
The Many Faces of
Degeneracy in Conic

Optimization

Dmitriy Drusvyatskiy
Department of Mathematics

University of Washington
ddrusv@uw.edu

Henry Wolkowicz
Faculty of Mathematics
University of Waterloo

hwolkowicz@uwaterloo.ca

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2400000011

ddrusv@uw.edu
hwolkowicz@uwaterloo.ca


Foundations and Trends R© in Optimization

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

D. Drusvyatskiy and H. Wolkowicz. The Many Faces of Degeneracy in Conic
Optimization . Foundations and TrendsR© in Optimization, vol. 3, no. 2,
pp. 77–170, 2016.

This Foundations and TrendsR© issue was typeset in LATEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-390-4
c© 2017 D. Drusvyatskiy and H. Wolkowicz

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2400000011



Foundations and Trends R© in Optimization
Volume 3, Issue 2, 2016

Editorial Board

Editors-in-Chief

Stephen Boyd
Stanford University
United States

Yinyu Ye
Stanford University
United States

Editors

Dimitris Bertsimas
Massachusetts Institute of Technology
Dimitri P. Bertsekas
Massachusetts Institute of Technology
John R. Birge
University of Chicago
Robert E. Bixby
Rice University
Emmanuel Candès
Stanford University
David Donoho
Stanford University
Laurent El Ghaoui
University of California, Berkeley
Donald Goldfarb
Columbia University
Michael I. Jordan
University of California, Berkeley
Zhi-Quan (Tom) Luo
University of Minnesota, Twin Cites
George L. Nemhauser
Georgia Institute of Technology
Arkadi Nemirovski

Georgia Institute of Technology
Yurii Nesterov
UC Louvain
Jorge Nocedal
Northwestern University
Pablo A. Parrilo
Massachusetts Institute of Technology
Boris T. Polyak
Institute for Control Science, Moscow
Tamás Terlaky
Lehigh University
Michael J. Todd
Cornell University
Kim-Chuan Toh
National University of Singapore
John N. Tsitsiklis
Massachusetts Institute of Technology
Lieven Vandenberghe
University of California, Los Angeles
Robert J. Vanderbei
Princeton University
Stephen J. Wright
University of Wisconsin

Full text available at: http://dx.doi.org/10.1561/2400000011



Editorial Scope

Topics

Foundations and Trends R© in Optimization publishes survey and tuto-
rial articles on methods for and applications of mathematical optimiza-
tion, including the following topics:

• Algorithm design, analysis, and implementation (especially on modern
computing platforms)

• Models and modeling systems

• New optimization formulations for practical problems

• Applications of optimization in:

– Machine learning
– Statistics
– Data analysis
– Signal and image processing
– Computational economics and finance
– Engineering design
– Scheduling and resource allocation
– and other areas

Information for Librarians

Foundations and Trends R© in Optimization, 2016, Volume 3, 4 issues. ISSN
paper version 2167-3888. ISSN online version 2167-3918. Also available as a
combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2400000011



Foundations and TrendsR© in Optimization
Vol. 3, No. 2 (2016) 77–170
c© 2017 D. Drusvyatskiy and H. Wolkowicz
DOI: 10.1561/2400000011

The Many Faces of Degeneracy in Conic
Optimization

Dmitriy Drusvyatskiy
Department of Mathematics
University of Washington

ddrusv@uw.edu

Henry Wolkowicz
Faculty of Mathematics
University of Waterloo

hwolkowicz@uwaterloo.ca

Full text available at: http://dx.doi.org/10.1561/2400000011

ddrusv@uw.edu
hwolkowicz@uwaterloo.ca


Contents

1 What this monograph is about 2
1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Outline of the monograph . . . . . . . . . . . . . . . . . . 4
1.3 Reflections on Jonathan Borwein and FR . . . . . . . . . . 4

