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ABSTRACT

We provide a comprehensive survey of Integer Programming
Games (IPGs), focusing on both simultaneous games and
bilevel programs. These games are characterized by inte-
gral constraints within the players’ strategy sets. We start
from the fundamental definitions of these games and vari-
ous solution concepts associated with them, and derive the
properties of the games and the solution concepts. For each
of the two types of games – simultaneous and bilevel – we
have one section dedicated to the analysis of the games and
another section dedicated to the development and analyses
of algorithms to solve them. The analyses sections present
results on the computational complexity of the general game
as well as various other restricted versions. These sections
also discuss the structural properties of the games and the
equilibrium concepts associated with them. The algorithm
sections, in contrast, present some of the state-of-the-art
algorithms developed to solve these games, either exactly,
approximately or fast under fixed-parameter assumptions.
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These sections also contain proofs of the correctness of these
algorithms and an assessment of their theoretical run times
in the worst-case scenario.
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Preface

Game theory has been a powerful tool to model the strategic interaction
between multiple players when their objectives are in conflict. The
domain has a long history in the economics literature, where this has
been used to model the behavior of firms. One of the foundational results
in this area is the existence of Nash equilibria in finite games, which was
proved by Nash in the 1950s. Since then, a variety of games have been
studied in the literature, including games where players make moves
sequentially, games with uncertainty in payoffs, games with asymmetry
in information between players, and so on.

In the traditional sense, a handful of strategies are considered, with
the payoffs described for every combination of strategies picked by
the followers. Many standard references [37, 51, for example] provide
a comprehensive overview of such games and the solution concepts
associated with them. This is where mathematical programming games,
in particular, integer programming games, take a different approach.
We do not restrict ourselves to a handful of strategies or even set
of strategies that can be nicely described (for example, an interval).
Instead, we allow each player’s set of actions to be described by a set of
constraints – for example, as mixed-integer points in a polyhedron. They
warrant attention in many applications, where strategic decision makers
are actually solving optimization problems to identify their decisions,
and their payoffs are also determined by the actions of other similar

3

Full text available at: http://dx.doi.org/10.1561/2400000040



4 Preface

strategic players. Thus, it becomes important to identify various types of
equilibria in these games, and to develop algorithms to compute them.

This survey focuses on optimization-based approaches to study such
games and the solution concepts associated with them. In particular, the
focus is towards two classes of games – simultaneous games and bilevel
programs. For each of these families of games, which has developed a
rich literature over the past decade, we provide a set of analytical results,
which helps the reader better understand the structure of the problem.
These results, where possible, are also interspersed with a collection of
examples that assist in understanding the concepts better. We also com-
ment, where possible, on the computational complexity of determining
various solution concepts in these games. Following such analysis, we
also provide a set of algorithms that have been developed to solve these
games, and provide a theoretical analysis of their performance.

We also note that we have been selective about certain algorithms,
(i) based on their simplicity and (ii) with a motivation to capture a large
variety of ideas, rather than a complete deep dive on a single family of
algorithms. We believe that a more advanced reader can use this survey
as a stepping stone to dive deeper into the literature on this topic.

Finally, we note that some topics, which could fall under the broad
ambit of games are not considered in this survey. We have not provided
any result in the context of cooperative games. We have also not analyzed
multi-level games, or even bilevel games where there are more than one
“leader” or more than one “follower.” We have not considered games with
any uncertainty or asymmetric information between players. The survey
focuses exclusively on deterministic games with complete information.
We have also not considered special families of simultaneous or bilevel
games. For example, bilevel knapsack games define a very active area
of research, but we do not provide much attention to such special cases,
and restrict ourselves to the general setting.

With that, we believe that this survey will help the reader understand
the landscape of integer programming games, and provide a stepping
stone for further research in this area.

Margarida, Gabriele, Andrea and Sriram
December 31, 2024
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