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AltGDmin: Alternating GD and
Minimization for Partly-decoupled
(Federated) Optimization
Namrata Vaswani

Iowa State University, USA; namrata@iastate.edu

ABSTRACT

This monograph describes a novel optimization solution
framework, called alternating gradient descent (GD) and
minimization (AltGDmin), that is useful for many problems
for which alternating minimization (AltMin) is a popular
solution. AltMin is a special case of the block coordinate
descent algorithm that is useful for problems in which min-
imization w.r.t one subset of variables keeping the other
fixed is closed form or otherwise reliably solved. Denote
the two blocks/subsets of the optimization variables Z by
Zslow, Zfast, i.e., Z = {Zslow, Zfast}. AltGDmin is often a
faster solution than AltMin for any problem for which (i)
the minimization over one set of variables, Zfast, is much
quicker than that over the other set, Zslow; and (ii) the cost
function is differentiable w.r.t. Zslow. Often, the reason for
one minimization to be quicker is that the problem is “decou-
pled” for Zfast and each of the decoupled problems is quick
to solve. This decoupling is also what makes AltGDmin
communication-efficient for federated settings.

Important examples where this assumption holds include
(a) low rank column-wise compressive sensing (LRCS), low

Namrata Vaswani (2025), “AltGDmin: Alternating GD and Minimization for Partly-
decoupled (Federated) Optimization”, Foundations and Trends® in Optimization:
Vol. 8, No. 4, pp 333–414. DOI: 10.1561/2400000051.
©2025 N. Vaswani
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rank matrix completion (LRMC), (b) their outlier-corrupted
extensions such as robust PCA, robust LRCS and robust
LRMC; (c) phase retrieval and its sparse and low-rank model
based extensions; (d) tensor extensions of many of these
problems such as tensor LRCS and tensor completion; and
(e) many partly discrete problems where GD does not apply
– such as clustering, unlabeled sensing, and mixed linear
regression. LRCS finds important applications in multi-task
representation learning and few shot learning, federated
sketching, and accelerated dynamic MRI. LRMC and robust
PCA find important applications in recommender systems,
computer vision and video analytics.
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1
Introduction

This monograph describes a novel algorithmic framework, called Alter-
nating Gradient Descent (GD) and Minimization or AltGDmin for short,
that is useful for optimization problems that are “partly decoupled” [37].
Consider the optimization problem minZ f(Z). This is partly-decoupled
if we can split the set of optimization variables Z into two blocks,
Z = {Zslow, Zfast}, so that the minimization over Zfast, keeping Zslow

fixed, is decoupled. This means that it can be solved by solving many
smaller-dimensional, and hence much faster, minimization problems
over disjoint subsets of Zfast. That over Zslow, keeping Zfast fixed, may
or may not be decoupled. We provide examples below and define this
mathematically in Section 3.1.

For problems for which one of the two minimizations is decoupled,
and hence fast, while the other is not, AltGDmin often provides a much
faster solution than the well-known Alternating Minimization (AltMin)
[7, 19] approach. Even if both problems are decoupled, AltGDmin
still often has a communication-efficiency advantage over AltMin when
used in distributed or federated settings. This is the case when the
data is distributed across the nodes in such a way that the decoupled
minimization over a subset of Zfast also depends on the subset of data
available at a node; so this can be solved locally.

3
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4 Introduction

Federated learning is a setting in which multiple distributed nodes or
entities or clients collaborate to solve a machine learning (ML) problem
and where different subsets of the data are acquired at the different nodes.
Each node can only communicate with a central server or service provider
that we refer to as “center” in this monograph. Communication-efficiency
is a key concern with all distributed algorithms, including federated ones.
Privacy is another key concern in federated learning. Both concerns
dictate that the data observed or measured at each node/client be stored
locally and not be shared with the center. Summaries of it can be shared
with the center. The center typically aggregates the received summaries
and broadcasts the aggregate to all the nodes [29]. In this monograph,
“privacy” only means the following: the nodes’ raw data cannot be shared
with the center and the algorithm should be such that the center cannot
reconstruct the entire unknown true signal (vector/matrix/tensor).