I Theory 6

2 Convex geometry 7
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Facial geometry . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Conic optimization problems . . . . . . . . . . . . . . . . 15
2.4 Commentary . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Virtues of strict feasibility 22
3.1 Theorem of the alternative . . . . . . . . . . . . . . . . . 22
3.2 Stability of the solution . . . . . . . . . . . . . . . . . . . 25
3.3 Distance to infeasibility . . . . . . . . . . . . . . . . . . . 28
3.4 Commentary . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Facial reduction 31
4.1 Preprocessing in linear programming . . . . . . . . . . . . 31

ii

Full text available at: http://dx.doi.org/10.1561/2400000011



iii

4.2 Facial reduction in conic optimization . . . . . . . . . . . 33
4.3 Facial reduction in semi-definite programming . . . . . . . 34
4.4 What facial reduction actually does . . . . . . . . . . . . . 36
4.5 Singularity degree and the Hölder error bound in SDP . . . 40
4.6 Towards computation . . . . . . . . . . . . . . . . . . . . 41
4.7 Commentary . . . . . . . . . . . . . . . . . . . . . . . . . 42

II Applications and illustrations 44

5 Introduction 45

6 Matrix completions 46
6.1 Positive semi-definite matrix completion . . . . . . . . . . 46
6.2 Euclidean distance matrix completion, EDMC . . . . . . . 52
6.3 Low-rank matrix completions . . . . . . . . . . . . . . . . 58
6.4 Commentary . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Hard combinatorial problems 63
7.1 Quadratic assignment problem, QAP . . . . . . . . . . . . 63
7.2 Second lift of Max-Cut . . . . . . . . . . . . . . . . . . . 68
7.3 General semi-definite lifts of combinatorial problems . . . . 70
7.4 Elimination method for sparse SOS polynomials . . . . . . 72
7.5 Commentary . . . . . . . . . . . . . . . . . . . . . . . . . 75

Acknowledgements 78

Index 79

References 82

Full text available at: http://dx.doi.org/10.1561/2400000011



Abstract

Slater’s condition – existence of a “strictly feasible solution” – is a
common assumption in conic optimization. Without strict feasibility,
first-order optimality conditions may be meaningless, the dual prob-
lem may yield little information about the primal, and small changes
in the data may render the problem infeasible. Hence, failure of strict
feasibility can negatively impact off-the-shelf numerical methods, such
as primal-dual interior point methods, in particular. New optimization
modeling techniques and convex relaxations for hard nonconvex prob-
lems have shown that the loss of strict feasibility is a more pronounced
phenomenon than has previously been realized. In this text, we de-
scribe various reasons for the loss of strict feasibility, whether due to
poor modeling choices or (more interestingly) rich underlying struc-
ture, and discuss ways to cope with it and, in many pronounced cases,
how to use it as an advantage. In large part, we emphasize the facial
reduction preprocessing technique due to its mathematical elegance,
geometric transparency, and computational potential.

D. Drusvyatskiy and H. Wolkowicz. The Many Faces of Degeneracy in Conic
Optimization . Foundations and TrendsR© in Optimization, vol. 3, no. 2,
pp. 77–170, 2016.
DOI: 10.1561/2400000011.
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1
What this monograph is about

Conic optimization has proven to be an elegant and powerful modeling
tool with surprisingly many applications. The classical linear program-
ming problem revolutionized operations research and is still the most
widely used optimization model. This is due to the elegant theory and
the ability to solve in practice both small and large scale problems ef-
ficiently and accurately by the well known simplex method of Dantzig
[37] and by more recent interior-point methods for convex and non-
convex problems, e.g., [151, 100, 27]. The size (number of variables)
of linear programs that could be solved before the interior-point revo-
lution was on the order of tens of thousands, whereas it immediately
increased to millions for many applications. A large part of modern
success is due to preprocessing, which aims to identify (primal and
dual slack) variables that are identically zero on the feasible set. The
article [98] is a good reference.

