
Shape Analysis

Full text available at: http://dx.doi.org/10.1561/2500000037

Other titles in Foundations and Trends® in Programming Languages

Progress of Concurrent Objects
Hongjin Liang and Xinyu Feng
ISBN: 978-1-68083-672-1

QED at Large: A Survey of Engineering of Formally Verified
Software
Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric and
Zachary Tatlock
ISBN: 978-1-68083-594-6

Reconciling Abstraction with High Performance: A MetaOCaml
approach
Oleg Kiselyov
ISBN: 978-1-68083-436-9

Full text available at: http://dx.doi.org/10.1561/2500000037

Shape Analysis

Bor-Yuh Evan Chang
University of Colorado, USA

evan.chang@colorado.edu

Cezara Drăgoi
INRIA, France

and CNRS, PSL University, France
cezarad@di.ens.fr

Roman Manevich
Ben-Gurion University of the Negev

Israel
romanm@cs.bgu.ac.il

Noam Rinetzky
Tel Aviv University

Israel
maon@cs.tau.ac.il

Xavier Rival
INRIA, France

and CNRS, PSL University, France
rival@di.ens.fr

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2500000037

Foundations and Trends R© in Programming
Languages

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

B.-Y. E. Chang, C. Dragoi, R. Manevich, N. Rinetzky and X. Rival. Shape Analysis.
Foundations and TrendsR© in Programming Languages, vol. 6, no. 1–2, pp. 1–158,
2020.

ISBN: 978-1-68083-733-9
c© 2020 B.-Y. E. Chang, C. Dragoi, R. Manevich, N. Rinetzky and X. Rival

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works,
or for resale. In the rest of the world: Permission to photocopy must be obtained from the
copyright owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA;
Tel. +1 781 871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2500000037

Foundations and Trends R© in Programming
Languages

Volume 6, Issue 1–2, 2020
Editorial Board

Editor-in-Chief
Rupak Majumdari
Max Planck Institute for Software Systems

Editors

Martín Abadi
Google and UC Santa
Cruz

Anindya Banerjee
IMDEA Software Instituet

Patrick Cousot
ENS, Paris and NYU

Oege De Moor
University of Oxford

Matthias Felleisen
Northeastern University

John Field
Google

Cormac Flanagan
UC Santa Cruz

Philippa Gardner
Imperial College

Andrew Gordon
Microsoft Research and
University of Edinburgh

Dan Grossman
University of Washington

Robert Harper
CMU

Tim Harris
Amazon

Fritz Henglein
University of Copenhagen

Rupak Majumdar
MPI and UCLA

Kenneth McMillan
Microsoft Research

J. Eliot B. Moss
University of
Massachusetts, Amherst

Andrew C. Myers
Cornell University

Hanne Riis Nielson
Technical University of
Denmark

Peter O’Hearni
University College London

Benjamin C. Pierce
University of Pennsylvania

Andrew Pittsi
University of Cambridge

Ganesan Ramalingami
Microsoft Research

Mooly Sagiv
Tel Aviv University

Davide Sangiorgi
University of Bologna

David Schmidt
Kansas State University

Peter Sewell
University of Cambridge

Scott Stoller
Stony Brook University

Peter Stuckey
University of Melbourne

Jan Vitek
Northeastern University

Philip Wadler
University of Edinburgh

David Walker
Princeton University

Stephanie Weiric
University of Pennsylvania

Full text available at: http://dx.doi.org/10.1561/2500000037

Editorial Scope
Topics

Foundations and Trends R© in Programming Languages publishes survey and
tutorial articles in the following topics:

• Abstract Interpretation
• Compilation and Interpretation

Techniques
• Domain Specific Languages
• Formal Semantics, including

Lambda Calculi, Process
Calculi, and Process Algebra

• Language Paradigms
• Mechanical Proof Checking
• Memory Management
• Partial Evaluation
• Program Logic
• Programming Language

Implementation
• Programming Language

Security

• Programming Languages for
Concurrency

• Programming Languages for
Parallelism

• Program Synthesis

• Program Transformations and
Optimizations

• Program Verification

• Runtime Techniques for
Programming Languages

• Software Model Checking

• Static and Dynamic Program
Analysis

• Type Theory and Type
Systems

Information for Librarians

Foundations and Trends R© in Programming Languages, 2020, Volume 6,
4 issues. ISSN paper version 2325-1107. ISSN online version 2325-1131.
Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2500000037

Contents

1 Introduction 4
1.1 Verifying Pointer-Manipulating Programs 4
1.2 Pointer Analysis . 7
1.3 Limitations of Pointer Analyses and Need for

More Expressive Abstractions 7
1.4 Shape Analysis . 8
1.5 Summary and Survey Outline 11

2 Shape Analysis in a Nutshell 13
2.1 Running Example . 13
2.2 Shape Abstraction for Lists 16
2.3 Shape Analysis for Lists 20
2.4 Instances of Shape Analyses 26
2.5 Summary: The Essence of Shape Analysis 29

3 Generic Shape Analysis 30
3.1 Programs and Semantics 30
3.2 Shape Abstraction . 33
3.3 Abstract Interpretation 34
3.4 Summary . 38

Full text available at: http://dx.doi.org/10.1561/2500000037

4 Memory Layout Abstractions 40
4.1 Dividing Lines . 40
4.2 Graph-Based Shape Abstractions 44
4.3 Three-Valued Logic Shape Abstraction 53
4.4 Separation Logic-Based Shape Abstraction 87
4.5 Automata-Based Shape Abstractions 110

5 Extension of Shape Abstractions 119
5.1 Abstraction of Values Stored into Dynamic Structures . . . 120
5.2 Abstraction of Low-Level Memory Models 125
5.3 Interprocedural Shape Analysis 130

