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ABSTRACT

Training a deep neural network to maximize a target objec-
tive has become the standard recipe for successful machine
learning over the last decade. These networks can be op-
timized with supervised learning if the target objective is
differentiable. However, this is not the case for many interest-
ing problems. Common objectives like intersection over union
(IoU), and bilingual evaluation understudy (BLEU) scores
or rewards cannot be optimized with supervised learning.
A common workaround is to define differentiable surrogate
losses, leading to suboptimal solutions with respect to the
actual objective. Reinforcement learning (RL) has emerged
as a promising alternative for optimizing deep neural net-
works to maximize non-differentiable objectives in recent
years. Examples include aligning large language models via
human feedback, code generation, object detection or control
problems. This makes RL techniques relevant to the larger
machine learning audience. The subject is, however, time-
intensive to approach due to the large range of methods,
as well as the often highly theoretical presentation. This
monograph takes an alternative approach that is different
from classic RL textbooks. Rather than focusing on tabular
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problems, we introduce RL as a generalization of supervised
learning, which we first apply to non-differentiable objec-
tives and later to temporal problems. Assuming only basic
knowledge of supervised learning, the reader will be able to
understand state-of-the-art deep RL algorithms like proxi-
mal policy optimization (PPO) after reading this tutorial.
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1
Introduction

The field of reinforcement learning (RL) is traditionally viewed as the
art of learning by trial and error [152]. RL methods were historically
developed to solve sequential decision making tasks. The core idea is
to deploy an untrained model in an environment. This model is called
the policy and maps inputs to actions. The policy is then improved
by randomly attempting different actions and observing an associated
feedback signal, called the reward. RL techniques have demonstrated
remarkable success when applied to popular games. For example, RL
produced world-class policies in the games of Go [137], [145], [146],
Chess [137], [146], Shogi [137], [146], Starcraft [162], and Stratego [124],
and achieved above human level policies in all Atari games [7], [45],
[86] as well as Poker [23], [24], [114]. While these techniques work well
for games and simulations, their application to practical real-world
problems has proven to be more difficult [43]. This has changed in
recent years, where a number of breakthroughs have been achieved by
transferring RL policies trained in simulation to the real world [14], [38],
[88] or by successfully applying RL to problems that were traditionally
considered supervised problems [50], [107], [119]. It has long been known
that any supervised learning (SL) problem can be reformulated as an

3
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4 Introduction

RL problem [12], [82] by defining rewards that match the loss function.
This idea has not been used much in practice because the advantage
of RL has been unclear, and RL problems have been considered to be
harder to solve. A key advantage of RL over SL is that the optimization
objective does not need to be differentiable. To see why this property is
important, consider the task of text prediction, at which models like
ChatGPT had a lot of success recently. The large language models
used in this task are pre-trained using self-supervision [25] on a large
corpus of internet text, which allows them to generate realistic and
linguistically flawless responses to text prompts.

However, self-supervised models like GPT-3 cannot directly be de-
ployed in products because they are not optimized to predict helpful,
honest, and harmless answers [9]. So far, the most successful technique
to address this problem is called RL from human feedback (RLHF) [9],
[32], [119], [151] in which human annotators rank outputs of the model
and the task is to maximize this ranking. The mapping between the
models outputs and a human ranking is not differentiable, hence SL
cannot optimize this objective, whereas RL techniques can. Recently,
RL was also able to claim success in code generation [107] by maximiz-
ing execution speed of predicted code, discovering new optimization
techniques. Execution speed of code can easily be measured, but not
computed in a differentiable way. Derivative-free optimization methods
[53], [68] can also optimize non-differentiable objectives but typically
do not scale well to deep neural networks. A second advantage RL has
over SL is that algorithms can collect their own data which allows them
to discover novel solutions [107], [145] that a static human annotated
dataset might not contain.

