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Numerical Methods for Convex
Multistage Stochastic Optimization
Guanghui Lan and Alexander Shapiro

Georgia Institute of Technology, USA; george.lan@isye.gatech.edu,
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ABSTRACT

Optimization problems involving sequential decisions in a
stochastic environment were studied in Stochastic Program-
ming (SP), Stochastic Optimal Control (SOC) and Markov
Decision Processes (MDP). In this monograph, we mainly
concentrate on SP and SOC modeling approaches. In these
frameworks, there are natural situations when the considered
problems are convex. The classical approach to sequential
optimization is based on dynamic programming. It has the
problem of the so-called “curse of dimensionality”, in that
its computational complexity increases exponentially with
respect to the dimension of state variables. Recent progress
in solving convex multistage stochastic problems is based
on cutting plane approximations of the cost-to-go (value)
functions of dynamic programming equations. Cutting plane
type algorithms in dynamical settings is one of the main
topics of this monograph. We also discuss stochastic ap-
proximation type methods applied to multistage stochastic
optimization problems. From the computational complexity
point of view, these two types of methods seem to be com-
plementary to each other. Cutting plane type methods can
handle multistage problems with a large number of stages
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but a relatively smaller number of state (decision) variables.
On the other hand, stochastic approximation type methods
can only deal with a small number of stages but a large
number of decision variables.

Keywords: Stochastic programming, Stochastic optimal
control, Markov decision process, Dynamic programming,
Risk measures, Stochastic dual dynamic programming, Sto-
chastic approximation method, Cutting plane algorithm.

AMS subject classifications: 65K05, 90C15, 90C39,
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1
Introduction

Traditionally different communities of researchers dealt with optimiza-
tion problems involving uncertainty, modeled in stochastic terms, using
different terminology and modeling frameworks. In this respect we can
point to the fields of Stochastic Programming (SP), Stochastic Optimal
Control (SOC) and Markov Decision Processes (MDP). Historically the
developments in SP on the one hand, and SOC and MDP on the other,
went along different directions with different modeling frameworks and
solution methods. SOC is an interesting model since it can not only
be naturally written in the MDP terms, but also can be formulated in
the SP framework. In this monograph we mainly concentrate on SP
approaches, and often specialize them to SOC whenever possible to
demonstrate some basic ideas that can potentially bridge these three
communities.

In these modeling frameworks mentioned above, there exist some
natural situations when the considered problems are convex. An opti-
mization problem is said to be convex if both its objective function and
feasible set are convex. It is well-known that convexity provides the
main apparatus for the development of efficient numerical algorithms
for continuous optimization [45], [46]. The main goal of this work is to

3
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4 Introduction

present some recent developments in numerical approaches to solve con-
vex optimization problems involving sequential decision making. Note
that we do not intend to give a comprehensive review of the subject with
a complete list of references. Rather the aim is to present a certain point
of view about some recent developments in solving convex multistage
stochastic programming problems.

Stochastic Programming (SP) has a long history. Two stage stochas-
tic programming (with recourse) was introduced in Dantzig [10] and
Beale [2], and was intrinsically connected with linear programming. From
the beginning SP aimed at numerical solutions. Until about twenty years
ago, the modeling approach to two and multistage SP was predominately
based on construction of scenarios represented by scenario trees. This
approach allows one to formulate the so-called deterministic equivalent
optimization problem with the number of decision variables more or
less proportional to the number of scenarios. When the deterministic
equivalent could be represented as a linear program, such problems
were considered to be numerically solvable. Because of that, the topic
of SP was often viewed as a large scale linear programming. Further
discussion and development of this approach can be found in Birge [6]
and references therein.

From the point of view of the scenarios construction approach there
is not much difference between two stage and multistage SP. In both
cases the numerical effort in solving the deterministic equivalent is more
or less proportional to the number of generated scenarios. This view on
SP started to change with developments of randomization methods and
the sample complexity theory [68]. From the perspective of solving the
deterministic equivalent problem, even two stage linear stochastic pro-
grams are computationally intractable; their computational complexity
is #P-hard for a sufficiently high accuracy, implying that they are at
least as hard as NP problems (cf., [14], [23]). On the other hand, under
reasonable assumptions, the number of randomly generated scenarios
(by Monte Carlo sampling techniques), which are required to solve
two stage SP problems with accuracy ε > 0 and high probability is of
order O(ε−2), see [68, Section 5.3]. While randomization methods were
reasonably successful in solving two stage problems, the situation is
different as far as multistage SP is concerned. The number of scenarios
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needed to solve multistage SP problems grows exponentially with the
increase of the number of stages, see [70] and [68, Section 5.8.2].

Classical approach to sequential optimization is based on dynamic
programming [3]. Dynamic programming also has a long history and
is at the heart of the SOC and MDP modeling. It has the problem of
the so-called “Curse of Dimensionality”, a term coined by Bellman [3].
Its computational complexity increases exponentially with respect to
(w.r.t.) the dimension of state variables. There is a large literature
intending to deal with this problem by using various approximations of
dynamic programming equations (see [56] and the references therein).
Most of these methods are heuristics and often do not give verifiable
guarantees for the accuracy of obtained solutions. There exist some
developments on approximate dynamic programming with performance
guarantees, e.g. those based on fitted value/policy iteration [41]–[43]
and policy gradient methods [30], [32]. However, these performance
guarantees often depend on an unknown function approximation error
associated with the expressiveness of a given function class used to
approximate the cost-to-go (value) functions.