6 Abstractions Exploiting Shape Analysis Principles 136
6.1 Abstraction of Arrays . 136
6.2 Abstraction of Dictionary Structures 141

7 Conclusion 144

References 148

Full text available at: http://dx.doi.org/10.1561/2500000037

Shape Analysis
Bor-Yuh Evan Chang1, Cezara Drăgoi2, Roman Manevich3,
Noam Rinetzky4 and Xavier Rival5

1University of Colorado, USA; evan.chang@colorado.edu
2INRIA, France and CNRS, PSL University, France; cezarad@di.ens.fr
3Ben-Gurion University of the Negev, Israel; romanm@cs.bgu.ac.il
4Tel Aviv University, Israel; maon@cs.tau.ac.il
5INRIA, France and CNRS, PSL University, France; rival@di.ens.fr

ABSTRACT
The computation of semantic information about the behavior
of pointer-manipulating programs has been a long standing
issue, attacked with diverse and numerous techniques and
tools for over 50 years. As usual in automatic verification
of infinite-state programs, properties of interest are not
computable. Thus, static analyses can only be conservative,
leading different analyses to make different tradeoffs between
the intricacies of the properties they detect, the precision of
their inference procedure and analysis, and the scalability
of the analysis.
In this context, shape analyses focus on inferring highly
complex properties of heap-manipulating programs. These
programs utilize data structures which are implemented
using an unbounded number of dynamically- (heap-) allo-
cated memory cells interconnected via mutable pointer-links.
Because shape analyses have to reason about data struc-
tures whose size is not bounded by a fixed, known value,
they cannot track explicitly the particular properties of ev-
ery concrete memory cell which the program uses, as done,

Bor-Yuh Evan Chang, Cezara Drăgoi, Roman Manevich, Noam Rinetzky and Xavier
Rival (2020), “Shape Analysis”, Foundations and TrendsR© in Programming Lan-
guages: Vol. 6, No. 1–2, pp 1–158. DOI: 10.1561/2500000037.

Full text available at: http://dx.doi.org/10.1561/2500000037

2

e.g., by analysis of variable-manipulating non-recursive pro-
grams. Instead, shape analyses summarize memory regions
by letting one piece of abstract information, called summary
predicate, describe several concrete cells. The need to cope
with data structures of unbounded sizes is a challenge shape
analyses share with static analyzers of array-manipulating
programs. However, while the size of an array may change
in different executions, its layout (i.e., its dimensions and
the way its contents are spread over the memory) is fixed.
In contrast, the layout of a pointer-linked data structure,
colloquially referred to as its shape, may evolve dynamically
during the program execution and a memory cell can be
part of different data structures at different points in time.
As a result, shape analyses need to let the denotation of
summary predicates in terms of the constituents and layouts
of the memory regions which they represent evolve during
the analysis as well.
In this survey, we consider that shape analyses are charac-
terized and defined by the presence of summary predicates
describing a set of concrete memory cells that varies during
the course of the analysis. We use this characterization as
a means for distinguishing shape analyses as a particular
class of pointer analyses. We show that many “standard”
pointer analyses do not fit the aforementioned description,
while many analyses relying on very different mathemati-
cal foundations, e.g., shape graphs, three-valued logic, and
separation logic, do.
The ambition of this survey is to provide a comprehensive
introduction to the field of shape analysis, and to present
the foundation of this topic, in a single document that is
accessible to readers who are not familiar with it. To do
so, we characterize the essence of shape analysis compared
to more classical pointer analyses. We supply the intuition
underlying the abstractions commonly used in shape analysis
and the algorithms that allow to statically compute intricate

Full text available at: http://dx.doi.org/10.1561/2500000037

3

semantic properties. Then, we cover the main families of
shape analysis abstraction and algorithms, highlight the
similarities between them, and also characterize the main
differences between the most common approaches. Last,
we review a few other static analysis works (such as array
abstractions, dictionary abstractions and interprocedural
analyses) that were influenced by the ideas of shape analysis,
so as to demonstrate the impact of the field.

Full text available at: http://dx.doi.org/10.1561/2500000037

1
Introduction

1.1 Verifying Pointer-Manipulating Programs

Pointers and dynamic memory allocation are present in one form or
another in many modern programming languages and significantly con-
tribute to their expressiveness. For instance, they enable maintaining
mutable data structures such as lists, trees, and graphs. The size of such
structures may vary during the execution, as cells can be dynamically
allocated in the heap when the program needs them in order to store
new data. Moreover, the links between elements may be modified locally
without changing the whole structure, e.g., to insert a new element into
its proper location inside a sorted list. Similarly, common implementa-
tions of functional or object oriented languages also make great use of
both pointers and dynamic memory allocation so as to represent the
call stack, closures, and objects.

On the other hand, these features make reasoning over programs
very difficult since the layout of the memory states heavily depends on
the program executions. As a consequence, using such features is a no-
toriously hard task for programmers, and bugs related to them are both
common and challenging to diagnose. Depending on the programming
language, pointer manipulation errors may cause abrupt crashes due to

4

Full text available at: http://dx.doi.org/10.1561/2500000037

1.1. Verifying Pointer-Manipulating Programs 5

runtime errors (as the dereference of a null pointer), memory leakage,
i.e., make memory blocks unreachable, and thus impossible to ever
deallocate, cause pointers to become dangling, i.e., point to (manually)
deallocated memory regions, which may lead to further pointer related
errors, e.g., memory corruptions (a write through a dangling pointer,
that happens to refer to a memory area that has been freed and then
allocated again to store other, unrelated, data).

