Full text available at: http://dx.doi.org/10.1561/250000004 1

Progress of Concurrent
Objects

Full text available at: http://dx.doi.org/10.1561/250000004 1

Other titles in Foundations and Trends® in Programming
Languages

Tutorial on Static Inference of Numeric Invariants by Abstract
Interpretation

Antoine Miné

ISBN: 978-1-68083-386-7

Program Synthesis
Sumit Gulwani, Oleksandr Polozov and Rishabh Singh
ISBN: 978-1-68083-292-1

Programming with Big Code
Martin Vechev and Eran Yahav
ISBN: 978-1-68083-230-3

Behavioral Types in Programming Languages
Davide Ancona et al.
ISBN: 978-1-68083-134-4

Computer-Assisted Query Formulation
Alvin Cheung and Armando Solar-Lezama
ISBN: 978-1-68083-036-1

Full text available at: http://dx.doi.org/10.1561/2500000041

Progress of Concurrent Objects

Hongjin Liang

State Key Laboratory for Novel Software Technology
Nanjing University

China

hongjin@nju.edu.cn

Xinyu Feng

State Key Laboratory for Novel Software Technology
Nanjing University

China

xyfeng@nju.edu.cn

now

the essence of knowledge

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/250000004 1

Foundations and Trends® in Programming
Languages

Published, sold and distributed by:
now Publishers Inc.

PO Box 1024

Hanover, MA 02339

United States

Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.

PO Box 179

2600 AD Delft

The Netherlands

Tel. +31-6-51115274

The preferred citation for this publication is

H. Liang and X. Feng. Progress of Concurrent Objects. Foundations and Trends® in
Programming Languages, vol. 5, no. 4, pp. 282-414, 2020.

ISBN: 978-1-68083-673-8
© 2020 H. Liang and X. Feng

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works,
or for resale. In the rest of the world: Permission to photocopy must be obtained from the
copyright owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA;
Tel. +1 781 871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/250000004 1

Foundations and Trends® in Programming

Languages

Volume 5, Issue 4, 2020

Editor-in-Chief

Mooly Sagiv
Tel-Aviv University, Israel

Editors

Martin Abadi
Google and UC Santa
Cruz

Anindya Banerjeei
IMDEA Software Instituet

Patrick Cousoti
ENS, Paris and NYU

Oege De Moori
University of Oxford
Matthias Felleiseni

Northeastern University

John Fieldi
Google

Cormac Flanagani
UC Santa Cruz

Philippa Gardneri
Imperial College

Andrew Gordoni
Microsoft Research and
University of Edinburgh

Dan Grossmani
University of Washington

Robert Harper
CMU

Tim Harris
Amazon

Editorial Board

Fritz Hengleini
University of Copenhagen

Rupak Majumdari
MPI and UCLA

Kenneth McMillani
Microsoft Research

J. Eliot B. Mossi

University of
Massachusetts, Amherst

Andrew C. Myersi
Cornell University

Hanne Riis Nielsoni
Technical University of
Denmark

Peter O’Hearni
University College London

Benjamin C. Piercei
University of Pennsylvania

Andrew Pittsi
University of Cambridge

Ganesan Ramalingami
Microsoft Research
Mooly Sagivi

Tel Aviv University
Davide Sangiorgii
University of Bologna

David Schmidti
Kansas State University

Peter Sewelli
University of Cambridge

Scott Stolleri
Stony Brook University

Peter Stuckeyi
University of Melbourne

Jan Viteki
Northeastern University

Philip Wadleri
University of Edinburgh

David Walkeri
Princeton University

Stephanie Weirici
University of Pennsylvania

Full text available at: http://dx.doi.org/10.1561/250000004 1

Editorial Scope

Topics

Foundations and Trends® in Programming Languages publishes survey and
tutorial articles in the following topics:

e Abstract Interpretation e Programming Languages for
e Compilation and Interpretation Concurrency
Techniques e Programming Languages for
e Domain Specific Languages Parallelism
e Formal Semantics, including e Program Synthesis
Lambda Calculi, Process e Program Transformations and
Calculi, and Process Algebra Optimizations

e Language Paradigms e Program Verification

e Mechanical Proof Checking e Runtime Techniques for

e Memory Management Programming Languages
e Partial Evaluation e Software Model Checking
e Program Logic e Static and Dynamic Program
e Programming Language Analysis
Implementation e Type Theory and Type
e Programming Language Systems
Security

