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ABSTRACT

Implementations of concurrent objects should guarantee lin-
earizability and a progress property such as wait-freedom,
lock-freedom, starvation-freedom, or deadlock-freedom. These
progress properties describe conditions under which a method
call is guaranteed to complete. However, they fail to describe
how clients are affected, making it difficult to utilize them
in layered and modular program verification. Also we lack
verification techniques for starvation-free or deadlock-free
objects. They are challenging to verify because the fair-
ness assumption introduces complicated interdependencies
among progress of threads. Even worse, none of the existing
results applies to concurrent objects with partial methods,
i.e., methods that are supposed not to return under cer-
tain circumstances. A typical example is the lock_acquire
method, which must not return when the lock has already
been acquired.

In this tutorial we examine the progress properties of concur-
rent objects. We formulate each progress property (together
with linearizability as a basic correctness requirement) in
terms of contextual refinement. This essentially gives us
progress-aware abstraction for concurrent objects. Thus,

Hongjin Liang and Xinyu Feng (2020), “Progress of Concurrent Objects”, Founda-
tions and Trends® in Programming Languages: Vol. 5, No. 4, pp 282-414. DOI:
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when verifying clients of the objects, we can soundly re-
place the concrete object implementations with their ab-
stractions, achieving modular verification. For concurrent
objects with partial methods, we formulate two new progress
properties, partial starvation-freedom (PSF) and partial
deadlock-freedom (PDF). We also design four patterns to
write abstractions for PSF or PDF objects under strongly or
weakly fair scheduling, so that these objects contextually re-
fine their abstractions. Finally, we introduce a rely-guarantee
style program logic LiLi for verifying linearizability and
progress together for concurrent objects. It unifies thread-
modular reasoning about all the six progress properties
(wait-freedom, lock-freedom, starvation-freedom, deadlock-
freedom, PSF and PDF) in one framework. We have
successfully applied LiLi to verify starvation-freedom or
deadlock-freedom of representative algorithms such as lock-
coupling lists, optimistic lists and lazy lists, and PSF or
PDF of lock algorithms.




Full text available at: http://dx.doi.org/10.1561/250000004 1

1

Introduction

A concurrent object consists of shared data and a set of methods which
provide an interface for client threads to access the shared data. Lineariz-
ability (Herlihy and Wing, 1990) has been used as a standard definition
of the correctness of concurrent object implementations. It describes
safety and functionality, but has no requirement about termination of
object methods. Various progress properties, such as wait-freedom, lock-
freedom, starvation-freedom and deadlock-freedom, have been proposed
to specify termination of object methods. In their textbook Herlihy and
Shavit (2008) give a systematic introduction of these properties.

Although program termination has been an obvious notion for
sequential programs, it becomes much more complex in a concurrent
setting. Termination of a method call in a thread is affected not only
by the sequential behavior of the method code, but also by interference
from the environment. Different implementations of the concurrent
object methods have different tolerance of the interference. That’s why
we need these different progress properties.

We give two implementations of a simple counter object in Figure 1.1.
The variable x (line 0) is the object data implementing the counter.
Figure 1.1(a) and (b) are two different implementations of the inc
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0 int x; //object data
1 inc(OA{
2 local t, done := false; 8 inc(O{
3 while(!done){ 9 lock();
4 t 1= x; 10 X = x+1;
5 done := cas(&x, t, t+1); 11 unlock();
6 T 12 }
7 }

(a) (b)

Figure 1.1: Implementations of the counter object.

method, which increments the counter. Figure 1.1(a) shows an optimistic
implementation. It takes a snapshot t of the counter (line 4). The atomic
compare-and-swap (cas) command (line 5) compares the current value
of x with t. If they are equal, it atomically sets x to t+1 and returns
true. Otherwise it does nothing and returns false, and the method
has to run another round of the loop to roll back and retry the process.
Figure 1.1(b) is a lock-based implementation, where the update of the
shared variable x is protected by a lock. Here we omit the implementation
of locks, which will be discussed later.