On top of that, the preservation of structural invariants of pointer-
linked data structures is often non-trivial, as a pointer manipulation
error might create a cycle in a structure that is supposed to be acyclic
and/or leak a large part of it. As an example, Figure 1.1 displays
several common examples of dynamic data structures, with very different
properties:

• singly-linked lists consist of acyclic chains of elements ending with
a special element, and where the link from one element to the next
usually boils down to a pointer field embedded in every element;

• doubly-linked lists augment the singly-linked list structure with
backward pointers from each element to its predecessor;

• circular lists have the same local structure as the singly-linked
lists, but form a loop, so that it is always possible to access the
successor of any element;

• binary trees are also chained structures, but are such that each
non-leaf node has a left and a right successor (a slightly different
definition of binary trees accepts structures where some nodes
may have no left child or no right child);

• binary trees with parent pointers augment binary trees with back-
ward links from every node to its predecessor, Similarly to the way
doubly-linked lists augments singly-linked lists with back-pointers;

• connected graphs consist of sets of elements, such that each element
has a number of successors who are also elements of the structure;
in particular, they may contain cycles, elements with no successors,
etc.

Full text available at: http://dx.doi.org/10.1561/2500000037

6 Introduction

Singly-linked list Doubly-linked list

Circular list Binary tree

Binary tree with parent pointers

1
2

2

3
2

0

1

Connected graph

Figure 1.1: A few unbounded and dynamic data structures.

This defines just a small sample of the structures one can imagine,
and it is possible to combine these patterns or invent others, e.g., a list
of trees or a tree the nodes of which are also connected by a list. Each
structure comes with a set of properties (existence of chains of links to
next elements, reachability, absence or existence of cycles, existence of
a linear order or not. . .). Furthermore, the correct utilization of each
structure relies on the preservation of its shape invariant—a combination
of global properties pertaining to the layout of its elements—which is
generally hard to establish.

Due to these difficulties, a large number of works have searched for
techniques to reason about pointer-manipulating programs automati-
cally so as to verify the aforementioned properties. In general, static

Full text available at: http://dx.doi.org/10.1561/2500000037

1.3. Limitations of Pointer Analyses 7

analysis aims at computing automatically semantic properties of pro-
grams, namely properties that are satisfied by every program execution,
such as the absence of some classes of errors, or the preservation of some
invariants. Broadly speaking, there are two (somewhat overlapping)
categories of static analysis of heap-manipulating pointer programs:
pointer analyses and shape analyses, as we discuss next.

1.2 Pointer Analysis

Pointer analyses (see Smaragdakis and Balatsouras, 2015 for a recent
survey) attempt to determine properties of pointer values and of the
structures they refer to. A first useful property is the validity of pointer
values, which expresses that they are neither dangling nor null. While
it is useful in order to prove that some errors such as a null/dangling
pointer dereference or the corruption of an unknown memory location
cannot occur, this property is often too weak to fully understand what
a program does. A second useful semantic property focuses on the
resolution of pointers so as to determine to which address a pointer
may refer, or what pairs of pointers may be equal (alias). This property
is extremely useful to resolve memory accesses, and help basically
any kind of program reasoning technique when considering a program
that manipulates pointers. Points-to analyses such as Andersen (1994)
or Steensgaard (1996) compute a super-set of the addresses each pointer
variable may refer to. Essentially, each memory cell with a pointer type
is mapped into a set of symbolic addresses it may point to, and this
set can be used so as to resolve memory accesses. Alias analyses such
as Cooper and Kennedy (1989) compute a super-set of the aliasing
relation between pointers, which is another way to describe the topology
of pointers (see, e.g., Jonkers and Jonkers, 1981).

1.3 Limitations of Pointer Analyses and Need for
More Expressive Abstractions

Points-to and alias analyses rely on basic and generally cheap ab-
stractions of program states, and can often be carried out in a fully
flow-insensitive manner for better performance, relying on field-, object

Full text available at: http://dx.doi.org/10.1561/2500000037

8 Introduction

creation site, or context-sensitivity to improve precision. On the other
hand, the range of properties they may infer is typically quite limited.
In general, when the size of data structures or the numbers of allocated
memory blocks are unbounded, many important properties fall beyond
the scope of these analyses. As an example, the reachability of a cell
that is allocated dynamically becomes hard to establish since the chains
of pointers from program variables to it may be arbitrarily long. This
property is important in order to verify the absence of memory leaks
in languages where deallocation is manual. Similarly, the acyclicity of
a data structure expresses the absence of certain patterns in pointer
paths, can only be established by reasoning over arbitrarily long paths.
This property is important in order to verify structural preservation
or termination of loops. The key issue is that these properties are not
local, and can only be justified by global arguments. In fact, it is not
rare that even the verification of a local property, e.g., pointer validity,
requires establishing a global property, e.g., reachability.

There exist techniques to make pointer analyses less local and extend
their expressiveness. As an example, Deutsch (1994) infers aliasing
relations over access paths that are of unbounded length, and that
can be tied together by the means of numeric relations: this analysis
can express that some pointer stores the address of an element that
lies somewhere in the middle of a list-like structure. However, such
techniques remain limited, and cannot express that a list (or an instance
of some other dynamic structure) is well-formed.

1.4 Shape Analysis

Shape analyses, in contrast to pointer analyses, aim at computing global
structural properties of unbounded sets of memory cells and pointers,
such as the shape invariants of the data structures depicted in Figure 1.1.
An example of shape property is the well-formedness of a singly linked
list or that of a binary tree without sharing. Such properties concern an
unbounded number of memory cells, and tightly constrain correlations
between an unbounded number of pointers fields. This allows them to
convey, for instance, the absence of cycles over arbitrarily long link

Full text available at: http://dx.doi.org/10.1561/2500000037

1.4. Shape Analysis 9

chains. Such relations are intrinsically harder to define and reason about
than relations over finite sets of pointers or of regions.