One of the challenges in federated learning is developing algorithms
that are resilient to adversarial attacks on the nodes; resilience to Byzan-
tine attacks is especially critical. An important challenge in distributed
computing settings (data is available centrally, but is distributed to
nodes, e.g., over the cloud, to parallelize and hence speed up the comput-
ing) is to have algorithms that are resilient to stragglers (some worker
nodes occasionally slowing down or failing) [45, 49]. As will become
clear in this monograph, the design of both attack resilient and straggler
resilient modifications of AltGDmin is also efficient. One example of
Byzantine attack resilient AltGDmin is studied in [46].

Monograph organization. This monograph begins by giving some
examples of partly decoupled optimization problems and their appli-
cations below. In Section 2, we provide a short overview of some of
the popular optimization algorithms - gradient descent (GD), block
coordinate descent and AltMin, and nonlinear least squares – and when
these work well. All these are iterative algorithms that need an initial-
ization. We describe common initialization approaches as well. Then, in
Section 3, we precisely define a partly decoupled problem and develop
and discuss the AltGDmin algorithmic framework. In the second part
of this monograph, in Section 4, we provide the AltGDmin algorithm
details, including initialization, for three important LR matrix recovery
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1.1. Partly Decoupled Optimization Examples 5

problems - LR column-wise sensing, LR phase retrieval and LR matrix
completion. We also state and discuss the theoretical sample and itera-
tion complexity guarantees that we can prove for these problems. The
iteration complexity helps provide total computational and communi-
cation complexity bounds. The third part of this monograph discusses
proof techniques. We first provide the general proof approach that can
be used to analyze the AltGDmin in Section 5 and then describe the
key ideas for LR problems in Section 6. Details are in Section 7. Pre-
liminaries used in these proofs are provided and explained in Section 8.
This section provides a short overview of the most useful linear algebra
and random matrix theory topics from [53] and [16]. In the last part
of this monograph, Section 9 describes open questions including other
problems where AltGDmin or its generalization may be useful.

1.1 Partly Decoupled Optimization Examples

We provide a few examples of partly decoupled problems.

Low rank column-wise compressive sensing (LRCS). This
problem involves recovering an n × q rank-r matrix X∗, with r ≪
min(n, q), from column-wise undersampled (compressive) measurements,
yk := Akx∗

k , k ∈ [q]. The matrices Ak are dense (non-sparse) matrices
that are known. Each yk is an m-length vector with m < n. Let
Y := [y1, y2, . . . , yq] denote the observed data matrix. We can solve
this problem by considering the squared loss function. It then becomes
a problem of finding a matrix X of rank at most r that minimizes∑q

k=1 ∥yk −Akxk∥22. Suppose that r or an upper bound on it is known.
This problem can be converted into an unconstrained, and smaller
dimensional, one by factorizing X as X = UB, where U and B are
matrices with r columns and rows respectively. Thus, the goal is to
solve

arg min
U ,B

f(U , B) := arg min
U ,B

q∑
k=1
∥yk −AkUbk∥22. (1.1)

Notice that bk appears only in the k-th term of the above summation.
Thus, if we needed to minimize over B, while keeping U fixed, the

Full text available at: http://dx.doi.org/10.1561/2400000051



6 Introduction

problem decouples column-wise. The opposite is not true. We refer to
such a problem as a partly decoupled problem.

In solving the above problem iteratively, there can be numerical
issues because UB = URR−1B for any r × r invertible matrix R.
The norm of U could keep increasing over iterations while that of
B decreases or vice versa. To prevent this, either the cost function
is modified to include a norm balancing term, e.g., as in [56], or one
orthonormalizes the estimate of U after each update.

Three important practical applications where the LRCS problem
occurs include (i) federated sketching [3, 17, 22, 23, 44, 48, 55], (ii)
accelerated (undersampled) dynamic MRI with the low rank (LR) model
on the image sequence, and (iii) multi-task linear representation learning
to enable few shot learning [18, 20, 46, 50]. In fact, some works refer
to the LRCS problem as multi-task representation learning. (iv) The
LRCS problem also occurs in for parameter estimation in multi-task
linear bandits [33].

Low rank phase retrieval (LRPR). This is the phaseless extension
of LRCS [37, 39, 40] but it was studied in detail before LRCS was
studied. This involves solving

arg min
U ,B

f(U , B) := arg min
U ,B

q∑
k=1
∥yk − |AkUbk|∥22 (1.2)

where |.| computes the absolute value of each vector entry. LRPR finds
applications in dynamic Fourier ptychography [26, 27].

