
Neurosymbolic
Programming in Scallop:

Principles and Practice

Full text available at: http://dx.doi.org/10.1561/2500000059

Other titles in Foundations and Trends® in Programming Languages

From Fine- to Coarse-Grained Dynamic Information Flow Control and
Back
Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani and
Deian Stefan
ISBN: 978-1-63828-218-1

Probabilistic Trace and Testing Semantics: The Importance of Being
Coherent
Marco Bernardo
ISBN: 978-1-63828-074-3

Neurosymbolic Programming
Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh,
Armando Solar-Lezama and Yisong Yue
ISBN: 978-1-68083-934-0

Introduction to Neural Network Verification
Aws Albarghouthi
ISBN: 978-1-68083-910-4

Refinement Types: A Tutorial
Ranjit Jhala and Niki Vazou
ISBN: 978-1-68083-884-8

Shape Analysis
Bor-Yuh Evan Chang, Cezara Drăgoi, Roman Manevich, Noam Rinet-
zky and Xavier Rival
ISBN: 978-1-68083-732-2

Full text available at: http://dx.doi.org/10.1561/2500000059

Neurosymbolic Programming in
Scallop: Principles and Practice

Ziyang Li
University of Pennsylvania

liby99@seas.upenn.edu

Jiani Huang
University of Pennsylvania

jianih@seas.upenn.edu

Jason Liu
University of Pennsylvania

jasonhl@seas.upenn.edu

Mayur Naik
University of Pennsylvania

mhnaik@seas.upenn.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2500000059

Foundations and Trends® in Programming Lan-
guages

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

Z. Li et al.. Neurosymbolic Programming in Scallop: Principles and Practice. Foun-
dations and Trends® in Programming Languages, vol. 8, no. 2, pp. 118–249, 2024.

ISBN: 978-1-63828-485-7
© 2024 Z. Li et al.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2500000059

Foundations and Trends® in Programming
Languages

Volume 8, Issue 2, 2024
Editorial Board

Editor-in-Chief
Rupak Majumdari
Max Planck Institute for Software Systems

Editors

Martín Abadi
Google and UC Santa
Cruz

Anindya Banerjee
IMDEA Software Instituet

Patrick Cousot
ENS, Paris and NYU

Oege De Moor
University of Oxford

Matthias Felleisen
Northeastern University

John Field
Google

Cormac Flanagan
UC Santa Cruz

Philippa Gardner
Imperial College

Andrew Gordon
Microsoft Research and
University of Edinburgh

Dan Grossman
University of Washington

Robert Harper
CMU

Tim Harris
Amazon

Fritz Henglein
University of Copenhagen

Rupak Majumdar
MPI and UCLA

Kenneth McMillan
Microsoft Research

J. Eliot B. Moss
University of
Massachusetts, Amherst

Andrew C. Myers
Cornell University

Hanne Riis Nielson
Technical University of
Denmark

Peter O’Hearn
University College London

Benjamin C. Pierce
University of Pennsylvania

Andrew Pitts
University of Cambridge

Ganesan Ramalingam
Microsoft Research

Mooly Sagiv
Tel Aviv University

Davide Sangiorgi
University of Bologna

David Schmidt
Kansas State University

Peter Sewell
University of Cambridge

Scott Stoller
Stony Brook University

Peter Stuckey
University of Melbourne

Jan Vitek
Northeastern University

Philip Wadler
University of Edinburgh

David Walker
Princeton University

Stephanie Weiric
University of Pennsylvania

Full text available at: http://dx.doi.org/10.1561/2500000059

Editorial Scope
Foundations and Trends® in Programming Languages publishes survey and
tutorial articles in the following topics:

• Abstract Interpretation
• Compilation and Interpretation

Techniques
• Domain Specific Languages
• Formal Semantics, including

Lambda Calculi, Process Cal-
culi, and Process Algebra

• Language Paradigms
• Mechanical Proof Checking
• Memory Management
• Partial Evaluation
• Program Logic
• Programming Language Imple-

mentation
• Programming Language Secu-

rity

• Programming Languages for
Concurrency

• Programming Languages for
Parallelism

• Program Synthesis

• Program Transformations and
Optimizations

• Program Verification

• Runtime Techniques for Pro-
gramming Languages

• Software Model Checking

• Static and Dynamic Program
Analysis

• Type Theory and Type Systems

Information for Librarians

Foundations and Trends® in Programming Languages, 2024, Volume 8,
4 issues. ISSN paper version 2325-1107. ISSN online version 2325-1131.
Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2500000059

Contents

1 Introduction 3
1.1 Neurosymbolic Programming 3
1.2 Scallop: What and Why 5
1.3 Building Blocks of Neurosymbolic Solutions 6
1.4 Application Domains . 10
1.5 Intended Audience . 12
1.6 Outline . 12

2 Basics of Programming in Scallop 13
2.1 Relations, Data Types, and Facts 13
2.2 Logic Rules . 17
2.3 Recursion, Negation, and Aggregation 19
2.4 Programming with Probabilities 24
2.5 On-Demand Computations 25
2.6 Algebraic Data Types . 28
2.7 Foreign Interface . 30

3 Core Reasoning Framework 36
3.1 Provenance Framework 36
3.2 SclRam Intermediate Language 38
3.3 Operational Semantics of SclRam 39
3.4 External Interface and Execution Pipeline 45

Full text available at: http://dx.doi.org/10.1561/2500000059

3.5 Exact Probabilistic Reasoning with Provenance 45
3.6 Top-K Proofs Provenance for Scalable Reasoning 48
3.7 Differentiable Reasoning 51
3.8 Practical Extensions . 53