The recent success of RL on real world problems makes it likely that
RL techniques will become relevant for the broader machine learning
audience. However, the field of RL currently has a large entry barrier,
requiring a significant time investment to get started. Seminal work in
the field [15], [63], [138], [139] often focuses on rigorous theoretical expo-
sition and assumes that the reader is familiar with prior work. Existing
textbooks [52], [152] make little assumptions but are extensive in length.
Our aim is to provide readers that are familiar with supervised machine
learning an easy entry into the field of deep reinforcement learning to
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Figure 1.1: An Invitation to Deep Reinforcement Learning. This tutorial
is structured as follows: We start by introducing RL techniques through the lens
of optimizing non-differentiable metrics for single step problems in Section 3. In
particular, we discuss value learning in Section 3.1 and stochastic policy gradients in
Section 3.2. For each category of algorithms, we provide a simple example assuming
a fixed labeled dataset, thereby connecting RL to SL objectives. This assumption is
lifted in Section 4 where we discuss data collection for sequential decision making
problems. Next, we extend the techniques from Section 3 to sequential (multi-step)
decision making problems. More specifically, we extend value learning to off-policy
RL in Section 5 and stochastic policy gradients to on-policy RL in Section 6. For both
paradigms, we introduce basic learning algorithms (TD-Learning, REINFORCE),
discuss common problems and solutions, and introduce a modern advanced algorithm
(SAC, PPO).
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6 Introduction

facilitate the widespread adoption of these techniques. Towards this
goal, we skip the typically rather lengthy introduction via tables and
Markov decision processes. Instead, we introduce deep RL through the
intuitive lens of optimization. In this monograph, we introduce the
reader to all relevant concepts to understand successful modern Deep
RL algorithms like proximal policy optimization (PPO) [140] or soft
actor-critic (SAC) [63].

Our invitation to RL is structured as follows. After discussing
general notation in Section 2, we introduce RL techniques by optimizing
non-differentiable metrics in Section 3. We start with the standard
supervised setting, e.g., image classification, assuming a fixed labeled
dataset. This assumption is lifted in Section 4 where we discuss data
collection in sequential decision making problems. In Sections 5 and
6, we will extend the techniques from Section 3 to sequential decision
making problems, such as robotic navigation. Figure 1.1 provides a
graphical representation of the content.
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A
Upside Down RL

In the appendices, we briefly introduce some additional topics from the
field of RL that are important, but more niche than the ideas covered
in the main work.

Upside Down RL [93], [135], [150] is a different but simple concept
to bridge the non-differentiable gap between the action and a reward.
The idea is to use the reward as conditioning input of the policy:

Lπ := ∥a− π(s, r)∥22 (A.1)

State
Policy Action

Differentiable

Reward

Gradient

Figure A.1: Upside down RL conditions on the reward.

Additionally, the number of steps in an episode can be added to the
input. The policy network is then simply trained with SL, predicting
the action that achieved the given reward in this state. In sequential
problems, the return can be used for conditioning. Upside Down RL is
illustrated in Figure A.1. During inference, the reward is simply set to

51
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52 Upside Down RL

the maximum reward to obtain the best action. Upside down RL is a
relatively new idea and still part of ongoing research. It has seen the
most success when combined with transformers in offline RL settings
[30].
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B
Model-based Reinforcement Learning

In model-based RL [62], [65]–[67], the non-differentiable environment
gap is bridged by learning the environment dynamics explicitly via
self-supervised learning. A differentiable model, called the world model
is optimized to predict the next state and reward, given the current
state and action. Compared to model free methods, much richer labels
are available because the next state is usually high dimensional. The
world model can then for example be used to maximize the return inside
the world model directly because it is differentiable. This is illustrated
in Figure B.1. Backpropagating through long time horizons can be
computationally expensive if the world model has many parameters.
A world model can also be used as a learned simulator, which offers a
way to generate large amount of samples when environment interaction
with the real system is limited. A disadvantage of model-based RL is
that the policy can and will exploit inaccuracies in the world model.
For example, if the world model incorrectly attributes a lot of reward
to an action, the policy trained inside the world model will pick that
action even when this action is suboptimal in the real environment.
Inaccuracies in the predicted observations can also be problematic if
small details in the input are relevant for the downstream task. The

53
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54 Model-based Reinforcement Learning

State Policy

World
Model

EnvironmentAction Reward
Next State

Differentiable Not differentiable Gradient

Figure B.1: Model-Based RL learns the environment self-supervised.

world model might not learn small details because they have a low
impact on the loss for predicting the next state. Despite the downsides,
model-based RL can be useful in settings where the number of available
interactions with the real environment is limited.
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C
Reinforcement Learning from Human Feedback

Reinforcement Learning from Human Feedback (RLHF) [9], [32], [119],
[151] describes the idea of using rankings from human annotators as
the target objective to optimize or fine-tune a model. The optimization
uses a combination of the standard RL ideas discussed in the main text.
RLHF is primarily used to optimize generative models in particular large
language models, thus we will focus our discussion on the particular
considerations of that task. RLHF has been an integral technique used to
turn large language models into useful products like ChatGPT. Similar
ideas have also been applied to models that generate images [22], [49],
[163].

