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ABSTRACT

Reinforcement Learning (RL) serves as a versatile framework
for sequential decision-making, finding applications across
diverse domains such as robotics, autonomous driving, rec-
ommendation systems, supply chain optimization, biology,
mechanics, and finance. The primary objective of these ap-
plications is to maximize the average reward. Real-world
scenarios often necessitate adherence to specific constraints
during the learning process.

This monograph focuses on the exploration of various model-
based and model-free approaches for Constrained RL within
the context of average reward Markov Decision Processes
(MDPs). The investigation commences with an examination
of model-based strategies, delving into two foundational
methods – optimism in the face of uncertainty and pos-
terior sampling. Subsequently, the discussion transitions
to parametrized model-free approaches, where the primal

Vaneet Aggarwal, Washim Uddin Mondal and Qinbo Bai (2024), “Constrained
Reinforcement Learning with Average Reward Objective: Model-Based and Model-
Free Algorithms”, Foundations and Trends® in Optimization: Vol. 6, No. 4, pp
193–298. DOI: 10.1561/2400000038.
©2024 V. Aggarwal et al.
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2

dual policy gradient-based algorithm is explored as a solu-
tion for constrained MDPs. The monograph provides regret
guarantees and analyzes constraint violation for each of the
discussed setups.

For the above exploration, we assume the underlying MDP to
be ergodic. Further, this monograph extends its discussion
to encompass results tailored for weakly communicating
MDPs, thereby broadening the scope of its findings and
their relevance to a wider range of practical scenarios.
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1
Introduction

Reinforcement Learning (RL) describes a class of problems where an
agent repeatedly interacts with an unknown environment. The environ-
ment possesses a state that changes as a result of the action executed by
the agent according to some pre-determined but unknown probability
law. The environment also generates feedback, which is often called
the reward. The agent’s goal is to choose a sequence of actions (based
on the sequence of observed states and rewards) that maximizes the
expected cumulative sum of rewards obtained via this procedure. This
model has found its application in a wide array of areas, ranging from
networking to transportation to robotics to epidemic control [1], [20],
[36], [39], [45], [48]. RL problems are typically analyzed via three distinct
setups−episodic, infinite horizon discounted reward, and infinite horizon
average reward. In an episodic setup, the environment restores its initial
state after a certain number of interactions. Examples include video
game-based applications where the learner restarts the game after either
winning or losing it. In a discounted setup, the learner aims to maximize
the expected discounted sum of rewards. The underlying philosophy
is that the current reward, in certain applications, is deemed more
valuable than the rewards obtained in the future. This idea naturally

3
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4 Introduction

fits into financial applications where the reward (money) loses value over
time due to inflation. The average reward setup, on the contrary, places
both the current and future rewards on the same footing and aims to
maximize the expected average reward computed over an infinitely long
time horizon. The basic premise of the infinite horizon average reward
setup aligns with most practical scenarios due to its ability to capture
essential long-term behaviors. Some applications in real life require the
learning procedure to respect the boundaries of certain constraints. In
an epidemic control setup, for example, vaccination policies must take
the supply shortage (budget constraint) into account. Such restrictive
decision-making routines are described by a constrained Markov Deci-
sion Process (CMDP) [6], [15], [50]. This monograph aims to provide
the key approaches to tackle CMDP with an average reward objective.

To gain more insight into CMDPs, consider a wireless sensor network
where a device aims to update a server with its sensed values. At time
t, the sensor can either choose to send a packet which, upon successful
transmission, fetches a reward of one unit or to queue the packet and
obtain a zero reward. However, communicating a packet results in pt

power consumption. The success probability of the intended packet is
decided via a pre-determined but unknown function of pt and the current
wireless channel condition, st. The goal is to send as many packets
as possible while keeping the average power consumption,

∑T
t=1 pt/T ,

within some limit, say C. The state of the environment can be described
by the pair (st, qt) where st, as stated above, is the channel condition,
and qt is the queue length at time t. To limit the power consumption,
the agent may choose to transmit packets when the channel condition is
good or when the queue length grows beyond a certain threshold. The
agent aims to learn the policies in an online manner which requires
efficiently balancing exploration of state-space and exploitation of the
estimated system dynamics [62].

Similar to the example above, many applications require keeping
some costs low while simultaneously maximizing the rewards [10]. This
monograph discusses model-based and model-free algorithms for the
CMDP learning problem described above. A model-based algorithm
aims to learn the optimal policy by creating a good estimate of the
state-transition function of the underlying CMDP. The caveat of the
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1.1. Section Organization 5

model-based approach is the large memory requirement to store the
estimated parameters which effectively curtails its applicability to large
state space CMDPs. The alternative strategy, known as the model-free
approach, either directly estimates the policy function or maintains
an estimate of the Q function, which is subsequently used for policy
generation [66]. Model-free algorithms typically demand lower memory
and computational resources than their model-based counterparts.

The problem setup, where the system dynamics are known, is ex-
tensively studied [10]. For a constrained setup, the optimal policy is
possibly stochastic [10], [57]. Even though the problem has been widely
studied in episodic and discounted reward setups [13], [15], [26], [35],
[72], the focus of this monograph is on the average reward setup, thus
providing a comprehensive study of the state of the art in the area.