The different implementations of the inc method have different
progress properties. We can consider the following client program to
see their difference. The formal definitions of progress properties will
be discussed later in Section 5.

inc() || while(true){ inc(); %}

If we use the optimistic version in Figure 1.1(a), the call of inc() in the
left thread may never terminates because the cas command at line 5
may always fail due to the infinite number of calls of inc() in the
right thread. However, whenever we suspend the execution of the right
thread, the inc() in the left eventually terminates. Therefore we call
Figure 1.1(a) a non-blocking implementation. Also, since at least one of
the call of inc() in the whole program terminates, this is a lock-free
implementation.
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If we use the lock-based inc in Figure 1.1(b), whether the call of
inc() in the left thread terminates or not depends on the implemen-
tation of the lock. If the lock implementation is fair, the inc() on the
left always terminates, otherwise it may always fail to acquire the lock
and may never terminate. In both cases, if we suspend the right thread
when it is executing line 10, the inc() on the left cannot terminate
because it can never acquire the lock (which has been taken by the
suspended right thread). So we say the lock-based implementation of
inc is blocking. The termination of a method call relies on both the
lock algorithm and the fairness of scheduling.

The goal of this tutorial is to help the reader understand the
various progress properties of concurrent objects. We formulate each
progress property (together with linearizability as a basic correctness
requirement) in terms of contextual refinement. This essentially gives
us progress-aware abstraction for concurrent objects. We also introduce
a program logic LiLi to formally verify progress properties.

1.1 General Motivation

1.1.1 Progress-Aware Abstraction

Progress properties describe conditions under which method calls are
guaranteed to successfully complete in an execution. For example, lock-
freedom guarantees that “infinitely often some method call finishes in a
finite number of steps” (Herlihy and Shavit, 2008). They are difficult to
use in a modular and layered program verification because they fail to
describe how the progress properties affect clients.

In a modular verification of client threads, the concrete implemen-
tation IT of the object methods should be replaced by an abstraction
(or specification) IT" that consists of equivalent methods. The progress
properties should then characterize whether and how the behaviors of
a client program will be affected if a client uses II instead of II'. In
particular, we are interested in systematically studying whether the
termination of a client using the abstract methods II’ will be preserved
when using an implementation II with some progress guarantee.
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Previous work on verifying the safety of concurrent objects (e.g.,
Filipovié et al., 2009; Liang and Feng, 2013) has shown that linearizabil-
ity—a standard safety criterion for concurrent objects—and contextual
refinement are equivalent. Informally, an implementation II is a con-
textual refinement of a (more abstract) implementation IT', if every
observable behavior of any client program using Il can also be observed
when the client uses I’ instead. To obtain equivalence to linearizability,
the observable behaviors include I/O events but not divergence (i.e.,
non-termination). Recently, Gotsman and Yang (2011) showed that a
client program that diverges using a linearizable and lock-free object
must also diverge when using the abstract operations instead. Their
work reveals a connection between lock-freedom and a form of contex-
tual refinement which preserves termination as well as safety properties.
It is unclear how other progress guarantees affect termination of client
programs and how they are related to contextual refinements.

This tutorial studies four commonly used progress properties (wait-
freedom, lock-freedom, starvation-freedom and deadlock-freedom) and
their relationships to contextual refinements. We show that, when
progress properties are taken into account, one may have the corre-
sponding progress-aware contextual refinement to reestablish the equiv-
alence. We give different abstract specifications I’ for different progress
properties. The equivalence results allow us to build abstractions for
linearizable objects so that safety and progress of the client code can
be reasoned about at a more abstract level.

1.1.2 Program Logic for Progress Verification

Recent program logics for verifying concurrent objects either prove only
linearizability and ignore the issue of termination (e.g., Derrick et al.,
2011; Liang and Feng, 2013; Turon et al., 2013a; Vafeiadis, 2008), or
aim for non-blocking progress properties (e.g., da Rocha Pinto et al.,
2016; Gotsman et al., 2009; Hoffmann et al., 2013; Liang et al., 2014),
which cannot be applied to blocking algorithms that progress only
under fair scheduling. The fairness assumption introduces complicated
interdependencies among progress properties of threads, making it
incredibly more challenging to verify the lock-based algorithms than
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their non-blocking counterparts. We will explain the challenges in detail
in Subsection 7.1.

