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ABSTRACT

The Hadamard semidifferential is more general than the
Fréchet differential now dominant in undergraduate mathe-
matics education. By slightly changing the definition of the
forward directional derivative, the Hadamard semidifferen-
tial rescues the chain rule, enforces continuity, and permits
differentiation across maxima and minima. It also plays well
with convex analysis and naturally extends differentiation to
smooth embedded submanifolds, topological vector spaces,
and metric spaces of shapes and geometries. The current
elementary exposition focuses on the more familiar territory
of analysis in Euclidean spaces and applies the semidiffer-
ential to some representative problems in optimization and
statistics. These include algorithms for proximal gradient
descent, steepest descent in matrix completion, and variance
components models.
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1
Introduction

In line with earlier authors [19], [31], [34], [38], Hadamard in
1923 [23] gave a geometric definition of the differential of a function
f : Rp → Rq. The geometric definition depends on tangent curves
v: R → Rn through x and defines df(x) as the q × p Jacobi matrix
satisfying

df(x)v′(0) = (f ◦ v)′(0).

Here v(0) = x, and the tangent vector v′(0) must exist. In 1937, Fréchet
[21] extended this geometric definition from Euclidian spaces to function
spaces and emphasized that the geometric definition is more general
than his earlier 1925 analytic definition [20] of the differential. In normed
vector spaces the analytic definition reads

lim
v→0

f(x+ v)− f(x)− df(x)v
‖v‖

= 0.

This is the standard textbook-definition widely taught today. Hadamard
always insisted that the directional derivative be linear with respect
to the direction. But in his 1937 paper, Fréchet relaxed the linearity
requirement and gave an example of a class of non-differentiable func-
tions for which all the rules of the differential calculus hold, including

2
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3

the chain rule. Yet, he was unable to handle the Euclidean norm at
the origin and continuous but non-differentiable convex functions. This
further step involves replacing tangent curves by half-tangent curves and
ultimately half-tangent curves by tangent sequences. These successive
generalizations emphasize forward directional derivatives rather than
two-sided directional derivatives.

The Hadamard semidifferentiable functions as defined in Section 3
constitute the largest known class of nondifferentiable functions that
retain all of the features of classical differential calculus, including
the chain rule and automatic continuity. Norms, continuous convex
functions, and semiconvex functions are all Hadamard semidifferentiable.
The Hadamard semidifferential readily extends to functions defined on
embedded submanifolds, topological vector spaces, and even metric
spaces of shapes and geometries [13], [16], [30].

Given these advantages and the simplicity of the underlying the-
ory, it seems that the time is ripe for the adoption of semidifferentials
in advanced undergraduate and beginning graduate courses in the
mathematical sciences. The current tutorial provides a brief survey of
semidifferentials in the familiar context of finite-dimensional Euclidean
space. This restriction exposes the most critical ideas, important connec-
tions to convexity and optimization, and a few novel applications. The
text [12] delves more deeply into these topics and is highly recommended
for a systematic course and self study.

Our table of contents provides a roadmap to the remainder of this tu-
torial. Section 2 briefly reviews relevant topics from convexity, Euclidean
distance functions, and projection operators. After our presentation
of semidifferentials in Section 3, Section 4 takes up the intertwined
concepts of tangent vectors and tangent cones. We stress adjacent cones
rather than contingent tangent cones and Clarke tangent cones. The
notion of tangency underlying adjacent cones has a direct connection
to semidifferentiability through Euclidean distance functions. Further-
more, adjacent cones enjoy a wide range of useful properties that are
relatively easy to prove. Fortunately, adjacent and contingent tangent
cones coincide for points in convex sets and embedded submanifolds.

Sections 5–7 demonstrate the strong ties between local optimal-
ity and semidifferentiability. The usual necessary conditions become
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4 Introduction

sufficient in the presence of convexity. Local optimality then becomes
global as well. Local optimality is encoded algebraically by the KKT
multiplier conditions, which extend to a subclass of semidifferentiable
functions [25].

Section 8 showcases connections to convex optimization and com-
putational statistics. Our statistical examples illustrate the value of
directional derivatives in extracting first and second differentials. Opti-
mization on manifolds has risen to prominence in the past few decades.
Section 9 takes up this subtle subject through the lense of classical
mathematical analysis. Fortunately, the most important manifolds in
practice are embedded submanifolds situated firmly in Euclidean spaces.
We contend that at least some of the vocabulary and apparatus of
differential geometry can be ignored if optimization on manifolds is
approached through classical analysis. Whether this is a good thing
or not depends on one’s background. Differential geometry requires
intense effort to master. The route through classical analysis potentially
allows more individuals to enter the field of constrained optimization at
the risk of losing the important geometric insights and analytic tools
afforded by differential geometry.

Section 10 concludes our treatment of Hadamard semidifferentials.
We briefly mention there numerical methods and applications to infinite
dimensional spaces. This tutorial is a snapshot in time of an incredibly
rich subject. The efforts to understand and extend the range of the dif-
ferential calculus have gone on for centuries and will doubtless continue
for decades, if not centuries, more. For workers in the mathematical
sciences, it is crucial to reach the right balance between generality
and ease of use. In our view, Hadamard semidifferentials achieve that
balance.

For the record, here are some notation conventions used in the
sequel. All vectors and matrices appear in boldface. The entries of the
vector 0 consist of 0’s, and the vector ei has all entries 0 except a 1 in
entry i. The > superscript indicates a vector or matrix transpose. The
Euclidean norm of a vector x is denoted by ‖x‖ and the spectral and
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Frobenius norms of a matrix M = (mij) by

‖M‖ = sup
x6=0

‖Mx‖
‖x‖

and ‖M‖F =
√∑

i

∑
j

m2
ij ,

respectively. All positive semidefinite matrices are symmetric by defi-
nition. For a smooth real-valued function f(x), we write its gradient
(column vector of partial derivatives) as ∇f(x), its first differential
(row vector of partial derivatives) as df(x) = ∇f(x)>, and its second
differential (Hessian matrix) as d2f(x). If g(x) is vector-valued with
ith component gi(x), then the differential (Jacobi matrix) dg(x) has
ith row dgi(x); for a scalar-valued function, d2f(x) = d∇f(x). The
transpose dg(x)> is termed the gradient of g(x).
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