Information for Librarians

Foundations and Trends® in Programming Languages, 2020, Volume 5,
4 issues. ISSN paper version 2325-1107. ISSN online version 2325-1131.
Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/250000004 1

Contents

Introduction
1.1 General Motivation
1.2 Overview

Background

2.1 Linearizability,
2.2 Progress Properties
2.3 Contextual Refinement and Abstraction Theorems
2.4 Verifying Progress Properties

Basic Technical Settings
3.1 Thelanguage
3.2 Execution Traces and Fairness of Scheduling

Linearizability and Contextual Refinement
4.1 Linearizability
4.2 Contextual Refinement and Abstraction

Progress Properties
5.1 Progress for Objects with Total Methods Only
5.2 Progress for Objects with Partial Methods

10
10
12
16
22

32
32
38

41
41
43

Full text available at: http://dx.doi.org/10.1561/250000004 1

6 Progress-Aware Abstraction 50
6.1 Overview of Our Results. 50
6.2 Formalizing Progress-Aware Contextual Refinements 53
6.3 Abstraction for Wait-Free and Lock-Free Objects 56
6.4 Abstraction for Starvation-Free and Deadlock-Free Objects 60
6.5 Abstraction for PSF and PDF Objects 61

7 Verifying Progress of Concurrent Objects 68
7.1 Challenges and Key Ideas 68
7.2 The Program Logic LiLi 75
7.3 Soundness 104
74 Examples. 106

8 Related Work 116
8.1 Progress Properties and Abstraction 116
8.2 Verification. oL 117
8.3 Comparison with TaDA-Live 120

9 Conclusion and Future Work 125

Acknowledgements 128

References 129

Full text available at: http://dx.doi.org/10.1561/250000004 1

Progress of Concurrent Objects
Hongjin Liang! and Xinyu Feng?

1 State Key Laboratory for Novel Software Technology, Nanjing
University, China; hongjin@nju.edu.cn

2State Key Laboratory for Novel Software Technology, Nanjing
University, China; zyfeng@nju.edu.cn

ABSTRACT

Implementations of concurrent objects should guarantee lin-
earizability and a progress property such as wait-freedom,
lock-freedom, starvation-freedom, or deadlock-freedom. These
progress properties describe conditions under which a method
call is guaranteed to complete. However, they fail to describe
how clients are affected, making it difficult to utilize them
in layered and modular program verification. Also we lack
verification techniques for starvation-free or deadlock-free
objects. They are challenging to verify because the fair-
ness assumption introduces complicated interdependencies
among progress of threads. Even worse, none of the existing
results applies to concurrent objects with partial methods,
i.e., methods that are supposed not to return under cer-
tain circumstances. A typical example is the lock_acquire
method, which must not return when the lock has already
been acquired.

In this tutorial we examine the progress properties of concur-
rent objects. We formulate each progress property (together
with linearizability as a basic correctness requirement) in
terms of contextual refinement. This essentially gives us
progress-aware abstraction for concurrent objects. Thus,

Hongjin Liang and Xinyu Feng (2020), “Progress of Concurrent Objects”, Founda-
tions and Trends® in Programming Languages: Vol. 5, No. 4, pp 282-414. DOI:
10.1561,/2500000041.

Full text available at: http://dx.doi.org/10.1561/250000004 1

when verifying clients of the objects, we can soundly re-
place the concrete object implementations with their ab-
stractions, achieving modular verification. For concurrent
objects with partial methods, we formulate two new progress
properties, partial starvation-freedom (PSF) and partial
deadlock-freedom (PDF). We also design four patterns to
write abstractions for PSF or PDF objects under strongly or
weakly fair scheduling, so that these objects contextually re-
fine their abstractions. Finally, we introduce a rely-guarantee
style program logic LiLi for verifying linearizability and
progress together for concurrent objects. It unifies thread-
modular reasoning about all the six progress properties
(wait-freedom, lock-freedom, starvation-freedom, deadlock-
freedom, PSF and PDF) in one framework. We have
successfully applied LiLi to verify starvation-freedom or
deadlock-freedom of representative algorithms such as lock-
coupling lists, optimistic lists and lazy lists, and PSF or
PDF of lock algorithms.

