Full text available at: http://dx.doi.org/10.1561/2500000038

Reconciling Abstraction
with High Performance: A
MetaOCaml approach

Oleg Kiselyov
Tohoku University, Japan
oleg@okmij.org

now

the essence of knowledge

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2500000038

Foundations and Trends® in
Programming Languages

Published, sold and distributed by:
now Publishers Inc.

PO Box 1024

Hanover, MA 02339

United States

Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.

PO Box 179

2600 AD Delft

The Netherlands

Tel. +31-6-51115274

The preferred citation for this publication is

0. Kiselyov. Reconciling Abstraction with High Performance: A MetaOCaml
approach. Foundations and Trends® in Programming Languages, vol. 5, no. 1,
pp. 1-101, 2018.

This Foundations and Trends® issue was typeset in BTEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-436-9
© 2018 O. Kiselyov

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2500000038

Foundations and Trends® in
Programming Languages
Volume 5, Issue 1, 2018

Editor-in-Chief

Mooly Sagiv
Tel Aviv University
Israel

Editors

Martin Abadi

Google &

UC Santa Cruz
Anindya Banerjee
IMDEA

Patrick Cousot

ENS Paris & NYU
Oege De Moor
University of Ozford
Matthias Felleisen
Northeastern University
John Field

Google

Cormac Flanagan

UC Santa Cruz
Philippa Gardner
Imperial College
Andrew Gordon
Microsoft Research &
University of Edinburgh
Dan Grossman
University of Washington

Editorial Board

Robert Harper
CMU

Tim Harris
Oracle

Fritz Henglein
University of Copenhagen

Rupak Majumdar
MPI-SWS & UCLA

Kenneth McMillan
Microsoft Research

J. Eliot B. Moss
UMass, Amherst

Andrew C. Myers
Cornell University

Hanne Riis Nielson
TU Denmark

Peter O’Hearn
UCL

Benjamin C. Pierce
UPenn

Andrew Pitts
University of Cambridge

Ganesan Ramalingam
Microsoft Research
Mooly Sagiv

Tel Aviv University
Davide Sangiorgi
University of Bologna
David Schmidt

Kansas State University
Peter Sewell

University of Cambridge
Scott Stoller

Stony Brook University
Peter Stuckey
University of Melbourne
Jan Vitek

Purdue University
Philip Wadler
University of Edinburgh
David Walker
Princeton University

Stephanie Weirich
UPenn

Full text available at: http://dx.doi.org/10.1561/2500000038

Editorial Scope

Topics

Foundations and Trends® in Programming Languages publishes survey
and tutorial articles in the following topics:

e Abstract interpretation

e Compilation and
interpretation techniques

e Domain specific languages

e Formal semantics, including
lambda calculi, process calculi,
and process algebra

e Language paradigms

e Mechanical proof checking
e Memory management

e Partial evaluation

e Program logic

e Programming language
implementation

e Programming language
security

Information for Librarians

Programming languages for
concurrency

Programming languages for
parallelism

Program synthesis

Program transformations and
optimizations

Program verification

Runtime techniques for
programming languages

Software model checking

Static and dynamic program
analysis

Type theory and type systems

Foundations and Trends® in Programming Languages, 2018, Volume 5, 4
issues. ISSN paper version 2325-1107. ISSN online version 2325-1131. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2500000038

Foundations and Trends® in Programming Languages

Vol. 5, No. 1 (2018) 1-101 n.w

© 2018 O. Kiselyov
DOI: 10.1561/2500000038 the essence of knowledge

Reconciling Abstraction with High Performance:
A MetaOCaml approach

Oleg Kiselyov
Tohoku University, Japan
oleg@okmij.org

Full text available at: http://dx.doi.org/10.1561/2500000038

Contents

(1__Introduction 2
1.1 Why metaprogramming?| 2
1.2 Why this tutorial?| L 4
1.3 Why MetaOCaml?|.)
L4 Overviewl 7
1.5 Obtaining MetaOCaml| 8
[2” First Steps 9
21 Noworlated, 9
2 Powed 12
[2.3 Offline code generation| 17
|2.4 Runtime specialization and its benchmark] 18

b Recap| 20

2.6 A historical aside] 21

3 Filtering 23
[3.1 Specializing to the known filter order] 26
[3.2 Specialization to the known coefficients| 30
[3.3 Smarter specialization| L. 35
3.4 Further challenges| 38
............................ 39