4 Scallop in Practice: End-to-End Examples 57
4.1 Summing Two MNIST Digits 57
4.2 Evaluating Handwritten Formulas 60
4.3 Playing the PacMan-Maze Game 64

5 Programming with Foundation Models 70
5.1 Foundation Models and Relations 70
5.2 Extensible Plugin Library 72
5.3 Large Language Models 73
5.4 Embedding Models and Vector Databases 78
5.5 Vision and Multi-Modal Models 80

6 Advanced Applications 85
6.1 Learning Composition Rules for Kinship Reasoning 86
6.2 Visual Question Answering on Scene Images 93
6.3 Aligning Texts and Videos for Video Scene Graph

Generation . 104

7 Conclusion 120
7.1 Limitations . 121
7.2 Future Work . 121

References 123

Full text available at: http://dx.doi.org/10.1561/2500000059

Neurosymbolic Programming in
Scallop: Principles and Practice
Ziyang Li, Jiani Huang, Jason Liu and Mayur Naik

University of Pennsylvania, USA; liby99@seas.upenn.edu,
jianih@seas.upenn.edu, jasonhl@seas.upenn.edu,
mhnaik@seas.upenn.edu

ABSTRACT

Neurosymbolic programming combines the otherwise com-
plementary worlds of deep learning and symbolic reason-
ing. It thereby enables more accurate, interpretable, and
domain-aware solutions to AI tasks. We introduce Scallop, a
general-purpose language and compiler toolchain for develop-
ing neurosymbolic applications. A Scallop program specifies
a suitable decomposition of an AI task’s computation into
separate learning and reasoning modules. Learning modules
are built using existing machine learning frameworks and
range from custom neural models to foundation models for
language, vision, and multi-modal data. Reasoning modules
are specified in a declarative logic programming language
based on Datalog which supports expressive features such
as recursion, aggregation, negation, and probabilistic pro-
gramming over structured relations.

Scallop’s compiler enables to automatically train neurosym-
bolic programs in a data- and compute-efficient manner using
an end-to-end differentiable reasoning framework. Scallop
also supports features useful for building real-world applica-
tions such as user-defined data types, and foreign interfaces.

Ziyang Li, Jiani Huang, Jason Liu and Mayur Naik (2024), “Neurosymbolic
Programming in Scallop: Principles and Practice”, Foundations and Trends® in
Programming Languages: Vol. 8, No. 2, pp 118–249. DOI: 10.1561/2500000059.
©2024 Z. Li et al.

Full text available at: http://dx.doi.org/10.1561/2500000059

2

We demonstrate programming in Scallop for applications
that span the domains of image and video processing, natu-
ral language processing, planning, and information retrieval
in a variety of learning settings such as supervised learning,
reinforcement learning, rule learning, contrastive learning,
and in-context learning.

Full text available at: http://dx.doi.org/10.1561/2500000059

1
Introduction

1.1 Neurosymbolic Programming

Classical algorithms and deep learning embody two prevalent paradigms
of modern programming. Classical algorithms are well suited for exactly-
defined tasks, such as sorting a list of numbers or finding a shortest
path in a graph. Deep learning, on the other hand, is well suited for
tasks that are not tractable or feasible to perform procedurally, such as
detecting objects in an image or parsing natural language text. These
tasks are typically specified using a set of input-output training data,
and solving them involves learning the parameters of a deep neural
network to fit the data using gradient-based methods.

The two paradigms are complementary in nature. For instance, a
classical algorithm such as the logic program λ shown in Figure 1.1a
is interpretable but operates on limited, structured input r. On the
other hand, a deep neural network such as Mθ shown in Figure 1.1b can
operate on rich, unstructured input x but is not interpretable. Modern
applications demand the capabilities of both paradigms. Examples
include question answering (Rajpurkar et al., 2016), code completion
(Chen et al., 2021), and mathematical problem solving (Lewkowycz
et al., 2022), among many others. For instance, code completion requires

3

Full text available at: http://dx.doi.org/10.1561/2500000059

4 Introduction

r λ y

(a) Logic program.

x Mθ y

∂y
∂θ

(b) Neural model.

x Mθ r λ y

∂y
∂r

∂r
∂θ

(c) A basic neurosymbolic program.

Figure 1.1: Comparison of different paradigms. Logic program λ accepts only
structured input r whereas neural model Mθ with parameter θ can operate on
unstructured input x. Supervision is provided on data indicated in double boxes.
Under algorithmic supervision, a neurosymbolic program must learn θ without
supervision on r.

deep learning to comprehend programmer intent from the code context,
and classical algorithms to ensure that the generated code is correct.
A natural and fundamental question then is how to program such
applications by integrating the two paradigms.

Neurosymbolic programming is an emerging paradigm that aims to
fulfill this goal (Chaudhuri et al., 2021). It seeks to integrate symbolic
knowledge and reasoning with neural architectures for better efficiency,
interpretability, and generalizability than the neural or symbolic coun-
terparts alone. Consider the task of handwritten formula evaluation (Li
et al., 2020), which takes as input a formula as an image, and outputs
a number corresponding to the result of evaluating it. An input-output
example for this task is ⟨x = , y = 1.6⟩. A neurosymbolic
program for this task, such as the one shown in Figure 1.1c, might first
apply a convolutional neural network Mθ to the input image to obtain a
structured intermediate form r as a sequence of symbols [‘1’, ‘+’, ‘3’, ‘/’,
‘5’], followed by a classical algorithm λ to parse the sequence, evaluate
the parsed formula, and output the final result 1.6.

