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ABSTRACT
The computation of semantic information about the behavior
of pointer-manipulating programs has been a long standing
issue, attacked with diverse and numerous techniques and
tools for over 50 years. As usual in automatic verification
of infinite-state programs, properties of interest are not
computable. Thus, static analyses can only be conservative,
leading different analyses to make different tradeoffs between
the intricacies of the properties they detect, the precision of
their inference procedure and analysis, and the scalability
of the analysis.
In this context, shape analyses focus on inferring highly
complex properties of heap-manipulating programs. These
programs utilize data structures which are implemented
using an unbounded number of dynamically- (heap-) allo-
cated memory cells interconnected via mutable pointer-links.
Because shape analyses have to reason about data struc-
tures whose size is not bounded by a fixed, known value,
they cannot track explicitly the particular properties of ev-
ery concrete memory cell which the program uses, as done,

Bor-Yuh Evan Chang, Cezara Drăgoi, Roman Manevich, Noam Rinetzky and Xavier
Rival (2020), “Shape Analysis”, Foundations and TrendsR© in Programming Lan-
guages: Vol. 6, No. 1–2, pp 1–158. DOI: 10.1561/2500000037.
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e.g., by analysis of variable-manipulating non-recursive pro-
grams. Instead, shape analyses summarize memory regions
by letting one piece of abstract information, called summary
predicate, describe several concrete cells. The need to cope
with data structures of unbounded sizes is a challenge shape
analyses share with static analyzers of array-manipulating
programs. However, while the size of an array may change
in different executions, its layout (i.e., its dimensions and
the way its contents are spread over the memory) is fixed.
In contrast, the layout of a pointer-linked data structure,
colloquially referred to as its shape, may evolve dynamically
during the program execution and a memory cell can be
part of different data structures at different points in time.
As a result, shape analyses need to let the denotation of
summary predicates in terms of the constituents and layouts
of the memory regions which they represent evolve during
the analysis as well.
In this survey, we consider that shape analyses are charac-
terized and defined by the presence of summary predicates
describing a set of concrete memory cells that varies during
the course of the analysis. We use this characterization as
a means for distinguishing shape analyses as a particular
class of pointer analyses. We show that many “standard”
pointer analyses do not fit the aforementioned description,
while many analyses relying on very different mathemati-
cal foundations, e.g., shape graphs, three-valued logic, and
separation logic, do.
The ambition of this survey is to provide a comprehensive
introduction to the field of shape analysis, and to present
the foundation of this topic, in a single document that is
accessible to readers who are not familiar with it. To do
so, we characterize the essence of shape analysis compared
to more classical pointer analyses. We supply the intuition
underlying the abstractions commonly used in shape analysis
and the algorithms that allow to statically compute intricate

Full text available at: http://dx.doi.org/10.1561/2500000037
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semantic properties. Then, we cover the main families of
shape analysis abstraction and algorithms, highlight the
similarities between them, and also characterize the main
differences between the most common approaches. Last,
we review a few other static analysis works (such as array
abstractions, dictionary abstractions and interprocedural
analyses) that were influenced by the ideas of shape analysis,
so as to demonstrate the impact of the field.

Full text available at: http://dx.doi.org/10.1561/2500000037



1
Introduction

1.1 Verifying Pointer-Manipulating Programs

Pointers and dynamic memory allocation are present in one form or
another in many modern programming languages and significantly con-
tribute to their expressiveness. For instance, they enable maintaining
mutable data structures such as lists, trees, and graphs. The size of such
structures may vary during the execution, as cells can be dynamically
allocated in the heap when the program needs them in order to store
new data. Moreover, the links between elements may be modified locally
without changing the whole structure, e.g., to insert a new element into
its proper location inside a sorted list. Similarly, common implementa-
tions of functional or object oriented languages also make great use of
both pointers and dynamic memory allocation so as to represent the
call stack, closures, and objects.