Shape analyses have in common a much higher level of expressiveness
than the aforementioned pointer analysis and they rely on very different
basic logical predicates. In particular, each of them features some kinds
of basic predicates that are able to summarize memory regions of
unbounded size and in a compact manner while retaining some global
information about the shape properties of the summarized region. This
is absolutely required to express shape properties over unbounded data
structures such as lists, trees and graphs: indeed, abstractions that lack
the ability to summarize are either limited to keeping precision on finite
sets of memory cells, while losing precision on the rest, or require to
resort to a possibly unbounded number of disjuncts.

In addition to summarization, shape analyses need to calculate
precisely how program statements transform summaries. In practice,
they often need to temporarily refine summaries in order to reason
precisely over program statements that impact them. This process,
often called materialization or focus, allows the analysis to apply case
analysis regarding the layout of the heap part represented by a summary
predicate. Materialization allows to perform strong updates of heap
cells located deep in the heap as it enables the analysis to dynamically
refine its view of the parts of the heap that pointer variables refer to
when analyzing, e.g., the traversal of unbounded data structures.

The use of materialization implies that the analysis also needs to
be able to introduce summaries by a generalization process, from more
precise predicates. As a consequence, the analysis needs to go back
and forth between its base view of data structures and a more refined
one, that makes reasoning over local read and destructive update (field
mutation) operations possible.

Materializing and Non-Materializing Shape Analyses. In the follow-
ing, we distinguish between two families of shape analyses: the first
category is unable to do materialization at any time and thus can per-
form strong updates only when certain favorable conditions hold, and
the second category that is able to perform dynamic materialization

Full text available at: http://dx.doi.org/10.1561/2500000037

10 Introduction

(at any time during the analysis) and thus is able to perform strong
updates in more cases.

Non-Materializing Shape Analyses. As an example for the latter
kind of analyses, Ghiya and Hendren (1996) uses global predicates that
state that some structures are “tree like”, that is, acyclic and without
sharing, or simply “DAG like”, that is, acyclic, but possibly with some
amount of internal sharing. Unlike the pointer analyses mentioned above,
this analysis actually captures properties related to the shape of heap
data structures that are manipulated by programs.

Materializing Shape Analyses. Two notable examples for the kind
of shape analyses which use materialization are the three-valued logic
framework for shape analysis of Sagiv et al. (1999, 2002), and analyses
based on separation logic which was introduced by Reynolds (2002)
and Ishtiaq and O’Hearn (2001).

Three-valued logic relies on basic user-defined shape predicates (such
as local points-to predicates, global reachability predicates expresses by
transitive closure over the points-to predicates, and acyclicity predicates)
and summary nodes that stand for unbounded numbers of concrete
memory cells or addresses in order to describe large families of shape
properties of heap data structures. TVLA (Lev-Ami and Sagiv, 2000) is
a parametric system which can very precisely capture structures such
as lists or graphs, and it was applied to a wide range of shape analysis
problems.

Separation logic was proposed as a language to tie logical properties
to heap regions. As an example, it can naturally convey, thanks to the
so-called separating conjunction, that a memory region can be divided
into a finite set of pairwise disjoint regions that store specific data
structures, and that can be reasoned about in a separate manner. This
is the basis of local reasoning, which simplifies the analysis of atomic
program statements by letting it focus on the memory cells that they
may read or update. Coupled with inductive predicates, separation
logic can describe many interesting data structures of unbounded size,
and assert that a region stores, e.g., a well-formed singly linked list

Full text available at: http://dx.doi.org/10.1561/2500000037

1.5. Summary and Survey Outline 11

or a well-formed binary tree with no sharing. It has served as a basis
for several static analyses including those described in Distefano et al.
(2006), Berdine et al. (2007), Chang et al. (2007), Dudka et al. (2011),
or Holík et al. (2013).

Applications of Shape Analysis. Besides memory safety and the veri-
fication of correctness properties for sequential programs as outlined
above, we can cite many applications for shape analysis techniques.
An important example is the case of parallel programs, where several
threads may concurrently access and modify shared data-structures.
Among the many works that have attacked this problem, we can cite
Berdine et al. (2008), Manevich et al. (2008), and Vafeiadis (2010). In
general, the works rely on shape abstractions that are rather similar to
those used in the sequential case and compute information about the
thread interaction in terms of heap abstraction.

More surprisingly, shape analysis abstraction also have applications
far outside the world of program analysis. For instance, Srivastava et al.
(2011) reduces the search of solutions for planning problems to shape
analysis problems.

1.5 Summary and Survey Outline

The goal of this survey is to survey the main shape analysis techniques
and to convey a general understanding of the main characteristics of
these static analyses. As it is not possible to provide an exhaustive
recollection of all the works carried out on this topic, we adopt a more
modest approach and focus on the main principles related to abstraction
(namely, the relation between concrete stores and abstract predicates),
to the computation of post-conditions for atomic operations and to the
generalization of abstract predicates to enforce termination of analyses.
In this process, we intend to highlight similarities and differences among
the main approaches. Moreover, the principles underlying shape analysis
also inspired other static analyses aimed at programs manipulating other
classes of data structures such as arrays or dictionaries. Thus, we also
show the link between shape analyses and other families of abstractions
and static analysis.

Full text available at: http://dx.doi.org/10.1561/2500000037

12 Introduction

This survey has the following structure. Section 2 presents an intu-
itive overview of the main principles of shape analysis, without adopting
one specific formalism. In fact, it mostly only relies on a graphical pre-
sentation. Section 3 formalizes a concrete model of program states and
executions to be used in the rest of the survey. As often, the choice of the
concrete model of programs deeply influences the ensuing definition of
abstractions and static analysis algorithms. Section 4 integrates some of
the main approaches to shape analysis into this framework. This is the
core part of this survey, since it defines and formalizes the main abstrac-
tions and analysis algorithms. Section 5 presents important extensions
of shape analysis, so as to describe not only the shape of memory, but
also the content and the low level layout of data structures and to ana-
lyze programs with functions and procedures. Section 6 describes a few
abstractions and static analyses that rely on principles that are similar
to the main foundational techniques of shape analysis abstractions and
algorithms. Finally, Section 7 draws the main conclusions of our study.

