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ABSTRACT
This monograph provides an overview of distributed online
optimization in multi-agent systems. Online optimization
approaches planning and decision problems from a robust
learning perspective, where one learns through feedback
from sequentially arriving costs, resembling a game between
a learner (agent) and the environment. Recently, multi-agent
systems have become important in diverse areas including
smart power grids, communication networks, machine learn-
ing, and robotics, where agents work with decentralized data,
costs, and decisions to collectively minimize a system-wide
cost. In such settings, agents make distributed decisions and
collaborate with neighboring agents through a communica-
tion network, leading to scalable solutions that often perform
as well as centralized methods. The monograph offers a uni-
fied introduction, starting with fundamental algorithms for
basic problems, and gradually covering state-of-the-art tech-
niques for more complex settings. The interplay between
individual agent learning rates, network structure, and com-
munication complexity is highlighted in the overall system
performance.
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1
Introduction

1.1 Online Optimization

Online optimization treats the optimization process as one where data
and cost functions are introduced sequentially. This approach traces
back to classical work on sequential decision-making, particularly in
multi-armed bandit problems. Recently, online optimization has become
an important tool in machine learning, addressing problems such as
recommender systems and spam filtering [38]. In this framework, deci-
sions are made to optimize time-varying cost functions, with the process
evolving through feedback, allowing the learner to improve over time.
Performance is typically evaluated against a static optimal decision that
could have been made in hindsight. Formally, online optimization is
modeled as a game between a learner and an adversary, played over a
finite time horizon t = 1, . . . , T .

2
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1.1. Online Optimization 3

Online Optimization Paradigm [77]

Initialize X as a convex subset of Rd.
For t = 1, . . . , T , DO

(i) The adversary selects a convex cost function ℓt(·) : X ⊆
Rd → R and keeps it to itself;

(ii) The learner makes a decision xt ∈ X;

(iii) The learner suffers a loss ℓt(xt), and receives the cost func-
tion ℓt(·) (full information), or just the value of the loss
ℓt(xt) (bandit information).

In classical optimization (i.e., a classical learner), the loss function
ℓt(·) at step t is revealed before the learner attempts to minimize it.
In contrast, online optimization acknowledges the difficulty in knowing
ℓt(·) or even a model of it before decisions are made. The learner
receives information about ℓt(·) after she has taken a decision and this
information can be the whole function, a scenario referred to as full
information; or the learner only experiences losses at selected decisions,
and in this case, we talk about bandit information. The loss functions
ℓt(·) are generally assumed to be arbitrary (but chosen from a given
function class). Hence, it is impossible for the learner to infer ℓt(·)
before the decisions are made. As a result, it is sensible for the learner
to identify x1, . . . ,xT ∈ X so that the regret, i.e.,

Reg(T ) :=
T∑
t=1

ℓt(xt) − min
x∈X

T∑
t=1

ℓt(x) (1.1)

is minimized. In the above definition, minx∈X

∑T
t=1 ℓt(x) is the minimal

accumulated loss of an oracle making a static decision to whom all ℓt(·)
are known before t = 1. Therefore, Reg(T ) represents the difference be-
tween the actual accumulated loss experienced by the learner compared
to that of such an oracle.

The central premise of online optimization lies in the possibility of
achieving an infinitesimal regret on average in the asymptotic sense,
i.e.,
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4 Introduction

Reg(T )/T = o(1)
for carefully crafted algorithms as T grows large. Typically, one may
achieve Reg(T ) = O(Tα) for some 0 < α < 1, implying a robust learning
process.

1.2 Multi-agent Optimization

Multi-agent optimization arises from emerging applications in smart
grids, machine learning, robotics, etc., where data and decisions are
spread over physically separated subsystems represented by agents. The
agents are interconnected through a communication network, aiming to
minimize a system-level cost [12]. In the simplest form, the communica-
tion network is modeled as an undirected graph G = (V,E), where V is
a finite set of indices representing agents, and {i, j} ∈ E indicates that
nodes i and j can communicate.