LR matrix completion (LRMC). In this case, the cost function is
partly decoupled w.r.t. both U and B (keeping the other fixed). This
involves recovering a LR matrix from a subset of its observed entries.
Letting Ω denote the set of observed matrix entries, and letting PΩ
denote the linear projection operator that returns a matrix of size n× q

with the unobserved entries set to zero, this can be expressed as a
problem of learning X∗ from Y := PΩ(X∗). Letting the unknown X

as X = UB as above, the optimization problem to solve now becomes:

Full text available at: http://dx.doi.org/10.1561/2400000051



1.1. Partly Decoupled Optimization Examples 7

arg min
U ,B

f(U , B) := ∥Y − PΩ(X∗)∥2F

=
q∑

k=1
∥yk − PΩk

(Ubk)∥22

=
n∑

j=1
∥yj − PΩj (uj⊤B)∥22 (1.3)

with B = [b1, b2, . . . , bk, . . . bq], U⊤ = [u1, u2, . . . , uj , . . . , un], Ωk :=
{j : (j, k) ∈ Ω} and Ωj := {k : (j, k) ∈ Ω}. Notice that the above
problem is decoupled over B for a given U , and vice-versa. LRMC finds
important applications in recommender systems’ design, survey data
analysis, and video inpainting [11]. LRMC also finds applications in
parameter estimation for reinforcement learning, in particular for filling
in the missing entries of its state transition probability matrix.

Other partly-decoupled examples. Other examples of partly decou-
pled problems include non-negative matrix factorization, sparse PCA,
robust PCA and extensions (robust LRCS and robust LRMC), tensor
LR slice-wise sensing and its robust extension, and LR tensor com-
pletion; and certain partly discrete problems – clustering, shuffled or
unlabeled sensing, and mixed linear regression. We describe these in
Section 9.

1.1.1 Detailed Description of Some Applications

Why the LR model? Medical image sequences change slowly over
time and hence these are well modeled as forming a low-rank matrix with
each column of the matrix being one vectorized image [5, 34]. The same
is often also true for similar sets of natural images and videos [12, 36].
The matrix of user ratings of different products, e.g., movies, is modeled
as a LR matrix under the commonly used hypothesis that the ratings are
explained by much fewer factors than the number of users, q, or products,
n [11]. In fact, many large matrices are well modeled as being LR [51];
these model any image sequence or product ratings or survey dataset,
in which most of the differences between the different images or ratings
or survey data, q, are explained by only a small number r of factors.

Full text available at: http://dx.doi.org/10.1561/2400000051



8 Introduction

MRI. In MRI, which is used in medicine for cross-sectional imaging
of human organs, after some pre-processing, the acquired data can be
modeled as the 2D discrete Fourier transform (FT) of the cross-section
being imaged. This is acquired one FT coefficient (or one row or line of
coefficients) at a time [9, 35]. The choice of the sampled coefficients can
be random or it may be specified by carefully designed trajectories. The
goal is to reconstruct the image of the cross-section from this acquired
data. If we can reconstruct accurately from fewer samples, it means that
the acquisition can be speeded up. This is especially useful for dynamic
MRI because it can improve the temporal resolution for imaging the
changes over time, e.g. the beating heart. Accelerated dynamic MRI
involves doing this to recover a sequence of q images, x∗

k, k ∈ [q], say,
of the beating heart or of brain function as brain neurons respond
to a stimuli, or of the vocal tract (larynx) as a person speaks, from
undersampled DFT measurements yk, k ∈ [q]. Here x∗

k is a vectorized
image. The matrices Ak are the partial Fourier matrices represented by
the 2D DFT (or sometimes the FT in case of radial sampling) computed
at the specified frequencies.

Multi-task learning. Multi-task representation learning refers to the
problem of jointly estimating the model parameters for a set of related
tasks. This is typically done by learning a common lower-dimensional
“representation” for all of their feature vectors. This learned representa-
tion can then be used for solving the meta-learning or learning-to-learn
problem: learning model parameters in a data-scarce environment. This
strategy is referred to as “few-shot” learning. In recent work [20], a very
interesting low-dimensional linear representation was introduced and
the corresponding low rank matrix learning optimization problem was
defined. This linear case will be solved if we can solve (1.1). Simply said,
this can be understood as a problem of jointly learning the coefficients’
for q related linear regression problems, each with their own dataset Ak,
and with the regression vectors x∗

k being correlated (so that low rank is
a good model on the matrix formed by these vectors, X∗). Once the
“common representation” (the column span subspace matrix U) can be
estimated, we can solve a new linear regression problem that is related
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1.1. Partly Decoupled Optimization Examples 9

(correlated) with these hold ones by only learning a new r-dimensional
vector bk for it.