Despite significant strides in individual neurosymbolic applications
(Yi et al., 2018; Mao et al., 2019; Chen et al., 2020; Li et al., 2020; Min-
ervini et al., 2020a; Wang et al., 2019), there is a lack of a language with
compiler support to make the benefits of the neurosymbolic paradigm
more widely accessible. We set out to develop such a language and
identified five key criteria that it should satisfy in order to be practi-
cal. These criteria, annotated by the components of the neurosymbolic
program in Figure 1.1c, are as follows:

Full text available at: http://dx.doi.org/10.1561/2500000059

1.2. Scallop: What and Why 5

1. A symbolic data representation for r that supports diverse kinds
of data, such as image, video, natural language text, tabular data,
and their combinations.

2. A symbolic reasoning language for λ that expresses common rea-
soning patterns such as recursion, negation, and aggregation.

3. An automatic and efficient differentiable reasoning engine for learn-
ing (∂y∂r) under algorithmic supervision, i.e., supervision on observ-
able input-output data (x, y) but not r.

4. The ability to tailor learning (∂y∂r) to individual applications’ charac-
teristics, since non-continuous loss landscapes of symbolic programs
hinder learning using a one-size-fits-all method.

5. A mechanism to leverage and integrate with existing training
pipelines (∂r∂θ), implementations of neural architectures and models
Mθ, and hardware (e.g. GPU) optimizations.

1.2 Scallop: What and Why

We have developed Scallop, a programming language that realizes all of
the above criteria. The key insight underlying Scallop is its choice of
three inter-dependent design decisions: a relational model for symbolic
data representation, a declarative language for symbolic reasoning, and
a provenance framework for differentiable reasoning.

Our design choices were inspired by the following key observations.
First, much of the world’s data is stored in relational databases. Rela-
tions are also flexible enough to represent diverse kinds of data ranging
from high-level visual and language features, to formal programs, to
molecular structures. Second, a declarative language for symbolic rea-
soning allows computation to be expressed concisely via high-level rules,
thereby alleviating programmer effort. Finally, the relational paradigm
offers a suitable abstraction for various advanced features needed for
neurosymbolic programming, such as query planning, hardware acceler-
ation, and probabilistic and differentiable reasoning.

Our aim with Scallop is to provide a cohesive language and frame-
work for integrating neural and symbolic components. In doing so, we

Full text available at: http://dx.doi.org/10.1561/2500000059

6 Introduction

seek to enable programmers to build neurosymbolic solutions that are
more efficient, generalizable, and interpretable.

1.3 Building Blocks of Neurosymbolic Solutions

A language that integrates neural and symbolic components can be
applied to construct diverse and adaptable solutions. Broadly, a neu-
rosymbolic solution to any given task involves the flexible interplay
of neural and symbolic components, each serving distinct yet comple-
mentary roles in problem-solving. From the existing literature, several
building blocks have emerged as crucial for effective neurosymbolic
solutions, as depicted in Figure 1.2. We proceed to discuss each of these
core building blocks in detail.

x λ Mθ y

(a) Feature Extraction

x Mθ λ y

(b) Symbolic Inference

x Mθ λ y

(c) Algorithmic Supervision

x λ y
Mθ

(d) Neurosymbolic Program Synthesis

x
λ

Mθ

y

(e) Neural Relaxation

x
λ

Mθ

y

(f) Symbolic Distillation

Figure 1.2: Neurosymbolic compositions of neural component (Mθ) and symbolic
component (λ), which serve as building-blocks for more complex neurosymbolic
applications. We use solid arrows to denote forward data-flows, and dashed arrows to
denote backward data-flows used to supervise the learning of the target component.

Feature Extraction The feature extraction process involves deriving
symbolic features from an input x through a symbolic component,
denoted here as λ, before passing these features to a neural model
Mθ for training. Although feature extraction is an established practice
in machine learning and typically not classified as neurosymbolic, it

Full text available at: http://dx.doi.org/10.1561/2500000059

1.3. Building Blocks of Neurosymbolic Solutions 7

nevertheless exemplifies a functional integration of symbolic and neural
elements. In this approach, learning is confined to the neural component,
while the symbolic aspect serves to pre-process the input data.

Notably, advanced feature extraction goes beyond simple tabular
data and often incorporates sophisticated reasoning mechanisms to
construct complex data structures. For instance, in program analysis,
source code can be pre-processed into intricate structures such as ab-
stract syntax trees (ASTs), data-flow graphs, symbolic constraints, or
relational databases (Dinella et al., 2020; Li et al., 2021; Zhu et al.,
2024). Neural networks may thus benefit from more comprehensive,
structured information for downstream tasks, such as proposing bug
fixes, detecting vulnerabilities, and analyzing type information even
within binary code.

Symbolic Inference Symbolic inference involves performing poste-
rior analysis on the outputs of a neural network Mθ using a symbolic
component λ provided by a programmer. This analysis can serve var-
ious purposes, such as filtering nonsensical outputs, verifying output
integrity, or combining multiple information sources symbolically to de-
rive additional insights. Though straightforward in concept, an advanced
symbolic inference component λ may handle probabilistic information,
deriving a distribution rather than just the most likely output.

For instance, in the task of handwritten formula recognition ⟨x =
, y = 1.6⟩, after the neural network generates probability

distributions for individual symbols, a probabilistic symbolic inference
engine could synthesize a distribution over possible rational numbers.
Another example is RNA secondary structure prediction, where a neural
network predicts per-nucleotide structures, and a probabilistic RNA
folding algorithm then parses this probabilistic sequence to generate
the top-k most likely structural parses. In Section 5, we cover many
symbolic inference solutions where the Mθ are foundation models.