Full text available at: http://dx.doi.org/10.1561/250000004 1

1

Introduction

A concurrent object consists of shared data and a set of methods which
provide an interface for client threads to access the shared data. Lineariz-
ability (Herlihy and Wing, 1990) has been used as a standard definition
of the correctness of concurrent object implementations. It describes
safety and functionality, but has no requirement about termination of
object methods. Various progress properties, such as wait-freedom, lock-
freedom, starvation-freedom and deadlock-freedom, have been proposed
to specify termination of object methods. In their textbook Herlihy and
Shavit (2008) give a systematic introduction of these properties.

Although program termination has been an obvious notion for
sequential programs, it becomes much more complex in a concurrent
setting. Termination of a method call in a thread is affected not only
by the sequential behavior of the method code, but also by interference
from the environment. Different implementations of the concurrent
object methods have different tolerance of the interference. That’s why
we need these different progress properties.

We give two implementations of a simple counter object in Figure 1.1.
The variable x (line 0) is the object data implementing the counter.
Figure 1.1(a) and (b) are two different implementations of the inc

Full text available at: http://dx.doi.org/10.1561/250000004 1

4 Introduction
0 int x; //object data
1 inc(OA{
2 local t, done := false; 8 inc(O{
3 while(!done){ 9 lock();
4 t 1= x; 10 X = x+1;
5 done := cas(&x, t, t+1); 11 unlock();
6 T 12 }
7 }

(a) (b)

Figure 1.1: Implementations of the counter object.

method, which increments the counter. Figure 1.1(a) shows an optimistic
implementation. It takes a snapshot t of the counter (line 4). The atomic
compare-and-swap (cas) command (line 5) compares the current value
of x with t. If they are equal, it atomically sets x to t+1 and returns
true. Otherwise it does nothing and returns false, and the method
has to run another round of the loop to roll back and retry the process.
Figure 1.1(b) is a lock-based implementation, where the update of the
shared variable x is protected by a lock. Here we omit the implementation
of locks, which will be discussed later.

The different implementations of the inc method have different
progress properties. We can consider the following client program to
see their difference. The formal definitions of progress properties will
be discussed later in Section 5.

inc() || while(true){ inc(); %}

If we use the optimistic version in Figure 1.1(a), the call of inc() in the
left thread may never terminates because the cas command at line 5
may always fail due to the infinite number of calls of inc() in the
right thread. However, whenever we suspend the execution of the right
thread, the inc() in the left eventually terminates. Therefore we call
Figure 1.1(a) a non-blocking implementation. Also, since at least one of
the call of inc() in the whole program terminates, this is a lock-free
implementation.

Full text available at: http://dx.doi.org/10.1561/250000004 1

1.1. General Motivation 5

If we use the lock-based inc in Figure 1.1(b), whether the call of
inc() in the left thread terminates or not depends on the implemen-
tation of the lock. If the lock implementation is fair, the inc() on the
left always terminates, otherwise it may always fail to acquire the lock
and may never terminate. In both cases, if we suspend the right thread
when it is executing line 10, the inc() on the left cannot terminate
because it can never acquire the lock (which has been taken by the
suspended right thread). So we say the lock-based implementation of
inc is blocking. The termination of a method call relies on both the
lock algorithm and the fairness of scheduling.

The goal of this tutorial is to help the reader understand the
various progress properties of concurrent objects. We formulate each
progress property (together with linearizability as a basic correctness
requirement) in terms of contextual refinement. This essentially gives
us progress-aware abstraction for concurrent objects. We also introduce
a program logic LiLi to formally verify progress properties.

1.1 General Motivation

1.1.1 Progress-Aware Abstraction

Progress properties describe conditions under which method calls are
guaranteed to successfully complete in an execution. For example, lock-
freedom guarantees that “infinitely often some method call finishes in a
finite number of steps” (Herlihy and Shavit, 2008). They are difficult to
use in a modular and layered program verification because they fail to
describe how the progress properties affect clients.