It is important to note that, although there has been much work
on deadlock detection or deadlock-freedom verification (e.g., Boyapati
et al., 2002; Leino et al., 2010; Williams et al., 2005), deadlock-freedom
is often defined as a safety property, which ensures the lack of circular
waiting for locks. It does not prevent live-lock or non-termination
inside the critical section. Another limitation of this kind of work is
that it often assumes built-in lock primitives, and lacks support of
ad-hoc synchronization (e.g., mutual exclusion achieved using spin-locks
implemented by the programmers). The deadlock-freedom we discuss
in this tutorial is a liveness property and its definition does not rely
on built-in lock primitives. We discuss more related work on liveness
verification in Section 8.

In this tutorial we introduce LiLi, a new rely-guarantee style logic
for concurrent objects. It unifies verification of linearizability, wait-
freedom, lock-freedom, starvation-freedom and deadlock-freedom in
one framework (the name LiLi stands for Linearizability and Liveness).
In particular, it supports verification of both mutex-based pessimistic
algorithms (including fine-grained ones such as lock-coupling lists) and
optimistic ones such as optimistic lists and lazy lists. The unified
approach allows us to prove in the same logic, for instance, the lock-
coupling list algorithm is starvation-free if we use fair locks, e.g., ticket
locks (Mellor-Crummey and Scott, 1991), and is deadlock-free if regular
test-and-set based spin locks (Herlihy and Shavit, 2008) are used.

1.1.3 Concurrent Objects with Partial Methods

However, none of the aforementioned progress-related results applies
to concurrent objects with partial methods! A method is partial if it is
supposed not to return under certain circumstances. A typical example
is the lock_acquire method, which must not return when the lock has
already been acquired. Concurrent objects with partial methods simply
do not satisfy any of the aforementioned progress properties, and people
do not know how to give progress-aware abstract specifications for them
either. The existing studies on progress properties and progress-aware
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contextual refinements have been limited to concurrent objects with
total specifications.

As an awkward consequence, we cannot treat lock implementations
as objects when we study progress of concurrent objects. Instead, we
have to treat lock_acquire and lock_release as internal functions
of other lock-based objects. Also, without a proper progress-aware
abstraction for locks, we have to redo the verification of lock_acquire
and lock_release when they are used in different contexts (Liang
and Feng, 2016), which makes the verification process complex and
painful. Note that locks are not the only objects with partial methods.
Concurrent sets, stacks and queues may also have methods that intend
to block. For instance, it may be sensible for a thread attempting to pop
from an empty stack to block, waiting until another thread pushes an
item. The reasoning about these objects suffers from the same problems
too when progress is concerned.

In this tutorial, we specify and verify progress of concurrent objects
with partial methods. We define partial starvation-freedom (PSF) and
partial deadlock-freedom (PDF) as progress properties for objects with
partial methods, and design abstraction patterns under strongly and
weakly fair scheduling. We prove that given a linearizable object imple-
mentation II with partial methods, the contextual refinement between
IT and its abstraction IT' under a certain kind of fair scheduling is
equivalent to PSF/PDF of II. We also extend the program logic LiLi to
support partial specifications and to reason about blocking primitives.
It verifies the contextual refinement between IT and IT', which ensures
linearizability and the progress property of II.

1.2 Overview

The goal of this tutorial is to help the reader understand the various
progress properties of concurrent objects.

We start with an informal overview of the background in Section 2.
We informally describe the traditional four progress properties (wait-
freedom, lock-freedom, starvation-freedom and deadlock-freedom),
and analyze the challenges in supporting objects with partial
methods.
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In Section 3, we introduce the basic technical settings. We define a
simple object language, and the generation of execution traces from the
operational semantics. We also define fairness of scheduling over the
traces.

In Section 4, we define linearizability and the basic contextual
refinement which is equivalent to linearizability.

In Section 5, we formulate the four traditional progress properties
and the two new progress properties for objects with partial methods.

In Section 6, we give the progress-aware contextual refinement and
the abstraction theorems.

In Section 7, we present the program logic LiLi and show the
examples we have verified.

Finally, we discuss related work in Section 8 and conclude in
Section 9.
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