On the other hand, these features make reasoning over programs
very difficult since the layout of the memory states heavily depends on
the program executions. As a consequence, using such features is a no-
toriously hard task for programmers, and bugs related to them are both
common and challenging to diagnose. Depending on the programming
language, pointer manipulation errors may cause abrupt crashes due to

4
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1.1. Verifying Pointer-Manipulating Programs 5

runtime errors (as the dereference of a null pointer), memory leakage,
i.e., make memory blocks unreachable, and thus impossible to ever
deallocate, cause pointers to become dangling, i.e., point to (manually)
deallocated memory regions, which may lead to further pointer related
errors, e.g., memory corruptions (a write through a dangling pointer,
that happens to refer to a memory area that has been freed and then
allocated again to store other, unrelated, data).

On top of that, the preservation of structural invariants of pointer-
linked data structures is often non-trivial, as a pointer manipulation
error might create a cycle in a structure that is supposed to be acyclic
and/or leak a large part of it. As an example, Figure 1.1 displays
several common examples of dynamic data structures, with very different
properties:

• singly-linked lists consist of acyclic chains of elements ending with
a special element, and where the link from one element to the next
usually boils down to a pointer field embedded in every element;

• doubly-linked lists augment the singly-linked list structure with
backward pointers from each element to its predecessor;

• circular lists have the same local structure as the singly-linked
lists, but form a loop, so that it is always possible to access the
successor of any element;

• binary trees are also chained structures, but are such that each
non-leaf node has a left and a right successor (a slightly different
definition of binary trees accepts structures where some nodes
may have no left child or no right child);

• binary trees with parent pointers augment binary trees with back-
ward links from every node to its predecessor, Similarly to the way
doubly-linked lists augments singly-linked lists with back-pointers;

• connected graphs consist of sets of elements, such that each element
has a number of successors who are also elements of the structure;
in particular, they may contain cycles, elements with no successors,
etc.

Full text available at: http://dx.doi.org/10.1561/2500000037



6 Introduction

Singly-linked list Doubly-linked list

Circular list Binary tree

Binary tree with parent pointers

1
2

2

3
2

0

1

Connected graph

Figure 1.1: A few unbounded and dynamic data structures.

This defines just a small sample of the structures one can imagine,
and it is possible to combine these patterns or invent others, e.g., a list
of trees or a tree the nodes of which are also connected by a list. Each
structure comes with a set of properties (existence of chains of links to
next elements, reachability, absence or existence of cycles, existence of
a linear order or not. . .). Furthermore, the correct utilization of each
structure relies on the preservation of its shape invariant—a combination
of global properties pertaining to the layout of its elements—which is
generally hard to establish.

Due to these difficulties, a large number of works have searched for
techniques to reason about pointer-manipulating programs automati-
cally so as to verify the aforementioned properties. In general, static
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1.3. Limitations of Pointer Analyses 7

analysis aims at computing automatically semantic properties of pro-
grams, namely properties that are satisfied by every program execution,
such as the absence of some classes of errors, or the preservation of some
invariants. Broadly speaking, there are two (somewhat overlapping)
categories of static analysis of heap-manipulating pointer programs:
pointer analyses and shape analyses, as we discuss next.

1.2 Pointer Analysis

Pointer analyses (see Smaragdakis and Balatsouras, 2015 for a recent
survey) attempt to determine properties of pointer values and of the
structures they refer to. A first useful property is the validity of pointer
values, which expresses that they are neither dangling nor null. While
it is useful in order to prove that some errors such as a null/dangling
pointer dereference or the corruption of an unknown memory location
cannot occur, this property is often too weak to fully understand what
a program does. A second useful semantic property focuses on the
resolution of pointers so as to determine to which address a pointer
may refer, or what pairs of pointers may be equal (alias). This property
is extremely useful to resolve memory accesses, and help basically
any kind of program reasoning technique when considering a program
that manipulates pointers. Points-to analyses such as Andersen (1994)
or Steensgaard (1996) compute a super-set of the addresses each pointer
variable may refer to. Essentially, each memory cell with a pointer type
is mapped into a set of symbolic addresses it may point to, and this
set can be used so as to resolve memory accesses. Alias analyses such
as Cooper and Kennedy (1989) compute a super-set of the aliasing
relation between pointers, which is another way to describe the topology
of pointers (see, e.g., Jonkers and Jonkers, 1981).