Full text available at: http://dx.doi.org/10.1561/2500000037

References

Abdulla, P. A., L. Holík, B. Jonsson, O. Lengál, C. Q. Trinh, and
T. Vojnar (2016). “Verification of heap manipulating programs with
ordered data by extended forest automata”. Acta Informatica. 53(4):
357–385.

Andersen, L. O. (1994). “Program analysis and specialization for the C
programming language”. PhD thesis. DIKU, University of
Copenhagen.

Balaban, I., A. Pnueli, and L. D. Zuck (2007). “Shape analysis of single-
parent heaps”. In: Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI). Ed. by B. Cook and A. Podelski.
Vol. 4349. Lecture Notes in Computer Science. Springer. 91–105.

Berdine, J., C. Calcagno, and P. W. O’Hearn (2005a). “Smallfoot:
Modular automatic assertion checking with separation logic”. In:
Formal Methods for Components and Objects, 4th International
Symposium, FMCO 2005, Amsterdam, The Netherlands, November
1–4, Revised Lectures. 115–137.

Berdine, J., C. Calcagno, and P. W. O’Hearn (2005b). “Symbolic exe-
cution with separation logic”. In: APLAS. Springer. 52–68.

Berdine, J., C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies,
and H. Yang (2007). “Shape analysis for composite data structures”.
In: International Conference on Computer Aided Verification (CAV).
Springer. 178–192.

148

Full text available at: http://dx.doi.org/10.1561/2500000037

References 149

Berdine, J., T. Lev-Ami, R. Manevich, G. Ramalingam, and S. Sagiv
(2008). “Thread quantification for concurrent shape analysis”. In:
International Conference on Computer Aided Verification (CAV).
Ed. by A. Gupta and S. Malik. Vol. 5123. Lecture Notes in Computer
Science. Springer. 399–413.

Berdine, J., B. Cook, and S. Ishtiaq (2011). “Slayer: Memory safety
for systems-level code”. In: Computer Aided Verification – 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July
14–20, Proceedings. 178–183.

Bouajjani, A., M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar
(2006). “Programs with lists are counter automata”. In: International
Conference on Computer Aided Verification (CAV). 517–531.

Bouajjani, A., C. Drăgoi, C. Enea, and M. Sighireanu (2011). “On inter-
procedural analysis of programs with lists and data”. In: Conference
on Programming Languages Design and Implementation (PLDI).
578–589.

Bouajjani, A., C. Drăgoi, C. Enea, and M. Sighireanu (2012). “Abstract
domains for automated reasoning about list-manipulating programs
with infinite data”. In: Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI). 1–22.

Brockschmidt, M., Y. Chen, P. Kohli, S. Krishna, and D. Tarlow (2017).
“Learning shape analysis”. In: Static Analysis Symposium (SAS).
Ed. by F. Ranzato. Vol. 10422. Lecture Notes in Computer Science.
Springer. 66–87.

Calcagno, C. and D. Distefano (2011). “Infer: An automatic program
verifier for memory safety of C programs”. In: NASA Formal Meth-
ods – Third International Symposium, NFM 2011, Pasadena, CA,
USA, April 18–20, Proceedings. 459–465.

Calcagno, C., D. Distefano, P. W. O’Hearn, and H. Yang (2006). “Be-
yond reachability: Shape abstraction in the presence of pointer arith-
metic”. In: Static Analysis Symposium (SAS). Springer. 182–203.

Calcagno, C., D. Distefano, P. W. O’Hearn, and H. Yang (2007). “Foot-
print analysis: A shape analysis that discovers preconditions”. In:
Static Analysis, 14th International Symposium, SAS 2007, Kongens
Lyngby, Denmark, August 22–24, Proceedings. 402–418.

Full text available at: http://dx.doi.org/10.1561/2500000037

150 References

Calcagno, C., D. Distefano, P. W. O’Hearn, and H. Yang (2009). “Com-
positional shape analysis by means of bi-abduction”. In: Proceedings
of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). Savannah, GA, USA, January
21–23. 289–300.

Chang, B.-Y. E. and X. Rival (2008). “Relational inductive shape
analysis”. In: Symposium on Principles of Programming Languages
(POPL). ACM. 247–260.

Chang, B.-Y. E. and X. Rival (2013). “Modular construction of shape-
numeric analyzers”. In: Semantics, Abstract Interpretation, and
Reasoning About Programs: Essays Dedicated to David A. Schmidt
on the Occasion of His Sixtieth Birthday, Manhattan, KS, USA,
September 19–20. 161–185.

Chang, B.-Y. E., X. Rival, and G. Necula (2007). “Shape analysis with
structural invariant checkers”. In: Static Analysis Symposium (SAS).
Springer. 384–401.

Chase, D. R., M. Wegman, and F. K. Zadeck (1990). “Analysis of
pointers and structures”. In: Proceedings of the ACM SIGPLAN 1990
Conference on Programming Language Design and Implementation.
PLDI ’90. New York, USA: ACM. 296–310.

Chin, W.-N., C. David, H. H. Nguyen, and S. Qin (2007). “Automated
verification of shape, size and bag properties”. In: 12th International
Conference on Engineering of Complex Computer Systems (ICECCS
2007). 307–320.

Cooper, K. D. and K. Kennedy (1989). “Fast interprocedural alias
analysis”. In: Proceedings of the 16th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). ACM.
49–59.

Cousot, P. and R. Cousot (1977). “Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints”. In: Symposium on Principles of Pro-
gramming Languages (POPL). ACM. 238–252.