Full text available at: http://dx.doi.org/10.1561/2500000038

|4 Linear Algebra DSL: Complex Vector Arithmetic and Data |

40
4.1 Data layout problem|. 41
|4.2 Abstracting arithmetic|. 43
|4.3 Abstracting vectors| L. 48
4.4 Vector arithmetic DSLI. 50
4.5 Compiling vector DSL| 51
|4.6 Recap and further challenges| 56

|9 Linear Algebra DSL: Matrix-Vector Operations and Modular |

[Optimizations| 58
b.1 Shonanchallenge 1| 59
h2 BIAS2DSL. 60
[5.3 Implementing and generating matrix-vector multiplication| . 63
|5.4 Specializing to the known dimensions|. 66
[5.5 Specializing to the known matrix: Partially-known values| . 68
5.6 Algebraic simplifications| 73
5.7 Selective unrollingl oL 75
5.8 Cross-stage persistence for large datal. 76

0 R Dl . . . e o 81

[6" From an Interpreter to a Compiler: DSL for Image Manipu- |

[_lation| 82
6.1 Image-processing DSL|. 82
6.2 Interpreting DSL|. 83
6.3 Compiling DSL| o 86

{7 Further Challenges| 89
7.1 Digital filters|. 89
[7.2 Linear Algebra DSL| 89
[7.3 Other Challenges| 90

8__Conclusions| 92

|Acknowledgements| 94

[[ndex of the Accompanying Code] 95

Full text available at: http://dx.doi.org/10.1561/2500000038

97

Full text available at: http://dx.doi.org/10.1561/2500000038

Abstract

A common application of generative programming is building high-
performance computational kernels highly tuned to the problem at
hand. A typical linear algebra kernel is specialized to the numerical
domain (rational, float, double, etc.), loop unrolling factors, array lay-
out and a priori knowledge (e.g., the matrix being positive definite).
It is tedious and error prone to specialize by hand, writing numerous
variations of the same algorithm.

The widely used generators such as ATLAS and SPIRAL reliably
produce highly tuned specialized code but are difficult to extend. In
ATLAS, which generates code using printf, even balancing parentheses
is a challenge. According to the ATLAS creator, debugging is night-
mare.

A typed staged programming language such as MetaOCaml lets us
state a general, obviously correct algorithm and add layers of special-
izations in a modular way. By ensuring that the generated code always
compiles and letting us quickly test it, MetaOCaml makes writing gen-
erators less daunting and more productive.

The readers will see it for themselves in this hands-on tutorial. As-
suming no prior knowledge of MetaOCaml and only a basic familiarity
with functional programming, we will eventually implement a simple
domain-specific language (DSL) for linear algebra, with layers of opti-
mizations for sparsity and memory layout of matrices and vectors, and
their algebraic properties. We will generate optimal BLAS kernels. We
shall get the taste of the “Abstraction without guilt”.

O. Kiselyov. Reconciling Abstraction with High Performance: A MetaOCaml
approach. Foundations and Trends® in Programming Languages, vol. 5, no. 1,
pp. 1-101, 2018.

DOI: 10.1561/2500000038.

Full text available at: http://dx.doi.org/10.1561/2500000038

1

Introduction

1.1 Why metaprogramming?

Ever-present in all areas of programming is the agonizing trade-off
between, on one hand, the maintainable, reusable, easy to read and
understand, obviously correct, textbook code — and the code that
performs well. The trade-off is exacerbated in high-performance com-
puting (HPC). Coding the matrix-vector multiplication just as a * v
is clear, portable, self-describing. On the other hand, the typical
high-performance code that multiplies an integer-valued matrix to an
integer-valued vector takes many, many lines and not at all self-evident.
It looks nothing like a * v. It also looks nothing like the code that multi-
plies a single-precision floating-point matrix to a floating-point vector.
Which, in turn, bears scarcely any resemblance to the high-performance
code multiplying a sparse matrix to a vector.

Already at the end of the last century it was recognized that we
can no longer rely on optimizing compilers to turn the high-level code
to the high-performance code (see references in Cohen et al. (2006)):
many profitable optimizations are domain specific and often narrowly
applicable, and hence unlikely to be supported by a general-purpose
compiler. Even the simplest replacement Oxe with 0 is not generally

Full text available at: http://dx.doi.org/10.1561/2500000038

1.1. Why metaprogramming? 3

sound: think of e that calls external functions or returns NaN A do-
main expert, knowing the input data and the entire algorithm, could
tell that the side effects of e may be disregarded or NaNs do not occur —
hence the optimization should be carried out, for particular multipli-
cations in particular expressions.

