discuss the ML approaches and common
algorithms used by spectrum sharing ML works in literature.
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