Algorithmic Supervision Algorithmic supervision extends symbolic
inference by enabling the symbolic component λ to propagate learning
signals to the neural network Mθ. As before, we assume that λ is pro-
vided by the programmer. While Figure 1.1 demonstrates one example

Full text available at: http://dx.doi.org/10.1561/2500000059

8 Introduction

of algorithmic supervision through differentiability in λ, it generally
suffices for λ to propagate the learning signal. In this way, the symbolic
“algorithm” λ serves as a guiding supervisor for the neural network Mθ.

Algorithmic supervision also functions as a form of weak supervision,
as it does not require direct, fully supervised labels for Mθ; only the
end label y is needed. This reduces the need for extensive data labeling
or feature engineering, simplifying the training process. Numerous ap-
plications in Scallop leverage this approach, including the previously
mentioned task of learning to evaluate handwritten formulas (Li et
al., 2020; Li et al., 2023). This tutorial explores additional, advanced
examples of algorithmic weak supervision in Section 6.

Neurosymbolic Program Synthesis Neurosymbolic program synthesis
involves learning the symbolic program λ with the support of neural
networks. This paradigm resembles the classical syntax-guided synthesis
task (Alur et al., 2013), but replaces the traditional algorithmic synthesis
procedure with a neural network Mθ. Here, the symbolic program λ is
responsible for generating the expected outputs, and it may be iteratively
refined to better align with a dataset.

This approach offers the advantage of interpretability, as the learned
symbolic component is a white-box program that can be inspected
and verified by humans (Ellis et al., 2022). Traditionally, synthesizing
λ requires defining a limited domain-specific language (Ellis et al.,
2020) since general-purpose languages render synthesis computationally
intractable. However, with the recent development of large language
models (LLMs) capable of generating programs in general-purpose
languages like Python, the synthesis of λ can now be achieved more
efficiently (Ma et al., 2024).

Neural Relaxation Neural relaxation involves relaxing a deterministic
and discrete symbolic reasoning component λ by replacing certain
components in the pipeline with neural networks Mθ. This enables
portions of previously symbolic components to be approximated by
neural networks, improving adaptability to unseen scenarios.

For instance, consider the challenge of designing a neurosymbolic
controller for drones: while effective deterministic controllers exist for

Full text available at: http://dx.doi.org/10.1561/2500000059

1.3. Building Blocks of Neurosymbolic Solutions 9

standard maneuvers, they may struggle to adapt to out-of-domain
scenarios, such as operating near the ground, in strong winds, or in
proximity to other drones. By relaxing certain aspects of the controller
into a neural network Mθ, the system gains greater flexibility and
responsiveness in handling such scenarios, while being able to learn
rapidly (O’Connell et al., 2022; Csomay-Shanklin et al., 2024).

Symbolic Distillation Symbolic distillation extracts information from
a black-box neural network and converts it into a symbolic form λ.
Although this process involves generating and refining λ, similar to
neurosymbolic program synthesis, symbolic distillation focuses on trans-
lating otherwise uninterpretable weights from a well-trained neural
network Mθ into an interpretable form.

This technique has been applied to scientific discovery in fields such
as animal behavior analysis (Sun et al., 2022). A symbolic program
describing behaviors like “two mice running towards each other” can be
distilled from a neural network trained on data of mice interactions. An-
other application is explanation synthesis for predicting cancer patient
mortality (Wu et al., 2024). For a model trained to predict 6-month
mortality, symbolic distillation can generate explanations of specific
predictions, providing clearer insights for clinical decision-making sup-
ported by machine learning systems.

Other Compositions In addition to the primary building blocks, there
are other notable neurosymbolic compositions. For example, AlphaGo
(Silver et al., 2016) is centered around a symbolic algorithm—Monte
Carlo Tree Search—with neural networks for policy evaluation and
move selection, creating a synergistic decision-making process. On the
other hand, ChatGPT plugins (OpenAI, 2023a) use a large language
model as the primary system, which can invoke symbolic components
like a Python interpreter, database retrieval, or web search to enhance
functionality. As the field of neurosymbolic AI continues to evolve, we
anticipate that more diverse and innovative compositions will emerge,
broadening the scope and applications of neurosymbolic approaches.

Full text available at: http://dx.doi.org/10.1561/2500000059

10 Introduction

1.4 Application Domains

In this section, we discuss the data modalities for which Scallop is best
suited and explore the application domains where Scallop has shown
effectiveness. We also identify the limitations of Scallop, highlighting
tasks where it may be less effective.

Scallop can be broadly applied to applications that require both
neural models and programmatic reasoning modules. It is particularly
useful when the neural model requires additional training. With a fully
differentiable, end-to-end neurosymbolic pipeline, strong supervision is
not necessary for the neural model. Instead, algorithmic supervision can
be used, offering benefits such as data efficiency and generalizability.

Data Modalities Scallop is capable of handling diverse data modalities
by virtue of being based on the relational data model. The relational
paradigm enables it to work seamlessly with existing relational databases
and tabular data, encompassing information from knowledge bases,
electronic health records, and internet documents. Additionally, natural
language data from NLP tasks can be ingested in various forms: as
raw sentences, embeddings (tensors), or structured representations
such as relational databases or functional programs. Image data from
computer vision can be converted into semantic representations like
scene graphs. Videos, which extend images with a temporal dimension,
can similarly be represented as spatio-temporal scene graphs for analysis
in Scallop. Computer programs can be transformed into relational
databases, capturing detailed information such as abstract syntax trees
and control-flow graphs.