1.3 Limitations of Pointer Analyses and Need for
More Expressive Abstractions

Points-to and alias analyses rely on basic and generally cheap ab-
stractions of program states, and can often be carried out in a fully
flow-insensitive manner for better performance, relying on field-, object

Full text available at: http://dx.doi.org/10.1561/2500000037



8 Introduction

creation site, or context-sensitivity to improve precision. On the other
hand, the range of properties they may infer is typically quite limited.
In general, when the size of data structures or the numbers of allocated
memory blocks are unbounded, many important properties fall beyond
the scope of these analyses. As an example, the reachability of a cell
that is allocated dynamically becomes hard to establish since the chains
of pointers from program variables to it may be arbitrarily long. This
property is important in order to verify the absence of memory leaks
in languages where deallocation is manual. Similarly, the acyclicity of
a data structure expresses the absence of certain patterns in pointer
paths, can only be established by reasoning over arbitrarily long paths.
This property is important in order to verify structural preservation
or termination of loops. The key issue is that these properties are not
local, and can only be justified by global arguments. In fact, it is not
rare that even the verification of a local property, e.g., pointer validity,
requires establishing a global property, e.g., reachability.

There exist techniques to make pointer analyses less local and extend
their expressiveness. As an example, Deutsch (1994) infers aliasing
relations over access paths that are of unbounded length, and that
can be tied together by the means of numeric relations: this analysis
can express that some pointer stores the address of an element that
lies somewhere in the middle of a list-like structure. However, such
techniques remain limited, and cannot express that a list (or an instance
of some other dynamic structure) is well-formed.

1.4 Shape Analysis

Shape analyses, in contrast to pointer analyses, aim at computing global
structural properties of unbounded sets of memory cells and pointers,
such as the shape invariants of the data structures depicted in Figure 1.1.
An example of shape property is the well-formedness of a singly linked
list or that of a binary tree without sharing. Such properties concern an
unbounded number of memory cells, and tightly constrain correlations
between an unbounded number of pointers fields. This allows them to
convey, for instance, the absence of cycles over arbitrarily long link

Full text available at: http://dx.doi.org/10.1561/2500000037



1.4. Shape Analysis 9

chains. Such relations are intrinsically harder to define and reason about
than relations over finite sets of pointers or of regions.

Shape analyses have in common a much higher level of expressiveness
than the aforementioned pointer analysis and they rely on very different
basic logical predicates. In particular, each of them features some kinds
of basic predicates that are able to summarize memory regions of
unbounded size and in a compact manner while retaining some global
information about the shape properties of the summarized region. This
is absolutely required to express shape properties over unbounded data
structures such as lists, trees and graphs: indeed, abstractions that lack
the ability to summarize are either limited to keeping precision on finite
sets of memory cells, while losing precision on the rest, or require to
resort to a possibly unbounded number of disjuncts.

In addition to summarization, shape analyses need to calculate
precisely how program statements transform summaries. In practice,
they often need to temporarily refine summaries in order to reason
precisely over program statements that impact them. This process,
often called materialization or focus, allows the analysis to apply case
analysis regarding the layout of the heap part represented by a summary
predicate. Materialization allows to perform strong updates of heap
cells located deep in the heap as it enables the analysis to dynamically
refine its view of the parts of the heap that pointer variables refer to
when analyzing, e.g., the traversal of unbounded data structures.

The use of materialization implies that the analysis also needs to
be able to introduce summaries by a generalization process, from more
precise predicates. As a consequence, the analysis needs to go back
and forth between its base view of data structures and a more refined
one, that makes reasoning over local read and destructive update (field
mutation) operations possible.

Materializing and Non-Materializing Shape Analyses. In the follow-
ing, we distinguish between two families of shape analyses: the first
category is unable to do materialization at any time and thus can per-
form strong updates only when certain favorable conditions hold, and
the second category that is able to perform dynamic materialization
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10 Introduction

(at any time during the analysis) and thus is able to perform strong
updates in more cases.

Non-Materializing Shape Analyses. As an example for the latter
kind of analyses, Ghiya and Hendren (1996) uses global predicates that
state that some structures are “tree like”, that is, acyclic and without
sharing, or simply “DAG like”, that is, acyclic, but possibly with some
amount of internal sharing. Unlike the pointer analyses mentioned above,
this analysis actually captures properties related to the shape of heap
data structures that are manipulated by programs.