It is cognitively and economically prohibitive for general-purpose
compilers to give programmers such minute level of control over opti-
mizations. It is very common therefore for experts to write the compu-
tational kernels by hand — and keep re-writing them to accommodate
new architectures or new patterns in the input data.

Metaprogramming — code generation specifically — promises a way
out: instead of a program we write a program generator, which incor-
porates domain-specific knowledge and outputs a number of low-level,
specialized, high-performance programs. This is the approach taken by
the widely known and used fast Fourier transformer generator FF'TW
(Frigo and Johnson| 2005), basic linear algebra (BLAS) generator AT-
LAS (Whaley and Petitet, 2005), DSP and linear algebra generator
SPIRAL (Puschel et al., 2005), image filter generator Halide (Ragan-
Kelley et al., 2013).

The above projects also showed that writing a good generator is still
very difficult: it is worth a paper in a prestigious conference. For exam-
ple, ATLAS — which uses C to generate C code as strings — has been
notoriously difficult to write, debug and extend. We need help with
code-generating chores — provided by MetaOCaml, Lightweight Mod-
ular Staging in Scala (Rompf and Odersky, [2012) or Template Haskell
(Sheard and Peyton Jones, 2002)). We need levels of abstractions.

Ideally, the end user would write the matrix-vector multiplication
generator just as a * v. The (domain-specific) operation * would be
implemented (perhaps by another programmer, an algorithm designer)
using the vocabulary of a different, ‘MapReduce’ domain:

let dot vl v2 = reduce add zero (zip_with mul v1 v2)
let (*)av= map(dotv)a

The generators reduce, add, etc. are to be provided by some other do-

In fact, OCaml before version 4.05 incorrectly performed this optimization:
https://github.com/ocaml/ocaml/pull/956.

https://github.com/ocaml/ocaml/pull/956

Full text available at: http://dx.doi.org/10.1561/2500000038

4 Introduction

main expert, a specialist in data layout. An expert in the domain over
which matrices and vectors are taken would supply a library of alge-
braic laws, to invoke to simplify scalar expressions. Eventually it comes
to MetaOCaml, to generate code in OCaml or (with offshoring) C or
LLVM. This ideal is attainable! In fact, by the end of the tutorial,
we shall implement exactly such layered domain-specific language for
simple linear algebra. [Rompf et al. (2013) and the FEniCS project
(Markall et al. [2013) present more examples of such generator DSLs
built by composing progressively more detailed abstractions — and their
empirical evaluation.

All in all, we do let the end users write programs in the clearest
to them form in terms of the familiar domain vocabulary — and yet
obtain the high-performance code tuned to various domains. To use
Ken Kennedy’s phrase, metaprogramming gives us “Abstraction with-
out guilt”.

1.2 Why this tutorial?

The goal of the tutorial is to teach how to write typed code generators,
how to make them modular, and how to gradually introduce domain-
specific optimizations — with MetaOCaml. By the end of the tutorial
we will implement a simple domain-specific language (DSL) for linear
algebra, with layers of optimizations for the memory layout of matrices
and vectors, their sparsity and algebraic properties. We will generate
optimal Basic Linear Algebra (BLAS) kernels. Hopefully the readers
will see that writing generators is not too complicated and that (staged)
types are of great help.

The readers are not expected to know MetaOCaml but should be
somewhat familiar with a modern functional language. Even a brief
experience with a language in the ML family is a boon. However, Scala
or Haskell, etc., programmers should not feel left out.

The present tutorial is by and large a written record of a live tutorial
delivered on several occasions (first at CUFP — Commercial Users of
Functional Programming 2013). It inherits the hands-on style of those
tutorials, built around live coding, in interaction with the MetaOCaml

Full text available at: http://dx.doi.org/10.1561/2500000038

1.3. Why MetaOCaml? 5

and its type checker — and the audience. We will be developing code
piece-by-piece, by submitting small fragments to the MetaOCaml in-
terpreter; fixing the pointed out type problems; generating sample code
and testing it; noting the points of improvement and adjusting the gen-
erator as needed. The tutorial includes many exercises and homework
projects to work on alone or in groups.