Application Domains We have applied Scallop across diverse domains,
including natural language processing (NLP), computer vision (CV),
planning, program and security analysis, bioinformatics, and healthcare.
In the domain of NLP, we have applied Scallop to tasks that require
reasoning, such as retrieving documents in a database, or analyzing data
from sources such as electronic health records or legal documents. In the
domain of computer vision, rather than focusing on low-level perception
tasks like object segmentation and tracking, we have applied Scallop

Full text available at: http://dx.doi.org/10.1561/2500000059

1.4. Application Domains 11

to hybrid tasks such as visual question answering and for supporting
the training of scene graph generation models. In security analysis, we
have applied Scallop to tasks like taint analysis, vulnerability detection,
and fault localization. In bioinformatics, we have employed Scallop in
applications such as predicting RNA secondary structures and RNA
splicing. It is important to note that not all Scallop solutions follow a
uniform architecture. We adapt different building blocks (Figure 1.2)
depending upon each task’s unique characteristics.

Applications Where Scallop May Be Less Effective We identify three
examples where Scallop may not significantly enhance the task-solving
process due to challenges in defining the reasoning component or the
appropriate intermediate representation.

1. Generating Text with Subjective Criteria. A common use-case of
language models like GPT is generating text that satisfies sub-
jective criteria in style or content, such as empathy or political
neutrality. While language models can generate coherent para-
graphs, identifying specific logical components for integration is
challenging. The abstract nature of such tasks makes it difficult
to pinpoint areas where logical reasoning would offer substantial
value beyond what current language models provide.

2. Basic Math Calculations (e.g., +, −, ×, ÷). This task is inher-
ently symbolic and straightforward. Existing tools like Python or
MATLAB can perform these operations directly, and there is no
clear need for a perceptual model. The task is purely logical and
lacks components that would benefit from Scallop’s relational or
perceptual capabilities.

3. Low-Level Motor Control for Robots. Scallop’s syntax is more
suited to defining high-level discrete logical rules rather than
handling low-level numerical processing of sensory signals. Thus,
for tasks like motor control based on raw sensor inputs, imperative
languages such as C or Python may be more effective for specifying
the numerical algorithms.

Full text available at: http://dx.doi.org/10.1561/2500000059

12 Introduction

1.5 Intended Audience

Scallop is built on the logic programming paradigm and integrates
seamlessly with machine learning frameworks like PyTorch through
Python bindings. As such, we assume readers are familiar with founda-
tional concepts in logic, machine learning, basic calculus (specifically
differentiation), and the Python programming language. This tutorial
covers topics including programming language syntax and semantics,
probabilistic theories and approximations, and the design and implemen-
tation of machine learning systems. While it also explores applications
in natural language processing and computer vision, we provide acces-
sible introductions to each task. Overall, this tutorial is designed for
readers seeking a practical, foundational understanding of neurosym-
bolic programming with Scallop, covering both theoretical concepts and
real-world applications.

1.6 Outline

We cover the core Scallop language in Section 2 starting from the basics
of relational programming. We then describe our core reasoning module
in Section 3 which dives deeper into the internals of Scallop and our
provenance framework. We show the core programming constructs in
Scallop that allow for scalable differentiable reasoning. Next, Section 4
presents a few motivating tasks showcasing Scallop’s ability to concisely
and effectively define neurosymbolic applications. Section 5 connects
Scallop with foundation models. We present a few more advanced
neurosymbolic applications in Section 6. Finally, Section 7 concludes
with a discussion of limitations and future directions.

Full text available at: http://dx.doi.org/10.1561/2500000059

References

Abiteboul, S., R. Hull, and V. Vianu. (1995). Foundations of Databases:
The Logical Level. Addison-Wesley Longman Publishing Co., Inc.

Albers, S., A. Marchetti-Spaccamela, Y. Matias, S. Nikoletseas, and
W. Thomas. (2009). Automata, Languages and Programming: 36th
International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12,
2009, Proceedings, Part I. Vol. 5555. Springer Science & Business
Media.

Alur, R., R. Bodík, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A.
Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. (2013).
“Syntax-guided synthesis”. 2013 Formal Methods in Computer-Aided
Design: 1–8. url: https : / / api . semanticscholar . org / CorpusID :
6705760.

Beurer-Kellner, L., M. Fischer, and M. Vechev. (2022). “Prompting Is
Programming: A Query Language For Large Language Models”. In:
PLDI.

Bommasani, R., D. A. Hudson, E. Adeli, R. B. Altman, S. Arora, S. von
Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill, and et al.
(2021). “On the Opportunities and Risks of Foundation Models”.
arXiv: 2108.07258.

123

Full text available at: http://dx.doi.org/10.1561/2500000059

https://api.semanticscholar.org/CorpusID:6705760
https://api.semanticscholar.org/CorpusID:6705760
https://arxiv.org/abs/2108.07258

124 References

Bubeck, S., V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E.
Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, et al. (2023). “Sparks
of artificial general intelligence: Early experiments with GPT-4”.
arXiv: 2303.12712.

Chaki, S., E. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. (2005).
“Concurrent software verification with states, events, and deadlocks”.
Formal Aspects of Computing. 17(4): 461–483.

Chang, C.-Y., D.-A. Huang, Y. Sui, L. Fei-Fei, and J. C. Niebles.
(2019). “D3tw: Discriminative differentiable dynamic time warping
for weakly supervised action alignment and segmentation”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 3546–3555.

Chaudhuri, S., K. Ellis, O. Polozov, R. Singh, A. Solar-Lezama, Y.
Yue, et al. (2021). “Neurosymbolic Programming”. Foundations and
Trends in Programming Languages. 7(3). doi: 10.1561/2500000049.

Chen, M., J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, et al. (2021).
“Evaluating Large Language Models Trained on Code”. arXiv: 2107.
03374.