Cousot, P. and R. Cousot (1979). “Systematic design of program anal-
ysis frameworks”. In: Symposium on Principles of Programming
Languages (POPL). 269–282.

Full text available at: http://dx.doi.org/10.1561/2500000037

References 151

Cousot, P. and N. Halbwachs (1978). “Automatic discovery of linear re-
straints among variables of a program”. In: Symposium on Principles
of Programming Languages (POPL). Tucson, AZ: ACM. 84–97.

Cousot, P., R. Cousot, and F. Logozzo (2011). “A parametric segmenta-
tion functor for fully automatic and scalable array content analysis”.
In: POPL. Austin, TX, USA: ACM. 105–118.

Cox, A., B.-Y. E. Chang, and X. Rival (2014). “Automatic analysis of
open objects in dynamic language programs”. In: Static Analysis
Symposium (SAS). Springer. 134–150.

Cox, A., B.-Y. E. Chang, and X. Rival (2015). “Desynchronized multi-
state abstractions for open programs in dynamic languages”. In:
European Symposium on Programming (ESOP). Springer. 483–509.

Deutsch, A. (1994). “Interprocedural may-alias analysis for pointers: Be-
yond k-limiting”. In: Proceedings of the Conference on Programming
Language Design and Implementation (PLDI). ACM. 230–241.

Dillig, I., T. Dillig, and A. Aiken (2011). “Precise reasoning for programs
using containers”. In: Symposium on Principles of Programming
Languages (POPL). ACM. 187–200.

Distefano, D., P. O’Hearn, and H. Yang (2006). “A local shape analysis
based on separation logic”. In: Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). Springer.
287–302.

Dor, N., J. Field, D. Gopan, T. Lev-Ami, A. Loginov, R. Manevich,
G. Ramalingam, T. W. Reps, N. Rinetzky, M. Sagiv, R. Wilhelm,
E. Yahav, and G. Yorsh (2005). “Automatic verification of strongly
dynamic software systems”. In: Verified Software: Theories, Tools,
Experiments, First IFIP TC 2/WG 2.3 Conference, VSTTE 2005,
Zurich, Switzerland, October 10–13, Revised Selected Papers and
Discussions. 82–92.

Dudka, K., P. Peringer, and T. Vojnar (2011). “Predator: A practical
tool for checking manipulation of dynamic data structures using
separation logic”. In: International Conference on Computer Aided
Verification (CAV). Springer. 372–378.

Ghiya, R. and L. J. Hendren (1996). “Is it a tree, a DAG, or a cyclic
graph? A shape analysis for heap-directed pointers in C”. In: Sym-
posium on Principles of Programming Languages (POPL). 1–15.

Full text available at: http://dx.doi.org/10.1561/2500000037

152 References

Gotsman, A., J. Berdine, and B. Cook (2006). “Interprocedural shape
analysis with separated heap abstractions”. In: Static Analysis, 13th
International Symposium, SAS 2006, Seoul, Korea, August 29–31,
Proceedings. 240–260.

Graf, S. and H. Saïdi (1997). “Construction of abstract state graphs
with PVS”. In: Computer Aided Verification, 9th International Con-
ference, CAV ’97, Haifa, Israel, June 22–25, Proceedings. 72–83.

Habermehl, P., R. Iosif, and T. Vojnar (2006). “Automata-based verifi-
cation of programs with tree updates”. In: Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS).
350–364.

Habermehl, P., L. Holík, A. Rogalewicz, J. Simácek, and T. Vojnar
(2011). “Forest automata for verification of heap manipulation”. In:
International Conference on Computer Aided Verification (CAV).
Springer. 424–440.

Habermehl, P., L. Holík, A. Rogalewicz, J. Simácek, and T. Vojnar
(2012). “Forest automata for verification of heap manipulation”.
Formal Methods in System Design (FMSD). 41(1): 83–106.

Halbwachs, N. and M. Péron (2008). “Discovering properties about
arrays in simple programs”. In: PLDI. Tucson, AZ, USA: ACM.
339–348.

Holík, L., O. Lengál, A. Rogalewicz, J. Simácek, and T. Vojnar (2013).
“Fully automated shape analysis based on forest automata”. In:
International Conference on Computer Aided Verification (CAV).
Springer. 740–755.

Illous, H., M. Lemerre, and X. Rival (2017). “A relational shape abstract
domain”. In: NASA Formal Methods – 9th International Symposium,
NFM 2017. Vol. 10227. Lecture Notes in Computer Science. Springer.
212–229.

Iosif, R., A. Rogalewicz, and T. Vojnar (2014). “Deciding entailments
in inductive separation logic with tree automata”. In: Automated
Technology for Verification and Analysis (ATVA). Springer. 201–218.

Ishtiaq, S. S. and P. W. O’Hearn (2001). “BI as an assertion language
for mutable data structures”. In: Symposium on Principles of Pro-
gramming Languages (POPL). ACM. 14–26.

Full text available at: http://dx.doi.org/10.1561/2500000037

References 153

Itzhaky, S., A. Banerjee, N. Immerman, A. Nanevski, and M. Sa-
giv (2013). “Effectively-propositional reasoning about reachability
in linked data structures”. In: International Conference on Com-
puter Aided Verification (CAV). Ed. by N. Sharygina and H. Veith.
Vol. 8044. Lecture Notes in Computer Science. Springer. 756–772.

Jeannet, B., A. Loginov, T. W. Reps, and S. Sagiv (2004). “A relational
approach to interprocedural shape analysis”. In: Static Analysis
Symposium (SAS). 246–264.

Jeannet, B., A. Loginov, T. W. Reps, and M. Sagiv (2010). “A relational
approach to interprocedural shape analysis”. ACM Trans. Program.
Lang. Syst. 32(2): 5:1–5:52.