1.3 Why MetaOCaml?

We will be using BER MetaOCaml (Kiselyovl 2017, 2014), which is a
complete re-implementation of the no longer available original MetaO-
Caml by Walid Taha, Cristiano Calcagno and collaborators (Calcagno
et al., [2003).

BER MetaOCaml is a conservative extension of OCaml for “writing
programs that generate programs”. BER MetaOCaml adds to OCaml
the type of code values (denoting “program code”, or future-stage com-
putations), and two basic constructs to build them: quoting and splic-
ing. The generated code can be printed, stored in a file — or compiled
and linked-back to the running program, thus implementing run-time
code optimization. MetaOCaml code without staging annotations, or
with the annotations erased, is regular OCaml.

MetaOCaml has been successfully used for the most optimal stream
fusion (Kiselyov et al.l [2017), specializing numeric and dynamic pro-
gramming algorithms, building FFT kernels, compilers for an image
processing and database query DSLs, OCaml server pages, generating
families of specialized basic linear algebra and Gaussian Elimination
routines, and high-performance stencil computations (Aktemur et al.|
2013). See |Lengauer and Taha| (2006|) for a collection of MetaOCaml
applications.

Writing code generators in a typed staged language like MetaO-
Caml benefits in several ways. First, the generated code will be well-
formed, with all parentheses matching. Such a guarantee is a dear wish
when writing C with printf (as done in ATLAS) or C++ with Matlab.
MetaOCaml makes sure that the generated code is well-typed and shall
compile without errors. There is no longer puzzling out a compilation

Full text available at: http://dx.doi.org/10.1561/2500000038

6 Introduction

error in the generated code, which is typically large, obfuscated and
with unhelpful variable names. Mainly, code generation errors are re-
ported in terms of the generator rather than the generated code. The
tutorial will give many chances to see the importance of good error
reporting.

MetaOCaml generators are hygienic, producing well-scoped code,
with no unbound variables. Otherwise, hygiene violations are hard to
detect in practice and may lead to the devious error of unintention-
ally bound variables. Although the unbound variables in the generated
code stand out (when compiling it), determining what has caused them
proved to be highly non-trivial in practice, as reported by |Ofenbeck
et al. (2016). The authors wrote a new compiler testing framework,
to specifically detect unbound variable and other such problems in-
troduced during refactoring of generators. MetaOCaml is designed to
prevent the generation of the problematic code in the first place.

Most importantly, MetaOCaml is typed. Types, staged types in
particular, really do help write the code. All throughout the tutorial
we will be writing code in live interaction with the type checker —
accepting type errors not as a punishment but as a valuable hint. We
shall see on many occasions that once we fix the type signature, the
generator practically writes itself. The type checker will tell us where
to put a staging annotation.

MetaOCaml is purely generative: the generated code is treated as
a black box and cannot be examined. One can put code together but
cannot take it apart. Pure generativity significantly simplifies the type
system and strengthens the static assurances. It may also seem that
pure generativity precludes code optimizations. Fortunately, that is not
the case, as shall soon see.

The staging annotations of MetaOCaml are like the “assembler”
instructions of metaprogramming. We need higher-level abstractions.
The final benefit of MetaOCaml — compared to the preprocessors like
camlp4 or ppx — is that it is part of OCaml itself, and hence can take
the full advantage of OCaml’s abstraction and combination facilities,
from higher-order functions to modules. Building optimization libraries
and composing generators is the stress of the tutorial.

Full text available at: http://dx.doi.org/10.1561/2500000038

1.4. Overview 7

1.4 Overview

The tutorial is based on the progression of problems, which, except the
introductory one, are all slightly simplified versions of real-life prob-
lems:

1. First steps in staging and MetaOCaml
2. Digital filters

3. Complex vector multiplication: varying data representation
(structure of arrays vs. array of structures)

4. Systematic optimization of simple linear algebra: building exten-
sively specialized general BLAS

5. From an interpreter to a compiler: DSL for image manipulation
6. Further challenges (Homework)

In fact, problems 3, 4 and 6 were suggested by HPC researchers as
challenges to program generation community (Shonan challenges). The
common theme is building high-performance computational kernels
highly tuned to the problem at hand. Hence most problems revolve
around simple linear algebra — a typical and most frequently executed
part in HPC.