Chen, X., C. Liang, A. W. Yu, D. Zhou, D. Song, and Q. V. Le.
(2020). “Neural Symbolic Reader: Scalable Integration of Distributed
and Symbolic Representations for Reading Comprehension”. In:
International Conference on Learning Representations (ICLR).

Cho, K., B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H.
Schwenk, and Y. Bengio. (2014). “Learning Phrase Representations
using RNN Encoder-Decoder for Statistical Machine Translation”.
In: EMNLP.

Cong, Y., W. Liao, H. Ackermann, M. Y. Yang, and B. Rosenhahn.
(2021). “Spatial-Temporal Transformer for Dynamic Scene Graph
Generation”. CoRR. abs/2107.12309. url: https://arxiv.org/abs/
2107.12309.

Csomay-Shanklin, N., W. D. Compton, I. D. J. Rodriguez, E. R. Am-
brose, Y. Yue, and A. D. Ames. (2024). “Robust Agility via Learned
Zero Dynamics Policies”. url: https://arxiv.org/abs/2409.06125.

Full text available at: http://dx.doi.org/10.1561/2500000059

https://arxiv.org/abs/2303.12712
https://doi.org/10.1561/2500000049
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.12309
https://arxiv.org/abs/2107.12309
https://arxiv.org/abs/2409.06125

References 125

Damen, D., H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E.
Kazakos, D. Moltisanti, J. Munro, T. Perrett, W. Price, and M.
Wray. (2018). “Scaling Egocentric Vision: The EPIC-KITCHENS
Dataset”. In: European Conference on Computer Vision (ECCV).

Damen, D., H. Doughty, G. M. Farinella, A. Furnari, J. Ma, E. Kazakos,
D. Moltisanti, J. Munro, T. Perrett, W. Price, and M. Wray. (2022).
“Rescaling Egocentric Vision: Collection, Pipeline and Challenges for
EPIC-KITCHENS-100”. International Journal of Computer Vision
(IJCV). 130: 33–55. url: https://doi.org/10.1007/s11263-021-
01531-2.

Dannert, K. M., E. Grädel, M. Naaf, and V. Tannen. (2021). “Semiring
Provenance for Fixed-Point Logic”. In: Conference on Computer
Science Logic (CSL). doi: 10.4230/LIPIcs.CSL.2021.17.

Darwiche, A. (2011). “SDD: A New Canonical Representation of Propo-
sitional Knowledge Bases”. In: International Joint Conference on
Artificial Intelligence (IJCAI). doi: 10.5591/978- 1- 57735- 516-
8/IJCAI11-143.

De Giacomo, G. and M. Y. Vardi. (2013). “Linear temporal logic and
linear dynamic logic on finite traces”. In: IJCAI’13 Proceedings of the
Twenty-Third international joint conference on Artificial Intelligence.
Association for Computing Machinery. 854–860.

Dinella, E., H. Dai, Z. Li, M. Naik, L. Song, and K. Wang. (2020). “HOP-
PITY: LEARNING GRAPH TRANSFORMATIONS TO DETECT
AND FIX BUGS IN PROGRAMS”.

Ding, X., S. L. Smith, C. Belta, and D. Rus. (2014). “Optimal control
of Markov decision processes with linear temporal logic constraints”.
IEEE Transactions on Automatic Control. 59(5): 1244–1257.

Ellis, K., A. Albright, A. Solar-Lezama, J. B. Tenenbaum, and T. J.
O’Donnell. (2022). “Synthesizing theories of human language with
Bayesian program induction”. Nature Communications. 13. url:
https://api.semanticscholar.org/CorpusID:251951680.

Ellis, K., C. Wong, M. I. Nye, M. Sablé-Meyer, L. Cary, L. Morales, L. B.
Hewitt, A. Solar-Lezama, and J. B. Tenenbaum. (2020). “Dream-
Coder: Growing generalizable, interpretable knowledge with wake-
sleep Bayesian program learning”. CoRR. abs/2006.08381. url:
https://arxiv.org/abs/2006.08381.

Full text available at: http://dx.doi.org/10.1561/2500000059

https://doi.org/10.1007/s11263-021-01531-2
https://doi.org/10.1007/s11263-021-01531-2
https://doi.org/10.4230/LIPIcs.CSL.2021.17
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
https://api.semanticscholar.org/CorpusID:251951680
https://arxiv.org/abs/2006.08381

126 References

Fu, T.-J., L. Li, Z. Gan, K. Lin, W. Y. Wang, L. Wang, and Z. Liu. (2021).
“Violet: End-to-end video-language transformers with masked visual-
token modeling”. arXiv preprint arXiv:2111.12681.

Gao, L., A. Madaan, S. Zhou, U. Alon, P. Liu, Y. Yang, J. Callan, and
G. Neubig. (2023). “PAL: Program-aided Language Models”. arXiv:
2211.10435 [cs.CL].