Recent progress in solving convex multistage SP problems is based
on cutting plane approximations of the cost-to-go functions of dynamic
programming equations. These methods allow to estimate the error of
the computed solution. Cutting plane type algorithms in dynamical
settings is one of the main topics of this work. In particular, Stochastic
Dual Dynamic Programming (SDDP), an algorithm first introduced
by Pereira and Pinto [47] that builds upon the nested decomposition
algorithm of Birge [5], has been a popular cutting plane method for
multistage SP. Its convergence properties have been extensively studied
in the literature (see, e.g., [12], [19], [24], [31], [49], [65], [77]). In this
monograph, we will discuss cutting plane algorithms in the frameworks
of SP and SOC with a focus on their associated rate of convergence.
Moreover, we will also present extensions of stochastic approximation
(a.k.a. stochastic gradient descent) type methods [29], [44], [45], [57] for
multistage stochastic optimization, referred to as dynamic stochastic
approximation in [34]. From the computational complexity point of
view, these two types of methods seem to be complimentary to each
other in the following sense. Specifically, certain variants of cutting
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6 Introduction

plane methods have a computational complexity that grows mildly
(linearly or quadratically) w.r.t. the number of stages, but exponentially
w.r.t. the dimension of decision variables. On the other hand, the com-
putational complexity for dynamic stochastic approximation methods
increases exponentially w.r.t. the number of stages, but only mildly
depends on the dimension of decision variables. Therefore, cutting plane
type methods can handle multistage problems with a large number
of stages, but a relatively small number of state (decision) variables.
On the other hand, stochastic approximation type methods can only
deal with a small number of stages, but a large number of decision
variables. These methods share the following common features: (a) both
methods utilize the convex structure of the cost-to-go (value) functions
of dynamic programming equations, (b) both methods do not require
explicit discretization of the state space, (c) both methods guarantee
the convergence to the global optimality, (d) rates of convergence for
both methods have been established.

It is worth noting a few alternative numerical methods for solving
convex multistage SP problems that will not be covered in detail in this
monograph. Firstly, the progressive hedging algorithm by Rockafellar
and Wets [58] is a well-known scenario-based decomposition method,
which basically applies the alternating direction method of multipliers
(ADMM) to handle linear non-anticipativity constraints in the randomly
generated sample average approximation problem [68]. In fact, one can
also apply other primal-dual first-order optimization methods to handle
these linear constraints (see, e.g., Chapter 3 of [29]). However, the size
of the decomposition problem, i.e., the number of decision variables
and linear constraints, will grow exponentially with the number of
stages. Hence, these methods can only be applied to problems with a
small number of stages. In addition, different from SA method, these
decomposition methods would require the scenario tree to be generated
and saved in the computer memory. Secondly, some advanced cutting
plane methods, e.g., those based on bundle level method [28], [36], [37],
can be used for solving two-stage SP problems efficiently. However, their
extensions to multistage SP appear to be nontrivial.

This monograph is organized as follows. SP and SOC models will be
first discussed in Sections 2 and 3, respectively. In Section 4, we present
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risk averse and distributionally robust SP and SOC models. Sections 5
and 6, respectively, are dedicated to cutting plane methods and their
rates of convergence. In Section 7, we review some recent progress on
SA methods for multistage stochastic optimization. This work concludes
with a brief summary and possible future research directions in Section 8.
Readers certainly do not need to strictly follow the above outline. For
example, beginners can skip the more technically involved discussion
of risk averse models in Section 4, and move directly to algorithmic
studies in their first pass through this work. It should be pointed out
that we attempt to cover the fundamental models (SP, SOC, and risk
aversion) in earlier sections, and discuss numerical methods in later
sections. However, we also cover some other models in later sections,
including infinite horizon models, periodic models, and hierarchical
models, since the development of these models was inspired by the
studies on numerical methods for multistage SP.

We use the following notation and terminology throughout the mono-
graph. For a ∈ R we denote [a]+ := max{0, a}. Unless stated otherwise
∥ · ∥ denotes Euclidean norm in Rn. By dist(x, S) := infy∈S ∥x− y∥ we
denote the distance from a point x ∈ Rn to a set S ⊂ Rn. We write
x⊤y or ⟨x, y⟩ for the scalar product

∑n
i=1 xiyi of vectors x, y ∈ Rn. It is

said that a set S ⊂ Rn is polyhedral if it can be represented by a finite
number of affine constraints, it is said that a function f : Rn → R is
polyhedral if it can be represented as maximum of a finite number of
affine functions. For a process ξ1, ξ2, ..., we denote by ξ[t] = (ξ1, ..., ξt) its
history up to time t. By E|X [ · ] we denote the conditional expectation,
conditional on random variable (random vector) X. We use the same
notation ξt viewed as a random vector or as a vector variable, the par-
ticular meaning will be clear from the context. For a probability space
(Ω,F ,P), by Lp(Ω,F ,P), p ∈ [1,∞), we denote the space of random
variables Z : Ω → R having finite p-th order moment, i.e., such that∫

|Z|pdP < ∞. Equipped with norm ∥Z∥p := (
∫

|Z|pdP)1/p, Lp(Ω,F ,P)
becomes a Banach space. The dual of Z := Lp(Ω,F ,P) is the space
Z∗ = Lq(Ω,F ,P) with q ∈ (1,∞] such that 1/p+ 1/q = 1.
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