Example 1.1. (Optimal Power Flow [30]) Consider an electrical network
with n nodes indexed in V = {1, . . . , n}. Let vi ∈ C and ii ∈ C be the
voltage and inflow current at node i. The network structure is captured
by an admittance matrix A ∈ Cn×n. Then xi := Re(vii†i ) defines the
active power at node i, where † is the complex conjugate. Let ℓi(xi)
denote the cost associated with the power allocation at node i. An
optimal power flow problem seeks to minimize the cost of electric power
generation while satisfying operating constraints:

min
x

n∑
i=1

ℓi(xi)

s. t. xi = Re
(
vii†i

)
, i = 1, . . . , n

s. t. vii†i = vi
n∑
j=1

A†
ijv

†
j , i = 1, . . . , n.

(1.2)

Example 1.2. (Collaborative Learning [29]) Consider n data owners
indexed in V = {1, . . . , n}. Each data owner i holds a private data set
{(yik, zik) : k = 1, . . . ,Ki}, where yik represents input data, and zik
is the corresponding label. When xi is a local model for the learning
representation, the local cost for agent i is

Full text available at: http://dx.doi.org/10.1561/2400000037



1.2. Multi-agent Optimization 5

ℓi(xi) =
Ki∑
k=1

g(xi; yik, zik),

where g is a loss function quantifying the accuracy of the local models.
A collaborative learning problem is then described by

min
x

n∑
i=1

ℓi(xi)

s. t. x1 = x2 = · · · = xn

(1.3)

where the agents collectively train a model from all data sets.

Example 1.3. (Multi-robot Localization and Mapping [89]) Consider a
team of robots indexed in V = {1, . . . , n}. Each robot i is modeled as a
3D rigid body described by a pose xi. A conventional representation of
xi is via a 4 × 4 transformation matrix that combines the translation
of the center of the mass xi ∈ R3 and the rotation of the robot body
Ri ∈ SO(3):

xi :=
[
Ri xi

03×1 1

]
.

There are also k features m1, . . . ,mk used as landmarks for the envi-
ronment. Each robot i observes its relative pose yis to landmark s. The
robots aim to solve the following optimization problem

min
x,m1,...,mk

n∑
i=1

k∑
s=1

∥ℓi(xi,ms) − yis∥2
2 (1.4)

to estimate the robot poses and map features in the ground frame. Here
ℓi(xi,ms) is the measurement model. For example, if the observation
yis is from a monocular camera [100], we have

ℓi(xi,ms) = R⊤
i (ms − xi)/∥R⊤

i (ms − xi)∥2.

The premise of multi-agent optimization lies in the possibility that
all agents in V, only knowing their local cost functions, solve the network-
level optimization problem by exchanging their decisions with neighbors
(i.e., nodes that share a link) over the communication graph G = (V,E).
For a large-scale network where nodes are physically separated, multi-
agent optimization brings scalability while providing global optimality.
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6 Introduction

1.3 Multi-agent Online Optimization

The multi-agent online optimization attempts to combine the strengths
of online optimization and multi-agent optimization, creating robust
and scalable optimization frameworks for complex multi-agent systems.
The agents in V = {1, . . . , n} experience local and sequential losses ℓi,t(·)
for t = 1, . . . , T , and they locally implement and exchange their local
decisions xi(t) ∈ X with neighbors over the communication graph G.
Now the network-level goal is to minimize the accumulated system-wide
loss, defined as the worst possible regret among agents:

SReg(T ) := max
i∈V

 T∑
t=1

n∑
j=1

ℓj,t(xi(t)) −
T∑
t=1

n∑
j=1

ℓj,t(x⋆)

 (1.5)

where x⋆ = arg minx∈X

∑T
t=1

∑n
j=1 ℓj,t(x) is the system-level decision

taken by a static optimal oracle.

Multi-agent Online Convex Optimization

Initialize X as a convex subset of Rd.

For t = 1, . . . , T , agents in V DO

• Each agent i ∈ V selects xi(t) ∈ X, and a local adversary
chooses ℓi,t(·) : Rd → R as a convex cost function;

• Each agent experiences a loss ℓi,t(xi(t));

• The function ℓi,t is revealed to agent i;

• The decisions of the neighbors of the agent i are revealed
to i from the communication network G, i.e., xj(t) for
j ∈ Ni := {j : {i, j} ∈ E}.