Grauman, K., A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar,
J. Hamburger, H. Jiang, M. Liu, X. Liu, M. Martin, T. Nagarajan, I.
Radosavovic, S. K. Ramakrishnan, F. Ryan, J. Sharma, M. Wray, M.
Xu, E. Z. Xu, C. Zhao, S. Bansal, D. Batra, V. Cartillier, S. Crane,
T. Do, M. Doulaty, A. Erapalli, C. Feichtenhofer, A. Fragomeni,
Q. Fu, C. Fuegen, A. Gebreselasie, C. González, J. Hillis, X. Huang,
Y. Huang, W. Jia, W. Khoo, J. Kolár, S. Kottur, A. Kumar, F.
Landini, C. Li, Y. Li, Z. Li, K. Mangalam, R. Modhugu, J. Munro,
T. Murrell, T. Nishiyasu, W. Price, P. R. Puentes, M. Ramazanova,
L. Sari, K. Somasundaram, A. Southerland, Y. Sugano, R. Tao, M.
Vo, Y. Wang, X. Wu, T. Yagi, Y. Zhu, P. Arbeláez, D. Crandall, D.
Damen, G. M. Farinella, B. Ghanem, V. K. Ithapu, C. V. Jawahar,
H. Joo, K. Kitani, H. Li, R. A. Newcombe, A. Oliva, H. S. Park,
J. M. Rehg, Y. Sato, J. Shi, M. Z. Shou, A. Torralba, L. Torresani,
M. Yan, and J. Malik. (2021). “Ego4D: Around the World in 3, 000
Hours of Egocentric Video”. CoRR. abs/2110.07058. url: https:
//arxiv.org/abs/2110.07058.

Green, T. J., G. Karvounarakis, and V. Tannen. (2007). “Provenance
Semirings”. In: ACM Symposium on Principles of Database Systems
(PODS). doi: 10.1145/1265530.1265535.

Gupta, T. and A. Kembhavi. (2022). “Visual Programming: Composi-
tional visual reasoning without training”. arXiv: 2211.11559.

Hochreiter, S. and J. Schmidhuber. (1997). “Long short-term memory”.
Neural computation.

Huang, J., Z. Li, B. Chen, K. Samel, M. Naik, L. Song, and X. Si.
(2021). “Scallop: From Probabilistic Deductive Databases to Scalable
Differentiable Reasoning”. In: Conference on Neural Information
Processing Systems (NeurIPS).

Hudson, D. A. and C. D. Manning. (2018). “Compositional Attention
Networks for Machine Reasoning”. In: ICLR.

Full text available at: http://dx.doi.org/10.1561/2500000059

https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2110.07058
https://arxiv.org/abs/2110.07058
https://doi.org/10.1145/1265530.1265535
https://arxiv.org/abs/2211.11559

References 127

Johnson, J., B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick,
and R. B. Girshick. (2016). “CLEVR: A Diagnostic Dataset for
Compositional Language and Elementary Visual Reasoning”. url:
http://arxiv.org/abs/1612.06890.

Kenton, J. D. M.-W. C. and L. K. Toutanova. (2019). “BERT: Pre-
training of Deep Bidirectional Transformers for Language Under-
standing”. In: NAACL.

Kesten, Y., A. Pnueli, and L.-o. Raviv. (1998). “Algorithmic verification
of linear temporal logic specifications”. In: Automata, Languages and
Programming: 25th International Colloquium, ICALP’98 Aalborg,
Denmark, July 13–17, 1998 Proceedings 25. Springer. 1–16.

Kim, W., B. Son, and I. Kim. (2021). “ViLT: Vision-and-Language
Transformer Without Convolution or Region Supervision”. arXiv:
2102.03334 [stat.ML].

Kirillov, A., E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T.
Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, et al. (2023). “Segment
Anything”. arXiv: 2304.02643.

Kojima, T., S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. (2022).
“Large language models are zero-shot reasoners”. In: NeurIPS.

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner. (1998). “Gradient-
Based Learning Applied to Document Recognition”. Proceedings of
the IEEE. 86(11). doi: 10.1109/5.726791.

Lewkowycz, A., A. Andreassen, D. Dohan, E. Dyer, H. Michalewski,
V. Ramasesh, A. Slone, C. Anil, I. Schlag, T. Gutman-Solo, et al.
(2022). “Solving Quantitative Reasoning Problems with Language
Models”.

Li, J., Y. Wang, C. Wang, Y. Tai, J. Qian, J. Yang, C. Wang, J. Li,
and F. Huang. (2018). “DSFD: Dual Shot Face Detector”. url:
http://arxiv.org/abs/1810.10220.

Li, Q., S. Huang, Y. Hong, Y. Chen, Y. N. Wu, and S.-C. Zhu. (2020).
“Closed Loop Neural-Symbolic Learning via Integrating Neural Per-
ception, Grammar Parsing, and Symbolic Reasoning”. In: ICML.
doi: 10.48550/arXiv.2006.06649.

Li, X.-Y., W.-J. Lei, and Y.-B. Yang. (2022). “From Easy to Hard:
Two-stage Selector and Reader for Multi-hop Question Answering”.
arXiv: 2205.11729 [cs.CL].

Full text available at: http://dx.doi.org/10.1561/2500000059

http://arxiv.org/abs/1612.06890
https://arxiv.org/abs/2102.03334
https://arxiv.org/abs/2304.02643
https://doi.org/10.1109/5.726791
http://arxiv.org/abs/1810.10220
https://doi.org/10.48550/arXiv.2006.06649
https://arxiv.org/abs/2205.11729

128 References

Li, Z., J. Huang, and M. Naik. (2023). “Scallop: A Language for Neu-
rosymbolic Programming”. In: PLDI. doi: 10.1145/3591280.

Li, Z., A. Machiry, B. Chen, M. Naik, K. Wang, and L. Song. (2021).
“ARBITRAR: User-Guided API Misuse Detection”. In: 2021 IEEE
Symposium on Security and Privacy (SP). 1400–1415. doi: 10.1109/
SP40001.2021.00090.

Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov. (2019). “RoBERTa: A Robustly
Optimized BERT Pretraining Approach”. arXiv: 1907.11692.

Ma, Y. J., W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman,
Y. Zhu, L. Fan, and A. Anandkumar. (2024). “Eureka: Human-
Level Reward Design via Coding Large Language Models”. url:
https://arxiv.org/abs/2310.12931.