The stress on high-performance applications and on modular op-
timizations and generators sets this tutorial apart from Taha’s very
accessible, gentle introductions to the ‘classical’ partial evaluation and
staging, focused on turning an interpreter of a generally higher-order
language into a compiler (Taha) 2004, 2008). We also get to see this
classical area in §6} however, we pay less attention to lambda-calculus
and more to image processing. Furthermore, this tutorial mentions re-
cent additions to MetaOCaml such as offshoring and let-insertion.

The source code for the tutorial is available as a supplement: §g

Full text available at: http://dx.doi.org/10.1561/2500000038

8 Introduction

1.5 Obtaining MetaOCaml

The tutorial needs at least BER MetaOCaml N104, which is available
from OPAM

opam update

opam switch 4.04.0+BER # or a later version

eval ‘opam config env'

The MetaOCaml web page http://okmij.org/ftp/ML/
MetaOCaml.html talks in depth about the design, implementa-
tion and history of MetaOCaml. It also shows other ways of installing
it.

http://okmij.org/ftp/ML/MetaOCaml.html
http://okmij.org/ftp/ML/MetaOCaml.html

Full text available at: http://dx.doi.org/10.1561/2500000038

References

Baris Aktemur, Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan.
Shonan challenge for generative programming: Short position paper. In
Elvira Albert and Shin-Cheng Mu, editors, Proceedings of the 2013 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
pages 147-154, New York, January 2013. ACM Press.

Kenichi Asai. Toward introducing binding-time analysis to MetaOCaml. In
PEPM| pages 97-102.

Alan Bawden. Quasiquotation in Lisp. In PEPM, number NS-99-1 in Note,
pages 4-12. BRICS, January 1999.

BLAS. BLAS: basic linear algebra subprograms. http://www.netlib.org/
blas/, February 2017.

Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Implement-
ing multi-stage languages using ASTs, gensym, and reflection. In GPCE,
number 2830 in Lecture Notes in Computer Science, pages 57-76, 22-25
September 2003.

Jacques Carette and Oleg Kiselyov. Multi-stage programming with functors
and monads: Eliminating abstraction overhead from generic code. Science
of Computer Programming, 76(5):349-375, 2011. doi: 10.1016/j.scico.
2008.09.008.

Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tagless, par-
tially evaluated: Tagless staged interpreters for simpler typed languages.
Journal of Functional Programming, 19(5):509-543, 2009.

97

http://www.netlib.org/blas/
http://www.netlib.org/blas/
10.1016/j.scico.2008.09.008
10.1016/j.scico.2008.09.008

Full text available at: http://dx.doi.org/10.1561/2500000038

98 References

Albert Cohen, Sébastien Donadio, Maria Jesis Garzardn, Christoph Armin
Herrmann, Oleg Kiselyov, and David A. Padua. In search of a program
generator to implement generic transformations for high-performance com-
puting. Science of Computer Programming, 62(1):25-46, September 2006.

Jason Eckhardt, Roumen Kaiabachev, Emir Pasalic, Kedar N. Swadi,
and Walid Taha. Implicitly heterogeneous multi-stage programming.
New Generation Computing, 25(3):305-336, 2007. doi: 110.1007/
500354-007-0020-x.

Andrei P. Ershov. On the partial computation principle. IPL: Information
Processing Letters, 6(2):38-41, 1977a.

A.P. Ershov. A theoretical principle of system programming. Doklady AN
SSSR (Soviet Mathematics Doklady), 18(2):312-315, 1977b.

Daniel Fontijne. Gaigen 2: a geometric algebra implementation generator.
In Proceedings of GPCE 2006: 5th International Conference on Genera-
tive Programming and Component Engineering, pages 141-150, New York,
October 2006. ACM Press. doi: [10.1145/1173706.1173728.

Matteo Frigo and Steven G. Johnson. The design and implementation of
FFTW3. Proceedings of the IEEE, 93(2):216-231, 2005.

Richard W. Hamming. Digital Filters. Prentice-Hall, Englewood Cliffs, NJ,
1997, 1983, 1989.

Christoph A. Herrmann and Tobias Langhammer. Combining partial evalua-
tion and staged interpretation in the implementation of domain-specific lan-
guages. Science of Computer Programming, 62(1):47-65, September 2006.
doi: 110.1016/j.scico.2006.02.002.