Jones, N. D. and S. S. Muchnick (1979). “Flow analysis and optimization
of LISP-like structures”. In: Proceedings of the 6th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages
(POPL). New York, NY, USA: ACM. 244–256. url: http://doi.acm.
org/10.1145/567752.567776. Reprinted in Program Flow Analysis:
Theory and Application, Muchnick, Steven S. and Jones, Neil D.,
1981, published by Prentice Hall Professional Technical Reference.

Jones, N. D. and S. S. Muchnick (1982). “A flexible approach to in-
terprocedural data flow analysis and programs with recursive data
structures”. In: Proceedings of the 9th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). New
York, NY, USA: ACM. 66–74.

Jonkers, H. B. and H. B. M. Jonkers (1981). Abstract Storage Struc-
tures. Afdeling Informatica: IW. Afdeling Informatica, Mathematisch
Centrum.

Kleene, S. C. (1952). Introduction to Metamathematics. Vol. 483. New
York, NY: D. Van Nostrand Co., Inc.

Kreiker, J., H. Seidl, and V. Vojdani (2010). “Shape analysis of low-
level C with overlapping structures”. In: Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI). Springer.
214–230.

Larus, J. R. and P. N. Hilfinger (1988). “Detecting conflicts between
structure accesses”. In: Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and Implementation.
PLDI ’88. New York, NY, USA: ACM. 24–31.

Full text available at: http://dx.doi.org/10.1561/2500000037

http://doi.acm.org/10.1145/567752.567776
http://doi.acm.org/10.1145/567752.567776

154 References

Laviron, V., B.-Y. E. Chang, and X. Rival (2010). “Separating shape
graphs”. In: European Symposium on Programming (ESOP).
Springer. 387–406.

Le, Q. L., J. Sun, and W.-N. Chin (2016). “Satisfiability modulo heap-
based programs”. In: International Conference on Computer Aided
Verification (CAV). Ed. by S. Chaudhuri and A. Farzan. Vol. 9779.
Lecture Notes in Computer Science. Springer. 382–404.

Lee, O., H. Yang, and R. Petersen (2011). “Program analysis for overlaid
data structures”. In: International Conference on Computer Aided
Verification (CAV). 592–608.

Lev-Ami, T. and S. Sagiv (2000). “TVLA: A system for implementing
static analyses”. In: Static Analysis Symposium (SAS). Springer.
280–301.

Li, H., X. Rival, and B.-Y. E. Chang (2015). “Shape analysis for un-
structured sharing”. In: Static Analysis Symposium (SAS). 90–108.

Li, H., F. Berenger, B.-Y. E. Chang, and X. Rival (2017). “Semantic-
directed clumping of disjunctive abstract states”. In: Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL). Paris, France, January 18–20. 32–45.

Liu, J. and X. Rival (2015). “Abstraction of arrays based on non con-
tiguous partitions”. In: Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI). Mumbai, India: Springer.
282–299.

Liu, J., L. Chen, and X. Rival (2018). “Automatic verification of em-
bedded system code manipulating dynamic structures stored in
contiguous regions”. In: International Conference on Embedded Soft-
ware (EMSOFT).

Loginov, A., T. W. Reps, and S. Sagiv (2005). “Abstraction refinement
via inductive learning”. In: International Conference on Computer
Aided Verification (CAV). Ed. by K. Etessami and S. K. Rajamani.
Vol. 3576. Lecture Notes in Computer Science. Springer. 519–533.

Madhusudan, P., G. Parlato, and X. Qiu (2011). “Decidable logics
combining heap structures and data”. In: Symposium on Principles
of Programming Languages (POPL). Ed. by T. Ball and M. Sagiv.
ACM. 611–622.

Full text available at: http://dx.doi.org/10.1561/2500000037

References 155

Magill, S., J. Berdine, E. M. Clarke, and B. Cook (2007). “Arithmetic
strengthening for shape analysis”. In: Static Analysis, 14th Interna-
tional Symposium, SAS 2007, Kongens Lyngby, Denmark, August
22–24, Proceedings. 419–436.

Magill, S., M.-H. Tsai, P. Lee, and Y.-K. Tsay (2010). “Automatic nu-
meric abstractions for heap-manipulating programs”. In: Proceedings
of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). Madrid, Spain, January 17–23.
211–222.

Manevich, R., T. Lev-Ami, M. Sagiv, G. Ramalingam, and J. Berdine
(2008). “Heap decomposition for concurrent shape analysis”. In:
Static Analysis Symposium (SAS). Ed. by M. Alpuente and G. Vidal.
Vol. 5079. Lecture Notes in Computer Science. Springer. 363–377.

Manevich, R., B. Dogadov, and N. Rinetzky (2016). “From shape
analysis to termination analysis in linear time”. In: Computer Aided
Verification – 28th International Conference, CAV 2016, Toronto,
ON, Canada, July 17–23, Proceedings, Part I. 426–446.

Might, M. (2010). “Shape analysis in the absence of pointers and
structure”. In: Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI). Springer. 263–278.

Miné, A. (2006). “Field-sensitive value analysis of embedded C pro-
grams with union types and pointer arithmetics”. In: Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES).
ACM. 54–63.

Nelson, G. (1983). “Verifying reachability invariants of linked structures”.
In: Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL). New York, NY,
USA: ACM. 38–47.

O’Hearn, P. W. and D. J. Pym (1999). “The logic of bunched implica-
tions”. Bulletin of Symbolic Logic. 5(2): 215–244.

O’Hearn, P. W., J. C. Reynolds, and H. Yang (2001). “Local reason-
ing about programs that alter data structures”. In: International
Conference on Computer Science Logics (CSL). 1–19.

Full text available at: http://dx.doi.org/10.1561/2500000037

156 References

Pek, E., X. Qiu, and P. Madhusudan (2014). “Natural proofs for data
structure manipulation in C using separation logic”. In: Conference
on Programming Languages Design and Implementation (PLDI).
Ed. by M. F. P. O’Boyle and K. Pingali. ACM. 440–451.