Federated sketching. For the vast amounts of data acquired on
smartphones/other devices, there is a need to compress/sketch it before
it can be stored or transmitted. The term “sketch” refers to a compres-
sion approach, where the compression end is very inexpensive [3, 17,
22, 23, 44, 48, 55]. A common approach to sketching, that is especially
efficient in distributed settings, is to multiply each vectorized image
by a different independent m × n random matrix (typically random
Gaussian or Rademacher matrix) with m < n, and to store or transmit
this sketch.
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A
Partly Decoupled Optimization Problem: Most

General Definition

Consider an optimization problem arg minZ g(Z). We say the problem
is decoupled if it can be solved by solving smaller dimensional problems
over disjoint subsets of Z. To define this precisely, observe that any
function g(Z) can be expressed as a composition of γ functions, for a
γ ≥ 1,

g(Z) = h(f1(Z), f2(Z), . . . fγ(Z)),

Here h(., ., ..) is a function of γ inputs. This is true always since we can
trivially let γ = 1, h(Z) = Z and f1(Z) = g(Z).

We say that the optimization problem is decoupled if, for a γ > 1,
Z can be split into γ disjoint subsets

Z = [Z1, Z2, . . . Zγ ]

so that

arg min
Z

g(Z) =[arg min
Z1

f1(Z1), arg min
Z2

f2(Z2), . . . , arg min
Zℓ

f ℓ(Zℓ),

. . . arg min
Zγ

fγ(Zγ))]

Observe that, in general, arg min is a set and the notation [S1,S2, . . .Sγ ]
is short for their Cartesian product S1 × S2 × . . .Sγ . In words, the

74
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set arg minZ f(Z) = {[Ẑ1, Ẑ2, . . . Ẑγ ] : Ẑ1 ∈ arg minZ1 f1(Z1), Ẑ2 ∈
arg minZ2 f2(Z2), . . . , Ẑγ ∈ arg minZγ fγ(Zγ)}.

If g(Z) is strongly convex, then the arg min is one unique minimizer
Ẑ. In this case, the decoupled functions have a unique minimizer too
and arg minZ1 f1(Z1) returns Ẑ1 and so on, and Ẑ = [Ẑ1, Ẑ2, . . . , Ẑγ ].
Data-decoupled means that the above holds and that ef ℓ(Z≪) depends
only on a disjoint subset Dℓ of the data D. Let D = [D1,D2, . . .Dγ ]. We
use a subscript to denote the data. Data-decoupled means that

arg min
Z

f(Z) =[arg min
Z1

f1
D1(Z1), arg min

Z2
f2

D2(Z2), . . . , arg min
Zℓ

f ℓ
Dℓ

(Zℓ),

. . . arg min
Zγ

fγ
Dγ

(Zγ))]

Most practical problems that are decoupled are often also data-decoup-
led. Henceforth we use the term “decoupled” to also mean data-decoupled.

Partly-decoupled is a term used for optimization problems for which
the unknown variable Z can be split into two parts, Z = {Zslow, Zfast},
so that the optimization over one keeping the other fixed is “easy”
(closed form, provably correct algorithm exists, or fast). Decoupled
and data-decoupled w.r.t. Zfast means that decoupling holds only for
minimization over Zfast. To be precise, let

Zfast = [(Zfast)1, (Zfast)2, . . . (Zfast)γ ] and D = [D1,D2, . . .Dγ ]

Then,

arg min
Zfast

f(Zslow, Zfast) =[arg min
(Zfast)1

f1
D1(Zslow, (Zfast)1), . . . ,

arg min
(Zfast)ℓ

f ℓ
Dℓ

(Zslow, (Zfast)ℓ),

. . . arg min
Zγ

fγ
Dγ

(Zslow, (Zfast)γ))]

All the examples of partly decoupled optimization problems that
we discuss in this work are those for which g(Z) = h(f1, f2, . . . fγ) =∑γ

ℓ=1 f ℓ is a sum of the γ functions f ℓ. In this case, partly decoupled
problems means that

min
Zfast

f(Zslow, Zfast) =
∑

ℓ

min
(Zfast)ℓ

f ℓ
Dℓ

(Zslow, Zfastℓ)
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