In a modular verification of client threads, the concrete implemen-
tation IT of the object methods should be replaced by an abstraction
(or specification) IT" that consists of equivalent methods. The progress
properties should then characterize whether and how the behaviors of
a client program will be affected if a client uses II instead of II'. In
particular, we are interested in systematically studying whether the
termination of a client using the abstract methods II’ will be preserved
when using an implementation II with some progress guarantee.

Full text available at: http://dx.doi.org/10.1561/250000004 1

6 Introduction

Previous work on verifying the safety of concurrent objects (e.g.,
Filipovié et al., 2009; Liang and Feng, 2013) has shown that linearizabil-
ity—a standard safety criterion for concurrent objects—and contextual
refinement are equivalent. Informally, an implementation II is a con-
textual refinement of a (more abstract) implementation IT', if every
observable behavior of any client program using Il can also be observed
when the client uses I’ instead. To obtain equivalence to linearizability,
the observable behaviors include I/O events but not divergence (i.e.,
non-termination). Recently, Gotsman and Yang (2011) showed that a
client program that diverges using a linearizable and lock-free object
must also diverge when using the abstract operations instead. Their
work reveals a connection between lock-freedom and a form of contex-
tual refinement which preserves termination as well as safety properties.
It is unclear how other progress guarantees affect termination of client
programs and how they are related to contextual refinements.

This tutorial studies four commonly used progress properties (wait-
freedom, lock-freedom, starvation-freedom and deadlock-freedom) and
their relationships to contextual refinements. We show that, when
progress properties are taken into account, one may have the corre-
sponding progress-aware contextual refinement to reestablish the equiv-
alence. We give different abstract specifications I’ for different progress
properties. The equivalence results allow us to build abstractions for
linearizable objects so that safety and progress of the client code can
be reasoned about at a more abstract level.

1.1.2 Program Logic for Progress Verification

Recent program logics for verifying concurrent objects either prove only
linearizability and ignore the issue of termination (e.g., Derrick et al.,
2011; Liang and Feng, 2013; Turon et al., 2013a; Vafeiadis, 2008), or
aim for non-blocking progress properties (e.g., da Rocha Pinto et al.,
2016; Gotsman et al., 2009; Hoffmann et al., 2013; Liang et al., 2014),
which cannot be applied to blocking algorithms that progress only
under fair scheduling. The fairness assumption introduces complicated
interdependencies among progress properties of threads, making it
incredibly more challenging to verify the lock-based algorithms than

Full text available at: http://dx.doi.org/10.1561/250000004 1

1.1. General Motivation 7

their non-blocking counterparts. We will explain the challenges in detail
in Subsection 7.1.

It is important to note that, although there has been much work
on deadlock detection or deadlock-freedom verification (e.g., Boyapati
et al., 2002; Leino et al., 2010; Williams et al., 2005), deadlock-freedom
is often defined as a safety property, which ensures the lack of circular
waiting for locks. It does not prevent live-lock or non-termination
inside the critical section. Another limitation of this kind of work is
that it often assumes built-in lock primitives, and lacks support of
ad-hoc synchronization (e.g., mutual exclusion achieved using spin-locks
implemented by the programmers). The deadlock-freedom we discuss
in this tutorial is a liveness property and its definition does not rely
on built-in lock primitives. We discuss more related work on liveness
verification in Section 8.

In this tutorial we introduce LiLi, a new rely-guarantee style logic
for concurrent objects. It unifies verification of linearizability, wait-
freedom, lock-freedom, starvation-freedom and deadlock-freedom in
one framework (the name LiLi stands for Linearizability and Liveness).
In particular, it supports verification of both mutex-based pessimistic
algorithms (including fine-grained ones such as lock-coupling lists) and
optimistic ones such as optimistic lists and lazy lists. The unified
approach allows us to prove in the same logic, for instance, the lock-
coupling list algorithm is starvation-free if we use fair locks, e.g., ticket
locks (Mellor-Crummey and Scott, 1991), and is deadlock-free if regular
test-and-set based spin locks (Herlihy and Shavit, 2008) are used.