Large language models (LLM) [25] are trained to predict the prob-
ability of the next word, or parts of words called tokens, given prior
words in a sentence. This is a self-supervised objective which enables
training on internet scale datasets. At inference, these models can be
used to generate text by iteratively sampling a word from the predicted
distribution. This generates plausible sounding text given an initial text,
called the prompt. Generating plausible continuations of text can be
useful because, for example, the correct answer to a question contains
some of the most likely words. However, the correct answer is not the

55
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56 Reinforcement Learning from Human Feedback

only plausible continuation of the text. The large scale datasets from the
internet that LLMs are trained with also contain lies, offensive speech,
manipulative or simply unhelpful text. LLMs trained in a self-supervised
way on this data may therefore also generate such responses, and are
therefore not safe to deploy into products for end users. One remedy to
this problem is supervised fine-tuning (SFT) where a labeled dataset
with prompts and target texts from a human annotator is collected
and trained with SFT has limited effectiveness because creating large
labelled datasets with demonstrations is expensive. Additionally, indi-
vidual human annotators have limited skill sets, for example, they don’t
know the correct answer to every question for which a correct answer
is known and available on the internet. A more scalable approach is
to collect a dataset where the pre-trained model generates multiple
responses to a given prompt, with its internet scale knowledge base. The
human annotators are then tasked to rank these predictions from best
to worst. This approach is more scalable because it is easier for humans
to verify the correctness of an answer rather than coming up with the
correct answer from scratch. However, maximizing human rankings is
not a differentiable objective, which is where RL comes to the rescue.

In the version of RLHF proposed by Ouyang et al. [119] a reward
model is first learned from a dataset containing human rankings. The
reward model predicts the ranking given a prompt and an answer
sampled from the model. This is a form of value learning, where the
reward model can be thought of as a Q-function. Learning this Q-
function is very hard because, for example, the Q-function needs to
know which of the presented answers is correct, to predict which one the
human would prefer. The task is made possible by using a pre-trained
LLM as the architecture for the Q-function, with minimal modification to
be able to predict rankings. LLMs are probabilistic models, so stochastic
policy gradients are used to tune them. In particular, Ouyang et al.
[119] uses the PPO algorithm discussed in Section 6.3.

RLHF combined with supervised fine-tuning has been found effective
enough to deploy LLM chatbots on a large scale. The goal of RLHF is,
given a learned distribution, to “unlearn” the parts of the distribution
that are considered bad behavior. Current RLHF is far from perfect and
an active field of research [129], [174]. Models do not forget all harmful
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parts of the distribution and also tend to unlearn useful predictions.
This is mitigated by mixing RLHF gradients with gradients from the
original self-supervised pre-training Ouyang et al. [119]. It is worth
noting that with RLHF a generative model is unlikely to learn new
behavior as it only reinforces predictions that the generative model has
already been capable of generating.
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D
Planning

To find the optimal action a⋆ for each state s we have primarily consid-
ered policies, the approach of learning a function π that maps states
to actions. There is another approach called planning, which describes
algorithms that given a model of the environment find the optimal
action or improve the actions of a policy.

D.1 Tree Search

A powerful class of algorithms are search algorithms, out of which tree
search is arguably the simplest. Tree search requires a world model that
given a state and action can predict the next state and reward. This
can be a learned world model, but it does not have to be differentiable,
a classic simulator also works. Given a state s, the tree search algorithm
computes the next state and stores the reward, for every possible action.
In this naive version, the action space has to be discrete. The process of
simulating the next time step for every possible action is then repeated
for all possible next states from the previous iteration until all branches
of this tree have finished in a terminal state. The observed rewards
are then used to choose the action from the first iteration based on
some criterion, such as highest average return. If the environment has

58
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D.2. Monte-Carlo Tree Search 59

deterministic state transitions, the action space is discrete and the
world model perfect, then this algorithm will find the optimal action
a⋆. This process will then be repeated for the next state, potentially
reusing simulations from prior steps. The difficulty of tree search is
that the algorithm will exploit any inaccuracies in the world model,
and most importantly it is too slow to run for complex environments.
Exhaustively simulating all potential futures is not possible in most
cases. In the following section, we will describe a more practical class of
search algorithms that use the idea of Monte-Carlo sampling [109] to
efficiently choose which futures to evaluate.