The first challenge in multi-agent online optimization is whether
and how the robustness of online optimization and the scalability of
distributed multi-agent optimization comply with each other in the
algorithm design. Multi-agent online optimization algorithms delicately
adapt existing online optimization algorithms to the new decentralized

Full text available at: http://dx.doi.org/10.1561/2400000037



1.4. Scope and Organization 7

settings, and the achievable global performance SReg(T ) depends on
the learning rate, network structure, and communication complexity,
leading to new challenges in performance evaluations.

1.4 Scope and Organization

We present a unified introduction to the state-of-the-art distributed
optimization algorithms for multi-agent systems under full information
or bandit information feedback. We also provide a full and self-contained
analysis for their achievable regret bounds, where distributed decisions
planned and executed by agents over a communication graph provide
scalable solutions with performances often matching their centralized
counterparts. For the majority of the monograph, we adopt a simple
problem setting, where the cost functions are continuously differentiable,
and the communication graph does not change over time. This allows
us to present the fundamental algorithms and their analysis as directly
as possible. We then move to more complex settings and report the
state-of-the-art results in the literature.

The remainder of the monograph is organized as follows. Section
2 presents the technical preliminaries on graph theory, distributed
multi-agent optimization, and online optimization that will be used in
subsequent discussions. Section 3 presents three fundamental distributed
online gradient-based algorithms under full information feedback: the
Distributed Online Gradient Descent, Distributed Online Mirror De-
scent, and Distributed Online Dual Averaging algorithms. Section 4
then moves to bandit feedback and presents the bandit variations of
the three algorithms, where gradient estimators allow gradient descent
without access to the true gradient information. Sections 5 and 6 explore
two important extensions of the basic problem settings on long-term
constraints and online linear regressions, respectively. Finally, Sections
7 and 8 move to recently reported results for compressed node-to-node
communications and dynamic networks.
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8 Introduction

1.5 Notation and Basic Definitions

We denote scalars and vectors with lowercase letters (e.g., a) and
boldface letters (e.g., x), respectively. We use R to denote the set of real
numbers, R+ to denote the set of nonnegative real numbers. The set
of d-dimensional real vectors is denoted Rd. We use Rd+ to denote the
nonnegative orthant, i.e., Rd+ = {x ∈ Rd | [x]i ≥ 0, i = 1, . . . , d}. The
i-th element of a vector x is denoted [x]i. The set of real n×n matrices
is denoted Rn×n. We use ∥x∥2 and ∥x∥1 to denote the Euclidean (or ℓ2)
norm and ℓ1 norm of a vector x ∈ Rd, respectively; for the Euclidean
norm, we omit the subscript when it is clear from the context. A generic
norm of a vector is denoted by ∥x∥ and its dual norm is defined by
∥x∥∗ = sup∥y∥=1 x⊤y. The definition of the dual norm immediately
implies x⊤y ≤ ∥x∥∥y∥∗. We use [N ] to denote the set {1, . . . , N} for
any N ≥ 2. We denote BR = {x ∈ Rd : ∥x∥2 ≤ R} with 0 < R < ∞.
Denote 0, 1, and I as the all-zero vector, the all-one vector, and the
identity matrix, respectively, where their dimensions are implied in the
context.

A set X is convex if for any x1,x2 ∈ X and any θ ∈ [0, 1], we have
θx1 + (1 − θ)x2 ∈ X. When X is closed, PX(x) denotes the Euclidean
projection of point x onto a convex set X, i.e., PX(x) = arg miny∈X ∥y−
x∥2. A function ℓ : Rd → R is convex if its domain is a convex set and
for any x1 and x2 in the domain and θ ∈ [0, 1], we have

ℓ(θx1 + (1 − θ)x2) ≤ θℓ(x1) + (1 − θ)ℓ(x2).

When ℓ is differentiable, it is convex if and only if for any x1,x2 ∈ X,

ℓ(x1) ≥ ℓ(x2) + ∇ℓ(x2)⊤(x1 − x2).

A function is called G-Lipschitz over X with respect to a norm ∥ · ∥ if
for all x1,x2 ∈ X we have

|ℓ(x1) − ℓ(x2)| ≤ G∥x1 − x2∥.
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