1.1.3 Concurrent Objects with Partial Methods

However, none of the aforementioned progress-related results applies
to concurrent objects with partial methods! A method is partial if it is
supposed not to return under certain circumstances. A typical example
is the lock_acquire method, which must not return when the lock has
already been acquired. Concurrent objects with partial methods simply
do not satisfy any of the aforementioned progress properties, and people
do not know how to give progress-aware abstract specifications for them
either. The existing studies on progress properties and progress-aware

Full text available at: http://dx.doi.org/10.1561/250000004 1

8 Introduction

contextual refinements have been limited to concurrent objects with
total specifications.

As an awkward consequence, we cannot treat lock implementations
as objects when we study progress of concurrent objects. Instead, we
have to treat lock_acquire and lock_release as internal functions
of other lock-based objects. Also, without a proper progress-aware
abstraction for locks, we have to redo the verification of lock_acquire
and lock_release when they are used in different contexts (Liang
and Feng, 2016), which makes the verification process complex and
painful. Note that locks are not the only objects with partial methods.
Concurrent sets, stacks and queues may also have methods that intend
to block. For instance, it may be sensible for a thread attempting to pop
from an empty stack to block, waiting until another thread pushes an
item. The reasoning about these objects suffers from the same problems
too when progress is concerned.

In this tutorial, we specify and verify progress of concurrent objects
with partial methods. We define partial starvation-freedom (PSF) and
partial deadlock-freedom (PDF) as progress properties for objects with
partial methods, and design abstraction patterns under strongly and
weakly fair scheduling. We prove that given a linearizable object imple-
mentation II with partial methods, the contextual refinement between
IT and its abstraction IT' under a certain kind of fair scheduling is
equivalent to PSF/PDF of II. We also extend the program logic LiLi to
support partial specifications and to reason about blocking primitives.
It verifies the contextual refinement between IT and IT', which ensures
linearizability and the progress property of II.

1.2 Overview

The goal of this tutorial is to help the reader understand the various
progress properties of concurrent objects.

We start with an informal overview of the background in Section 2.
We informally describe the traditional four progress properties (wait-
freedom, lock-freedom, starvation-freedom and deadlock-freedom),
and analyze the challenges in supporting objects with partial
methods.

Full text available at: http://dx.doi.org/10.1561/250000004 1

1.2. Overview 9

In Section 3, we introduce the basic technical settings. We define a
simple object language, and the generation of execution traces from the
operational semantics. We also define fairness of scheduling over the
traces.

In Section 4, we define linearizability and the basic contextual
refinement which is equivalent to linearizability.

In Section 5, we formulate the four traditional progress properties
and the two new progress properties for objects with partial methods.

In Section 6, we give the progress-aware contextual refinement and
the abstraction theorems.

In Section 7, we present the program logic LiLi and show the
examples we have verified.

Finally, we discuss related work in Section 8 and conclude in
Section 9.

Full text available at: http://dx.doi.org/10.1561/250000004 1

References

Abadi, M. and L. Lamport (1995). “Conjoining specifications”. ACM
Trans. Program. Lang. Syst. 17(3): 507-535.

Aspnes, J. and M. Herlihy (1990). “Wait-free data structures in the
asynchronous PRAM model”. In: SPAA. 340-349.

Back, R. and Q. Xu (1998). “Refinement of fair action systems”. Acta
Inf. 35(2): 131-165.

Bostrém, P. and P. Miiller (2015). “Modular verification of finite blocking
in non-terminating programs”. In: Proceedings of the 29th Euro-
pean Conference on Object-Oriented Programming (ECOOP 2015).
639-663.

Boyapati, C., R. Lee, and M. Rinard (2002). “Ownership types for safe
programming: Preventing data races and deadlocks”. In: OOPSLA.
211-230.

Calcagno, C., M. J. Parkinson, and V. Vafeiadis (2007). “Modular safety
checking for fine-grained concurrency”. In: Proceedings of the 14th
International Symposium on Static Analysis (SAS 2007). 233-248.

Cook, B., A. Podelski, and A. Rybalchenko (2011). “Proving program
termination”. Commun. ACM. 54(5): 88-98.

da Rocha Pinto, P., T. Dinsdale-Young, P. Gardner, and J. Suther-
land (2016). “Modular termination verification for non-blocking
concurrency”. In: Proceedings of the 25th Furopean Symposium on
Programming Languages and Systems (ESOP 2016). 176-201.