D.2 Monte-Carlo Tree Search

The core idea of Monte-Carlo tree search (MCTS) [35] is to only explore
a part of the full tree by using heuristics and random actions to choose
which states and actions to evaluate.

MTCS starts by creating a tree with the current state as the root
node and iteratively repeats the following 4 steps until a certain time
limit or resource constraint is met.

1. Selection. A tree policy is used to select a state which still has
at least one unexplored action.

2. Expansion. An unexplored action in that state is chosen, ex-
panding the tree.

3. Simulation. The next action is chosen iteratively by a probabilis-
tic policy until the episode ends.

4. Backup. The nodes, up until the node starting the simulation,
are updated with the return.

Figure D.1 illustrates these 4 steps. The probabilistic policy, also
called the default policy, from step 3 can be any probabilistic policy but
should be fast to evaluate for the whole process to be efficient, so simple
linear layers [145] or just a uniform distribution are used in practice.
MCTS may start with an empty tree if the current state is novel. If the
current state already was a node in the tree from the previous iteration,
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60 Planning

Tree 
Policy

Default 
Policy

Selection Expansion Simulation Backup

Figure D.1: Monte Carlo Tree Search.

then that node is used as the root node of the new tree and its children
are retained. Modern implementations of MCTS combine the idea with
policies and value functions trained with RL [145], [146], [148] as well
as learned world models [137].
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E
Related Work

Many past RL tutorials [56], [69], [100] do not cover deep RL, since
this development happened after these works were published. Mousavi
et al. [115] gives an overview of the deep RL literature, but is shallow
in terms of technical details and largely neglects the important topic
of policy gradient methods. Levine et al. [99] focuses on offline RL,
whereas we focus on more mature off-policy and on-policy deep RL
techniques. As such, Levine et al. [99] is complementary to our work.
Vidyasagar [161] focuses on RL theory and does not cover actor-critic
methods or modern RL algorithms, whereas we cover modern deep RL.

Surveys on RL [5], [83], [84], [95], [164], [166] typically review the
latest research advancements in the field. Our tutorial instead covers
ideas that stood the test of time and is as such more suitable as
introductory material.

Existing RL Books [52], [102], [106], [152], [154] (as well as lectures
[98], [144]) cover a broad range of topics but require a large time com-
mitment to consume. For example, the most widely cited introduction
to RL is Sutton et al. [152] which is a 526-page-long textbook. It puts
a strong focus on theoretical foundations and methods using tabular
representations or linear function approximation. For such problems,

61
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62 Related Work

much stronger theoretical guarantees can be obtained than for the
non-linear function approximation problems that we considered in this
work. The textbook also discusses applications of RL in psychology and
neuroscience. As such, Sutton et al. [152] is complementary to this work,
and we recommend it for readers that have an interest in these topics.
François-Lavet et al. [52] is the closest related manuscript, and can
perhaps be seen as a representative of the traditional way to introduce
deep RL. It introduces deep RL as techniques for sequential decision
making via the theoretical framework of Markov decision processes.
On the contrary, we introduce deep RL as a generalization of SL to
non-differentiable objectives, which provides an alternative introduction
which is more suitable to the larger SL audience. François-Lavet et al.
[52] covers a broad range of ideas in RL, giving readers a broad overview
about many ideas in the field. However, due to covering so many topics
it often lacks the necessary depth for the reader to fully understand the
presented ideas, requiring the reader to seek out additional material. In-
stead, our work focuses on depth, by zooming in on the most important
ideas covering them in sufficient detail such that the reader can fully
understand the ideas and concrete state-of-the-art implementations of
them without conducting additional material. As a result, our work is
more than 2× shorter and more suitable for readers who want to apply
popular RL ideas to domains outside of RL, such as robotics, computer
vision or generative AI.
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