Manohar Jonnalagedda, Thierry Coppey, Sandro Stucki, Tiark Rompf, and
Martin Odersky. Staged parser combinators for efficient data processing.
In OOPSLA, pages 637-653. ACM, 2014.

Oleg Kiselyov. Typed tagless final interpreters. In Proceedings of the 2010
International Spring School Conference on Generic and Indexed Program-
ming, SSGIP’10, pages 130-174. Springer-Verlag, Berlin, Heidelberg, 2012.
doi: [10.1007/978-3-642-32202-0_3.

Oleg Kiselyov. The design and implementation of BER MetaOCaml - system
description. In FLOPS, number 8475 in Lecture Notes in Computer Science,
pages 86—102. Springer, 2014. doi: [10.1007/978-3-319-07151-0_6l

Oleg Kiselyov. BER MetaOCaml N104. http://okmij.org/ftp/ML/
MetaOCaml.html, January 2017.

10.1007/s00354-007-0020-x
10.1007/s00354-007-0020-x
10.1145/1173706.1173728
10.1016/j.scico.2006.02.002
10.1007/978-3-642-32202-0_3
10.1007/978-3-319-07151-0_6
http://okmij.org/ftp/ML/MetaOCaml.html
http://okmij.org/ftp/ML/MetaOCaml.html

Full text available at: http://dx.doi.org/10.1561/2500000038

References 99

Oleg Kiselyov, Kedar N. Swadi, and Walid Taha. A methodology for gener-
ating verified combinatorial circuits. In EMSOFT, pages 249-258, 27-29
September 2004.

Oleg Kiselyov, Yukiyoshi Kameyama, and Yuto Sudo. Refined environ-
ment classifiers - type- and scope-safe code generation with mutable cells.
In Atsushi Igarashi, editor, APLAS, volume 10017 of Lecture Notes in
Computer Science, pages 271-291. Springer-Verlag, 2016. doi: 10.1007/
978-3-319-47958-3_15.

Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis.
Stream fusion, to completeness. In POPL ’17: Conference Record of the
Annual ACM Symposium on Principles of Programming Languages, pages
285-299, New York, January 2017. ACM Press. doi: [10.1145/3009837.

Yannis Klonatos, Christoph Koch 0001, Tiark Rompf, and Hassan Chafi.
Building efficient query engines in a high-level language. PVLDB, 7(10):
853-864, 2014.

Christian Lengauer and Walid Taha, editors. MetaOCaml Workshop 2004,
volume 62(1) of Science of Computer Programming, September 2006.

Graham R. Markall, Florian Rathgeber, Lawrence Mitchell, Nicolas Loriant,
Carlo Bertolli, David A. Ham, and Paul H. J. Kelly. Performance-portable
finite element assembly using pyOP2 and FEniCS. In Julian M. Kunkel,
Thomas Ludwig 0002, and Hans Werner Meuer, editors, Supercomputing -
28th International Supercomputing Conference, ISC 2013, volume 7905 of
Lecture Notes in Computer Science, pages 279-289. Springer, June 2013.

Mark-Jan Nederhof and Giorgio Satta. Tabular parsing. Formal Languages
and Applications, Studies in Fuzziness and Soft Computing, 148:529-549,
April 05 2004. URL http://arxiv.org/abs/cs/0404009.

Georg Ofenbeck, Tiark Rompf, and Markus Piischel. RandIR: differential test-
ing for embedded compilers. In Aggelos Biboudis, Manohar Jonnalagedda,
Sandro Stucki, and Vlad Ureche, editors, Proceedings of the 7th ACM SIG-
PLAN Symposium on Scala, SCALA@QSPLASH 2016, pages 21-30. ACM,
October 30 - November 4 2016. doi: 110.1145/2998392.

PEPM. Proceedings of the 2016 ACM SIGPLAN Symposium on Partial Eval-
uation and Semantics-Based Program Manipulation, New York, January
2016. ACM Press.

Markus Piischel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela
Veloso, Bryan W. Singer, Jianxin Xiong, Franz Franchetti, Aca Gaci¢, Yev-
gen Voronenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo. SPI-
RAL: Code generation for DSP transforms. Proceedings of the IEEE, 93
(2):232-275, 2005.