129

Full text available at: http://dx.doi.org/10.1561/250000004 1

130 References

Derrick, J., G. Schellhorn, and H. Wehrheim (2011). “Mechanically
verified proof obligations for linearizability”. ACM Trans. Program.
Lang. Syst. 33(1): 4:1-4:43.

Doherty, S., L. Groves, V. Luchangco, and M. Moir (2004). “Formal
verification of a practical lock-free queue algorithm”. In: FORTE.
97-114.

Dongol, B. (2006). “Formalising progress properties of non-blocking
programs”. In: ICFEM. 284-303.

D’Osualdo, E., A. Farzan, P. Gardner, and J. Sutherland (2019). “TaDA
live: Compositional reasoning for termination of fine-grained con-
current programs”. arXiv: 1901.05750.

Feng, X. (2009). “Local rely-guarantee reasoning”. In: POPL. 315-327.

Filipovi¢, 1., P. O’'Hearn, N. Rinetzky, and H. Yang (2009). “Abstrac-
tion for concurrent objects”. In: Proceedings of the 18th European
Symposium on Programming (ESOP 2009). 252-266.

Fossati, L., K. Honda, and N. Yoshida (2012). “Intensional and ex-
tensional characterisation of global progress in the m-calculus”. In:
CONCUR. 287-301.

Gotsman, A., B. Cook, M. J. Parkinson, and V. Vafeiadis (2009). “Prov-
ing that non-blocking algorithms don’t block”. In: Proceedings of the
36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2009). 16-28.

Gotsman, A. and H. Yang (2011). “Liveness-preserving atomicity ab-
straction”. In: Proceedings of the 38th International Conference on
Automata, Languages and Programming (ICALP 2011). 453-465.

Gotsman, A. and H. Yang (2012). “Linearizability with ownership
transfer”. In: Proceedings of the 23rd International Conference on
Concurrency Theory (CONCUR 2012). 256-271.

Gu, R., Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjéberg, and D. Costanzo
(2016). “CertiKOS: An extensible architecture for building certified
concurrent OS kernels”. In: Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implementation (OSDI
2016). 653-669.

Harris, T. L. (2001). “A pragmatic implementation of non-blocking
linked-lists”. In: DISC. 300-314.

http://arxiv.org/abs/1901.05750

Full text available at: http://dx.doi.org/10.1561/250000004 1

References 131

Heller, S., M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer III, and
N. Shavit (2005). “A lazy concurrent list-based set algorithm”. In:
OPODIS. 3-16.

Hendler, D., N. Shavit, and L. Yerushalmi (2004). “A scalable lock-free
stack algorithm”. In: SPAA. 206-215.

Henzinger, T. A., O. Kupferman, and S. K. Rajamani (2002). “Fair
simulation”. Inf. Comput. 173(1): 64-81.

Herlihy, M. and N. Shavit (2008). The Art of Multiprocessor Program-
ming. Morgan Kaufmann.

Herlihy, M. and N. Shavit (2011). “On the nature of progress”. In:
Proceedings of the 15th International Conference on Principles of
Distributed Systems (OPODIS 2011). 313-328.

Herlihy, M. and J. Wing (1990). “Linearizability: A correctness condition
for concurrent objects”. ACM Trans. Program. Lang. Syst. 12(3):
463-492.

Hoffmann, J., M. Marmar, and Z. Shao (2013). “Quantitative reason-
ing for proving lock-freedom”. In: Proceedings of the 28th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2013).
124-133.

Jacobs, B., D. Bosnacki, and R. Kuiper (2015). “Modular termination
verification”. In: Proceedings of the 29th European Conference on
Object-Oriented Programming (ECOOP 2015). 664—688.

Jones, C. B. (1983). “Tentative steps toward a development method
for interfering programs”. ACM Trans. Program. Lang. Syst. 5(4):
596-619.

Jung, R., D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal,
and D. Dreyer (2015). “Iris: Monoids and invariants as an orthogonal
basis for concurrent reasoning”. In: Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2015). 637-650.

Khyzha, A., M. Dodds, A. Gotsman, and M. J. Parkinson (2017).
“Proving linearizability using partial orders”. In: Proceedings of the
26th European Symposium on Programming (ESOP 2017). 639-667.