Piskac, R., T. Wies, and D. Zufferey (2013). “Automating separation
logic using SMT”. In: International Conference on Computer Aided
Verification (CAV). Ed. by N. Sharygina and H. Veith. Vol. 8044.
Lecture Notes in Computer Science. Springer. 773–789.

Podelski, A. and T. Wies (2005). “Boolean heaps”. In: Static Analysis
Symposium (SAS). Ed. by C. Hankin and I. Siveroni. Vol. 3672.
Lecture Notes in Computer Science. Springer. 268–283.

Qiu, X., P. Garg, A. Stefanescu, and P. Madhusudan (2013). “Natural
proofs for structure, data, and separation”. In: Conference on Pro-
gramming Languages Design and Implementation (PLDI). Ed. by
H.-J. Boehm and C. Flanagan. ACM. 231–242.

Reps, T. W., S. Horwitz, and M. Sagiv (1995). “Precise interproce-
dural dataflow analysis via graph reachability”. In: Symposium on
Principles of Programming Languages (POPL). ACM. 49–61.

Reps, T., M. Sagiv, and A. Loginov (2003). “Finite differencing of
logical formulas for static analysis”. In: European Symposium on
Programming (ESOP). 380–398.

Reynolds, J. C. (1968). “Automatic computation of data set definitions”.
In: Information Processing 68: Proceedings of the IFIP Congress.
North-Holland. 296–310.

Reynolds, J. C. (2002). “Separation logic: A logic for shared mutable
data structures”. In: Symposium on Logics in Computer Science
(LICS). IEEE. 55–74.

Rinetzky, N. and S. Sagiv (2001). “Interprocedural shape analysis for
recursive programs”. In: International Conference on Compiler Con-
struction (CC). Springer. 133–149.

Rinetzky, N., J. Bauer, T. W. Reps, S. Sagiv, and R. Wilhelm (2005a).
“A semantics for procedure local heaps and its abstractions”. In:
Symposium on Principles of Programming Languages (POPL). 296–
309.

Full text available at: http://dx.doi.org/10.1561/2500000037

References 157

Rinetzky, N., M. Sagiv, and E. Yahav (2005b). “Interprocedural shape
analysis for cutpoint-free programs”. In: Static Analysis Symposium
(SAS). 284–302.

Rival, X. and B.-Y. E. Chang (2011). “Calling context abstraction with
shapes”. In: Symposium on Principles of Programming Languages
(POPL). ACM. 173–186.

Sagiv, M., T. Reps, and R. Wilhelm (1998). “Solving shape-analysis
problems in languages with destructive updating”. ACM Trans.
Program. Lang. Syst. 20(1): 1–50.

Sagiv, S., T. Reps, and R. Wilhelm (1999). “Parametric shape analysis
via 3-valued logic”. In: Symposium on Principles of Programming
Languages (POPL). 105–118.

Sagiv, M., T. Reps, and R. Wilhelm (2002). “Parametric shape analysis
via 3-valued logic”. Transactions on Programming Languages and
Systems (TOPLAS). 24(3): 217–298.

Sharir, M. and A. Pnueli (1981). “Two approaches to interprocedu-
ral data flow analysis”. In: Program Flow Analysis: Theory and
Applications. Englewood Cliffs, NJ: Prentice-Hall, Inc. Chap. 7.

Shivers, O. (1991). “Control-flow analysis of higher-order languages”.
PhD thesis. Carnegie Mellon University.

Smaragdakis, Y. and G. Balatsouras (2015). “Pointer analysis”. Found.
Trends Program. Lang. 2(1): 1–69.

Sotin, P. and B. Jeannet (2011). “Precise interprocedural analysis in
the presence of pointers to the stack”. In: European Symposium on
Programming (ESOP). 459–479.

Sotin, P., B. Jeannet, and X. Rival (2010). “Concrete memory models for
shape analysis”. Electronic Notes in Theoretical Computer Science.
267(1): 139–150.

Srivastava, S., N. Immerman, and S. Zilberstein (2011). “A new rep-
resentation and associated algorithms for generalized planning”.
Artificial Intelligence. 175(2): 615–647.

Steensgaard, B. (1996). “Points-to analysis in almost linear time”. In:
Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). ACM. 32–41.

Stransky, J. (1992). “A lattice for abstract interpretation of dynamic
(LISP-like) structures”. Inf. Comput. 101(1): 70–102.

Full text available at: http://dx.doi.org/10.1561/2500000037

158 References

Toubhans, A., B.-Y. E. Chang, and X. Rival (2013). “Reduced product
combination of abstract domains for shapes”. In: Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI).
375–395.

Toubhans, A., B.-Y. E. Chang, and X. Rival (2014). “An abstract
domain combinator for separately conjoining memory abstractions”.
In: Static Analysis Symposium (SAS). 285–301.

Vafeiadis, V. (2010). “Automatically proving linearizability”. In: Inter-
national Conference on Computer Aided Verification (CAV). Ed. by
T. Touili, B. Cook, and P. B. Jackson. Vol. 6174. Lecture Notes in
Computer Science. Springer. 450–464.

Yang, H. (2007). “Towards shape analysis for device drivers”. In: Ver-
ification, Model Checking, and Abstract Interpretation, 8th Inter-
national Conference, VMCAI 2007, Nice, France, January 14–16,
Proceedings. 267.

Yang, H., O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P. W. O’Hearn (2008). “Scalable shape analysis for systems code”.
In: Computer Aided Verification, 20th International Conference,
CAV 2008, Princeton, NJ, USA, July 7–14, Proceedings. 385–398.

Full text available at: http://dx.doi.org/10.1561/2500000037