10.1007/978-3-319-47958-3_15
10.1007/978-3-319-47958-3_15
10.1145/3009837
http://arxiv.org/abs/cs/0404009
10.1145/2998392

Full text available at: http://dx.doi.org/10.1561/2500000038

100 References

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman P. Amarasinghe. Halide: a language and com-
piler for optimizing parallelism, locality, and recomputation in image pro-
cessing pipelines. In Hans-Juergen Boehm and Cormac Flanagan, editors,
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’13, pages 519-530. ACM, June 2013.

Tiark Rompf and Martin Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs. Commun. ACM,
55(6):1217130, 2012. doi: 110.1145/2184319.2184345.

Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin Jo-
vanovic, HyoukJoong Lee, Manohar Jonnalagedda, Kunle Olukotun, and
Martin Odersky. Optimizing data structures in high-level programs: New
directions for extensible compilers based on staging. In POPL ’13: Confer-
ence Record of the Annual ACM Symposium on Principles of Programming
Languages, pages 497-510, New York, January 2013. ACM Press.

Tim Sheard and Simon L. Peyton Jones. Template meta-programming for
Haskell. In Manuel M. T. Chakravarty, editor, Haskell Workshop, pages
1-16, 3 October 2002. doi: |10.1145/581690.581693

Julius O. III Smith. Introduction to digital filters with audio applications,
September 2007. URL https://ccrma.stanford.edu/~jos/filters/
filters.html.

Walid Taha. A gentle introduction to multi-stage programming. In DSPG
2003, number 3016 in Lecture Notes in Computer Science, pages 30-50,
2004.

Walid Taha. A gentle introduction to multi-stage programming, part II. In
Ralf Ldmmel, Joost Visser, and Jodo Saraiva, editors, Revised Papers from
GTTSE 2007: International Summer School on Generative and Transfor-
mational Techniques in Software Engineering II, number 5235 in Lecture
Notes in Computer Science, pages 260-290, Berlin, 2008. Springer-Verlag.

Naoki Takashima, Hiroki Sakamoto, and Yukiyoshi Kameyama. Generate and
offshore: type-safe and modular code generation for low-level optimization.
In Proc. ACM SIGPLAN Workshop on Functional High-Performance Com-
puting, FHPC@QICFP 2015, Vancouver, BC, Canada, September 3, 2015,
pages 45-53. ACM, 2015. doi: [10.1145/2808091

R. Clint Whaley and Antoine Petitet. Minimizing development and mainte-
nance costs in supporting persistently optimized BLAS. Software—Practice
and Experience, 35(2):101-121, February 2005.

10.1145/2184319.2184345
10.1145/581690.581693
https://ccrma.stanford.edu/~jos/filters/filters.html
https://ccrma.stanford.edu/~jos/filters/filters.html
10.1145/2808091

Full text available at: http://dx.doi.org/10.1561/2500000038

References 101

Leo White, Frédéric Bour, and Jeremy Yallop. Modular implicits. In Oleg
Kiselyov and Jacques Garrigue, editors, ML/OCaml, volume 198 of EPTCS,
pages 22-63, 2014. URL http://arxiv.org/abs/1512.01438.

Jeremy Yallop. Staging generic programming. In |PEPM| pages 85-96.

http://arxiv.org/abs/1512.01438

	Introduction
	Why metaprogramming?
	Why this tutorial?
	Why MetaOCaml?
	Overview
	Obtaining MetaOCaml

	First Steps
	Now or later
	Power
	Offline code generation
	Runtime specialization and its benchmark
	Recap
	A historical aside

	Filtering
	Specializing to the known filter order
	Specialization to the known coefficients
	Smarter specialization
	Further challenges
	Recap

	Linear Algebra DSL: Complex Vector Arithmetic and Data Layout
	Data layout problem
	Abstracting arithmetic
	Abstracting vectors
	Vector arithmetic DSL
	Compiling vector DSL
	Recap and further challenges

	Linear Algebra DSL: Matrix-Vector Operations and Modular Optimizations
	Shonan challenge 1
	BLAS 2 DSL
	Implementing and generating matrix-vector multiplication
	Specializing to the known dimensions
	Specializing to the known matrix: Partially-known values
	Algebraic simplifications
	Selective unrolling
	Cross-stage persistence for large data
	Recap

	From an Interpreter to a Compiler: DSL for Image Manipulation
	Image-processing DSL
	Interpreting DSL
	Compiling DSL

	Further Challenges
	Digital filters
	Linear Algebra DSL
	Other Challenges

	Conclusions
	Acknowledgements
	Index of the Accompanying Code
	References