Leino, K. R. M. and P. Miiller (2009). “A basis for verifying multi-
threaded programs”. In: ESOP. 378-393.

Full text available at: http://dx.doi.org/10.1561/250000004 1

132 References

Leino, K. R. M., P. Miiller, and J. Smans (2010). “Deadlock-free channels
and locks”. In: ESOP. 407-426.

Liang, H. and X. Feng (2013). “Modular verification of linearizability
with non-fixed linearization points”. In: Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2013). 459-470.

Liang, H. and X. Feng (2016). “A program logic for concurrent objects
under fair scheduling”. In: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 2016). 385-399.

Liang, H. and X. Feng (2018a). “Progress of concurrent objects with
partial methods”. Proc. ACM Program. Lang. 2(POPL): Article 20.

Liang, H. and X. Feng (2018b). “Progress of concurrent objects with
partial methods (extended version)”. Tech. Rep. https://cs.nju.edu.
cn/hongjin/papers/popl18-partial-tr.pdf.

Liang, H., X. Feng, and Z. Shao (2014). “Compositional verification of
termination-preserving refinement of concurrent programs”. In: Pro-
ceedings of the Joint Meeting of the 23rd EACSL Annual Conference
on Computer Science Logic and the 29th Annual ACM/IEEE Sym-
posium on Logic in Computer Science (CSL-LICS 2014). Article 65.

Liang, H., J. Hoffmann, X. Feng, and Z. Shao (2013). “Characterizing
progress properties of concurrent objects via contextual refinements”.
In: Proceedings of the 24th International Conference on Concurrency
Theory (CONCUR 2013). 227-241.

Mellor-Crummey, J. M. and M. L. Scott (1991). “Algorithms for scalable
synchronization on shared-memory multiprocessors”. ACM Trans.
Comput. Syst. 9(1): 21-65.

Michael, M. M. (2002). “High performance dynamic lock-free hash tables
and list-based sets”. In: SPAA. 73-82.

Michael, M. M. and M. L. Scott (1996). “Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms”. In: PODC.
267-275.

Parkinson, M., R. Bornat, and C. Calcagno (2006). “Variables as re-
source in Hoare logics”. In: LICS. 137-146.

https://cs.nju.edu.cn/hongjin/papers/popl18-partial-tr.pdf
https://cs.nju.edu.cn/hongjin/papers/popl18-partial-tr.pdf

Full text available at: http://dx.doi.org/10.1561/250000004 1

References 133

Petrank, E., M. Musuvathi, and B. Steensgaard (2009). “Progress guar-
antee for parallel programs via bounded lock-freedom”. In: PLDI.
144-154.

Schellhorn, G., O. Travkin, and H. Wehrheim (2016). “Towards a thread-
local proof technique for starvation freedom”. In: Proceedings of the
12th International Conference on Integrated Formal Methods (IFM
2016). 193-209.

Stark, E. W. (1985). “A proof technique for rely/guarantee properties”.
In: FSTTCS. 369-391.

Stelen, K. (1992). “Shared-state design modulo weak and strong process
fairness”. In: FORTE. 479-498.

Tassarotti, J., R. Jung, and R. Harper (2017). “A higher-order logic
for concurrent termination-preserving refinement”. In: Proceedings
of the 26th European Symposium on Programming (ESOP 2017).
909-936.

Treiber, R. K. (1986). “System programming: Coping with parallelism”.
Tech. Rep. RJ 5118. IBM Almaden Research Center.

Turon, A., D. Dreyer, and L. Birkedal (2013a). “Unifying refinement
and Hoare-style reasoning in a logic for higher-order concurrency”.
In: ICFP. 377-390.

Turon, A., J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer (2013b).
“Logical relations for fine-grained concurrency”. In: Proceedings of
the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2013). 343-356.

Vafeiadis, V. (2008). “Modular fine-grained concurrency verification”.
Tech. Rep. PhD Thesis.

Williams, A., W. Thies, and M. D. Ernst (2005). “Static deadlock
detection for java libraries”. In: ECOOP. 602—629.

Xu, Q., W. P. de Roever, and J. He (1997). “The rely-guarantee method
for verifying shared variable concurrent programs”. Formal Asp.
Comput. 9(2): 149-174.

