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Abstract

Finding low-rank solutions of semidefinite programs is important in
many applications. For example, semidefinite programs that arise as
relaxations of polynomial optimization problems are exact relaxations
when the semidefinite program has a rank-1 solution. Unfortunately,
computing a minimum-rank solution of a semidefinite program is an
NP-hard problem. In this paper we review the theory of low-rank
semidefinite programming, presenting theorems that guarantee the ex-
istence of a low-rank solution, heuristics for computing low-rank solu-
tions, and algorithms for finding low-rank approximate solutions. Then
we present applications of the theory to trust-region problems and sig-
nal processing.

A. Lemon, A. M.-C. So, Y. Ye. Low-Rank Semidefinite Programming:
Theory and Applications. Foundations and Trends® in Optimization, vol. 2,
no. 1-2, pp. 1-156, 2015.
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1

Introduction

1.1 Low-rank semidefinite programming

A semidefinite program (SDP) is an optimization problem of the form

minimize C e X (SDP)
subject to A; e X =b;, i=1,...,m
X > 0.

The optimization variable is X € S™, where S™ is the set of all n x n
symmetric matrices, and the problem data are Ay, ..., A;,,C € S™ and
b € R™. The trace inner product of A, B € R™*" ig

AeB=tr(ATB) = ZZAUBU
i=17=1

The constraint X > 0 denotes a generalized inequality with respect to
the cone of positive-semidefinite matrices, and means that X is positive
semidefinite: that is, 2" Xz > 0 for all z € R". We can write
more compactly by defining the operator A : S — R such that

Al o X

A(X) = :
A, e X
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1.1. Low-rank semidefinite programming 3

Using this notation we can express (SDP)) as

minimize CeoX

subject to A(X) =10

X > 0.
The dual problem of (SDP)) is
maximize b'y (SDD)
subject to >,y Ai+S=C
S =0,

where the optimization variables are y € R and S € S™. We can write
(SDD)) more succinctly as

maximize b'y
subject to A*(y)+ S =C
S =0,

where the adjoint operator A* : R™ — S™ is given by

m

A(y) =D wide.

i=1
We do not attempt to give a general exposition of the theory of semidef-
inite programming in this paper — an excellent survey is provided by
Vandenberghe and Boyd [96]. The preceding remarks are only meant
to establish our particular conventions for talking about SDPs. Addi-
tional results about SDPs are given in Appendix [A] which presents
those aspects of the theory that are most relevant for our purposes.

Semidefinite programs can be solved efficiently using interior-

point algorithms. However, such algorithms typically converge to a
maximum-rank solution [45], and in many cases we are interested in
finding a low-rank solution. For example, it is well known that every
polynomial optimization problem has a natural SDP relaxation, and
this relaxation is exact when it has a rank-1 solution. (We include the
derivation of this important result in Appendix [A| for completeness.)
Unfortunately, finding a minimum-rank solution of an SDP is NP-hard:
a special case of this problem is finding a minimum-cardinality solution
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of a system of linear equations, which is known to be NP-hard [36]. In
this paper we review approaches to finding low-rank solutions and ap-
proximate solutions of SDPs, and present some applications in which
low-rank solutions are important.

1.2 Outline

Chapter [2] discusses reduced-rank exact solutions of SDPs and theo-
rems about rank. We give an efficient algorithm for reducing the rank
of a solution. Although the algorithm may not find a minimum-rank so-
lution, it often works well in practice, and we can prove a bound on the
rank of the solution returned by the algorithm. Then we give a theorem
relating the uniqueness of the rank of a solution to the uniqueness of
the solution itself, and show how to use this theorem for sensor-network
localization. The chapter concludes with a theorem that allows us to
deduce the existence of a low-rank solution from the sparsity structure
of the coeflicients.

Because finding a minimum-rank solution of an SDP is NP-hard,
we do not expect to arrive at an algorithm that accomplishes this task
in general. However, there are many heuristics for finding low-rank
solutions that often perform well in practice; we discuss these methods
in Chapter [3] We also present rounding methods, in which we find a
low-rank approximate solution that is close to a given exact solution in
some sense. One of the rounding methods that we discuss is the famous
Goemans-Williamson algorithm [39]; if the unique-games conjecture is
true, then this algorithm achieves the best possible approximation ratio
for the maximum-cut problem [57), 58].

The paper concludes with two chapters covering applications of
the theoretical results to trust-region problems and signal processing.
There are three appendices: the first gives background information, and
establishes our notation; the second reviews some classical results about
linear programming that we generalize to semidefinite programming in
Chapter 2} and the last contains technical probability lemmas that are
used in our analysis of rounding methods.
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