1.1 Section Organization

In Section 2, we consider a model-based approach for learning CMDPs
with average reward and costs. We discuss posterior sampling-based and
optimism-based algorithms. We demonstrate Õ(

√
T ) objective regret

and zero constraint violation for both of them. The presented results
follow the recent works of Agarwal et al. [6], [7].

In Section 3, we consider a model-free approach for learning CMDP
via general parametrization. General parameterization indexes the poli-
cies by finite-dimensional parameters (e.g., weights of neural networks)
to accommodate large state spaces. The learning is manifested by updat-
ing these parameters using policy gradient (PG)-type algorithms. This
section primarily follows the works of Bai et al. [16], [17] and presents
an algorithm that achieves Õ(T 4/5) objective regret and constraint
violation. Note that general parameterization subsumes the tabular
setup. Moreover, the best-known regret bound achieved by any tabular
model-free algorithm for average-reward CMDPs is Õ(T 5/6) [66] which
is worse than the above result in terms of orders. Due to this reason, we
do not present any algorithm specific to the tabular model-free setup.

In the previous sections, we assumed the underlying CMDP to be
ergodic. In Section 4, we go beyond this assumption to consider weakly
communicating CMDPs. Note that the class of weakly communicating

Full text available at: http://dx.doi.org/10.1561/2400000038



6 Introduction

CMDPs contains the set of ergodic CMDPs, and it is the largest class
for which one can hope to establish theoretical guarantees for all in-
stances [18], [40]. This section presents the model-based approach of
Chen et al. [23] and proves Õ

(
T 2/3

)
objective regret and constraint

violation. We note that no known model-free algorithm currently exists
that guarantees a sublinear regret and constraint violation for weakly
communicating CMDPs. This leaves multiple open questions.

1.2 Some Useful Inequalities

In this section, we provide some important inequalities for random
variables, some of which will be used in this monograph.

Lemma 1.1 (Jensen’s Inequality). Let f : R→ R be a convex function,
and let X be a random variable. If E[X] is finite, then

f(E[X]) ≤ E[f(X)].

Lemma 1.2 (Cauchy-Schwarz Inequality [30]). For any vectors u and v
in a real or complex inner product space, the Cauchy-Schwarz Inequality
holds:

|⟨u, v⟩|2 ≤ ⟨u, u⟩ · ⟨v, v⟩.

Lemma 1.3. [21, Lemma 30] For a random variable X such that |X| ≤ C

almost surely, we have: Var[X2] ≤ 4C2Var[X].

Lemma 1.4 (Azuma-Hoeffding’s Inequality [60]). Let X1, · · · , Xn be a
Martingale difference sequence such that |Xi| ≤ c almost surely for all
i ∈ {1, 2, · · · , n}, then,

P
(∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
− ϵ2

2nc2

)
(1.1)

Lemma 1.5 (Any interval Azuma’s inequality, [23]). Let {Xi}∞i=1 be a
martingale difference sequence and |Xi| ≤ B almost surely. Then with
probability at least 1−δ, for any l, n:

∣∣∣∑l+n−1
i=l Xi

∣∣∣ ≤ B
√

2n ln 4(l+n−1)3

δ .
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1.2. Some Useful Inequalities 7

Lemma 1.6. [22, Lemma 38] Let {Xi}∞i=1 be a martingale difference
sequence adapted to the filtration {Fi}∞i=0 and |Xi| ≤ B for some B > 0.
Then with probability at least 1− δ, for all n ≥ 1 simultaneously,∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≤ 3

√√√√ n∑
i=1

E[X2
i |Fi−1] ln 4B2n3

δ
+ 2B ln 4B2n3

δ
.

Lemma 1.7. [68] Let p be an m-dimensional distribution and p̄ be
its empirical estimate obtained by averaging over n samples. Then,
∥p− p̄∥1 ≤

√
m ln 2

δ /n with probability at least 1− δ.

Lemma 1.8. [25, Theorem D.3] Let {Xn}∞n=1 be a sequence of i.i.d
random variables with expectation µ and Xn ∈ [0, B] almost surely.
Then with probability at least 1− δ, for any n ≥ 1:∣∣∣∣∣

n∑
i=1

(Xi − µ)
∣∣∣∣∣

≤ min

2
√

Bµn ln 2n

δ
+ B ln 2n

δ
, 2

√√√√B
n∑

i=1
Xi ln 2n

δ
+ 7B ln 2n

δ

 .

Lemma 1.9. [25, Lemma D.4] and [24, Lemma E.2] Let {Xi}∞i=1 be
a sequence of random variables w.r.t to the filtration {Fi}∞i=0 and
Xi ∈ [0, B] almost surely. Then with probability at least 1− δ, for all
n ≥ 1 simultaneously:

n∑
i=1

E[Xi|Fi−1] ≤ 2
n∑

i=1
Xi + 4B ln 4n

δ
,

n∑
i=1

Xi ≤ 2
n∑

i=1
E[Xi|Fi−1] + 8B ln 4n

δ
.
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