The story does not end with linear programming. Dantzig himself
recounts in [38]: “the world is nonlinear”. Nonlinear models can sig-
nificantly improve on linear programs if they can be solved efficiently.
Conic optimization has shown its worth in its elegant theory, efficient
algorithms, and many applications e.g., [149, 10, 21]. Preprocessing

2
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1.1. Related work 3

to rectify possible loss of “strict-feasibility” in the primal or the dual
problems is appealing for general conic optimization as well. In con-
trast to linear programming, however, the area of preprocessing for
conic optimization is in its infancy; see e.g., [31, 140, 32, 109, 111] and
Section 1.1, below. In contrast to linear programming, numerical error
makes preprocessing difficult in full generality. This being said, surpris-
ingly, there are many specific applications of conic optimization, where
the rich underlying structure makes preprocessing possible, leading to
greatly simplified models and strengthened algorithms. Indeed, exploit-
ing structure is essential for making preprocessing viable. In this mono-
graph, we present the background and the elementary theory of such
regularization techniques in the framework of facial reduction (FR).
We focus on notable case studies, where such techniques have proven
to be useful.

1.1 Related work

To put this text in perspective, it is instructive to consider nonlinear
programming. Nontrivial statements in constrained nonlinear optimiza-
tion always rely on some regularity of the constraints. To illustrate,
consider a minimization problem over a set of the form {x : f(x) = 0}
for some smooth f . How general are such constraints? A celebrated
result of Whitney [146] shows that any closed set in a Euclidean space
can written as a zero-set of some C∞-smooth function f . Thus, in this
generality, there is little difference between minimizing over arbitrary
closed sets and sets of the form {x : f(x) = 0}, for smooth f . Since little
can be said about optimizing over arbitrary closed sets, one must make
an assumption on the equality constraint. The simplest one, eliminat-
ing Whitney’s construction, is that the gradient of f is nonzero on the
feasible region – the earliest form of a constraint qualification. There
have been numerous papers, developing weakened versions of regular-
ity (and optimality conditions) in nonlinear programming; some good
examples are [64, 26, 23].

The Slater constraint qualification, we discuss in this text, is in a
similar spirit, but in the context of (convex) conic optimization. Some

Full text available at: http://dx.doi.org/10.1561/2400000011



4 What this monograph is about

good early references on the geometry of the Slater condition, and weak-
ened variants, are [59, 95, 96, 147, 20]. The concept of facial reduction
for general convex programs was introduced in [24, 25], while an early
application to a semi-definite type best-approximation problem was
given in [148]. Recently, there has been a significant renewed interest
in facial reduction, in large part due to the success in applications for
graph related problems, such as Euclidean distance matrix completion
and molecular conformation [78, 77, 48, 6] and in polynomial optimiza-
tion [112, 113, 76, 144, 143]. In particular, a more modern explanation
of the facial reduction procedure can be found in [89, 106, 109, 138, 145].

We note in passing that numerous papers show that strict feasi-
bility holds “generically” with respect to unstructured perturbations.
In contrast, optimization problems appearing in applications are often
highly structured and such genericity results are of little practical use.

1.2 Outline of the monograph

The monograph is divided into two parts. In Part I, we present the
necessary theoretical grounding in conic optimization, including ba-
sic optimality and duality theory, connections of Slater’s condition to
the distance to infeasibility and sensitivity theory, the facial reduc-
tion procedure, and the singularity degree. In Part II, we concentrate
on illustrative examples and applications, including matrix completion
problems (semi-definite, low-rank, and Euclidean distance), relaxations
of hard combinatorial problems (quadratic assignment and max-cut),
and sum of squares relaxations of polynomial optimization problems.

1.3 Reflections on Jonathan Borwein and FR

These are some reflections on Jonathan Borwein and his role in the
development of the facial reduction technique, by Henry Wolkowicz.
Jonathon Borwein passed away unexpectedly on Aug. 2, 2016. Jon was
an extraordinary mathematician who made significant contributions in
an amazing number of very diverse areas. Many details and personal
memories by myself and many others including family, friends, and
colleagues, are presented at the memorial website jonborwein.org.
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1.3. Reflections on Jonathan Borwein and FR 5

This was a terrible loss to his family and all his friends and colleagues,
including myself. The facial reduction process we use in this monograph
originates in the work of Jon and the second author (myself). This work
took place from July of 1978 to July of 1979 when I went to Halifax to
work with Jon at Dalhousie University in a lectureship position. The
optimality conditions for the general abstract convex program using
the facially reduced problem is presented in the two papers [24, 23].
The facial reduction process is then derived in [25].
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