Materializing Shape Analyses. Two notable examples for the kind
of shape analyses which use materialization are the three-valued logic
framework for shape analysis of Sagiv et al. (1999, 2002), and analyses
based on separation logic which was introduced by Reynolds (2002)
and Ishtiaq and O’Hearn (2001).

Three-valued logic relies on basic user-defined shape predicates (such
as local points-to predicates, global reachability predicates expresses by
transitive closure over the points-to predicates, and acyclicity predicates)
and summary nodes that stand for unbounded numbers of concrete
memory cells or addresses in order to describe large families of shape
properties of heap data structures. TVLA (Lev-Ami and Sagiv, 2000) is
a parametric system which can very precisely capture structures such
as lists or graphs, and it was applied to a wide range of shape analysis
problems.

Separation logic was proposed as a language to tie logical properties
to heap regions. As an example, it can naturally convey, thanks to the
so-called separating conjunction, that a memory region can be divided
into a finite set of pairwise disjoint regions that store specific data
structures, and that can be reasoned about in a separate manner. This
is the basis of local reasoning, which simplifies the analysis of atomic
program statements by letting it focus on the memory cells that they
may read or update. Coupled with inductive predicates, separation
logic can describe many interesting data structures of unbounded size,
and assert that a region stores, e.g., a well-formed singly linked list
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1.5. Summary and Survey Outline 11

or a well-formed binary tree with no sharing. It has served as a basis
for several static analyses including those described in Distefano et al.
(2006), Berdine et al. (2007), Chang et al. (2007), Dudka et al. (2011),
or Holík et al. (2013).

Applications of Shape Analysis. Besides memory safety and the veri-
fication of correctness properties for sequential programs as outlined
above, we can cite many applications for shape analysis techniques.
An important example is the case of parallel programs, where several
threads may concurrently access and modify shared data-structures.
Among the many works that have attacked this problem, we can cite
Berdine et al. (2008), Manevich et al. (2008), and Vafeiadis (2010). In
general, the works rely on shape abstractions that are rather similar to
those used in the sequential case and compute information about the
thread interaction in terms of heap abstraction.

More surprisingly, shape analysis abstraction also have applications
far outside the world of program analysis. For instance, Srivastava et al.
(2011) reduces the search of solutions for planning problems to shape
analysis problems.

1.5 Summary and Survey Outline

The goal of this survey is to survey the main shape analysis techniques
and to convey a general understanding of the main characteristics of
these static analyses. As it is not possible to provide an exhaustive
recollection of all the works carried out on this topic, we adopt a more
modest approach and focus on the main principles related to abstraction
(namely, the relation between concrete stores and abstract predicates),
to the computation of post-conditions for atomic operations and to the
generalization of abstract predicates to enforce termination of analyses.
In this process, we intend to highlight similarities and differences among
the main approaches. Moreover, the principles underlying shape analysis
also inspired other static analyses aimed at programs manipulating other
classes of data structures such as arrays or dictionaries. Thus, we also
show the link between shape analyses and other families of abstractions
and static analysis.
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12 Introduction

This survey has the following structure. Section 2 presents an intu-
itive overview of the main principles of shape analysis, without adopting
one specific formalism. In fact, it mostly only relies on a graphical pre-
sentation. Section 3 formalizes a concrete model of program states and
executions to be used in the rest of the survey. As often, the choice of the
concrete model of programs deeply influences the ensuing definition of
abstractions and static analysis algorithms. Section 4 integrates some of
the main approaches to shape analysis into this framework. This is the
core part of this survey, since it defines and formalizes the main abstrac-
tions and analysis algorithms. Section 5 presents important extensions
of shape analysis, so as to describe not only the shape of memory, but
also the content and the low level layout of data structures and to ana-
lyze programs with functions and procedures. Section 6 describes a few
abstractions and static analyses that rely on principles that are similar
to the main foundational techniques of shape analysis abstractions and
algorithms. Finally, Section 7 draws the main conclusions of our study.
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