Manhaeve, R., S. Dumancic, A. Kimmig, T. Demeester, and L. D. Raedt.
(2021). “Neural Probabilistic Logic Programming in DeepProbLog”.
Artificial Intelligence. 298. doi: 10.1016/j.artint.2021.103504.

Mao, J., C. Gan, P. Kohli, J. B. Tenenbaum, and J. Wu. (2019). “The
Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and
Sentences From Natural Supervision”. arXiv: 1904.12584.

McKenna, N., T. Li, L. Cheng, M. J. Hosseini, M. Johnson, and M.
Steedman. (2023). “Sources of Hallucination by Large Language
Models on Inference Tasks”. arXiv: 2305.14552.

Minderer, M., A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn,
A. Dosovitskiy, A. Mahendran, A. Arnab, M. Dehghani, Z. Shen,
X. Wang, X. Zhai, T. Kipf, and N. Houlsby. (2022). “Simple Open-
Vocabulary Object Detection with Vision Transformers”. arXiv:
2205.06230 [cs.CV].

Minervini, P., S. Riedel, P. Stenetorp, E. Grefenstette, and T. Rock-
täschel. (2020a). “Learning Reasoning Strategies in End-to-End
Differentiable Proving”. In: ICML. arXiv: 2007.06477.

Minervini, P., S. Riedel, P. Stenetorp, E. Grefenstette, and T. Rock-
täschel. (2020b). “Learning reasoning strategies in end-to-end differ-
entiable proving”. In: ICML.

Full text available at: http://dx.doi.org/10.1561/2500000059

https://doi.org/10.1145/3591280
https://doi.org/10.1109/SP40001.2021.00090
https://doi.org/10.1109/SP40001.2021.00090
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2310.12931
https://doi.org/10.1016/j.artint.2021.103504
https://arxiv.org/abs/1904.12584
https://arxiv.org/abs/2305.14552
https://arxiv.org/abs/2205.06230
https://arxiv.org/abs/2007.06477

References 129

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. (2015). “Human-level Control Through Deep Reinforcement
Learning”. Nature. 518(7540). doi: 10.1038/nature14236.

Nag, S., K. Min, S. Tripathi, and A. K. R. Chowdhury. (2023). “Unbiased
Scene Graph Generation in Videos”. arXiv: 2304.00733 [cs.CV].

Nakano, R., J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S.
Jain, V. Kosaraju, W. Saunders, X. Jiang, K. Cobbe, T. Eloundou,
G. Krueger, K. Button, M. Knight, B. Chess, and J. Schulman.
(2021). “WebGPT: Browser-assisted question-answering with human
feedback”. url: https://arxiv.org/abs/2112.09332.

Nogueira, R. and K. Cho. (2019). “Passage Re-ranking with BERT”.
arXiv: 1901.04085.

O’Connell, M., G. Shi, X. Shi, K. Azizzadenesheli, A. Anandkumar,
Y. Yue, and S.-J. Chung. (2022). “Neural-Fly enables rapid learning
for agile flight in strong winds”. Science Robotics. 7(66). doi: 10.
1126/scirobotics.abm6597.

OpenAI. (2023a). “ChatGPT Plugins”. url: https://openai.com/index/
chatgpt-plugins/.

OpenAI. (2023b). “GPT-4 Technical Report”. arXiv: 2303 . 08774
[cs.CL].

OpenAI et al. (2024). “GPT-4 Technical Report”. arXiv: 2303.08774
[cs.CL].

Petersen, F. (2022). “Learning with Differentiable Algorithms”. arXiv
preprint arXiv:2209.00616.

Pnueli, A. (1977). “The temporal logic of programs”. 18th Annual
Symposium on Foundations of Computer Science (sfcs 1977): 46–57.

Radford, A., J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G.
Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever.
(2021). “Learning Transferable Visual Models From Natural Lan-
guage Supervision”. url: https://arxiv.org/abs/2103.00020.

Rajpurkar, P., J. Zhang, K. Lopyrev, and P. Liang. (2016). “SQuAD:
100,000+ Questions for Machine Comprehension of Text”. In: Con-
ference on Empirical Methods in Natural Language Processing
(EMNLP). doi: 10.18653/v1/D16-1264.

Full text available at: http://dx.doi.org/10.1561/2500000059

https://doi.org/10.1038/nature14236
https://arxiv.org/abs/2304.00733
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/1901.04085
https://doi.org/10.1126/scirobotics.abm6597
https://doi.org/10.1126/scirobotics.abm6597
https://openai.com/index/chatgpt-plugins/
https://openai.com/index/chatgpt-plugins/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2103.00020
https://doi.org/10.18653/v1/D16-1264

130 References

Ramesh, A., M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen,
and I. Sutskever. (2021). “Zero-shot text-to-image generation”. In:
ICML.

Rombach, R., A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. (2022).
“High-Resolution Image Synthesis With Latent Diffusion Models”.
In: CVPR.

Sadigh, D., E. S. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia. (2014).
“A learning based approach to control synthesis of markov decision
processes for linear temporal logic specifications”. In: 53rd IEEE
Conference on Decision and Control. IEEE. 1091–1096.

Saeed, M., N. Ahmadi, P. Nakov, and P. Papotti. (2021). “RuleBERT:
Teaching Soft Rules to Pre-Trained Language Models”. In: EMNLP.

Santoro, A., D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu,
P. Battaglia, and T. Lillicrap. (2017). “A simple neural network
module for relational reasoning”. NeurIPS.

Schick, T., J. Dwivedi-Yu, R. Dessì, R. Raileanu, M. Lomeli, L. Zettle-
moyer, N. Cancedda, and T. Scialom. (2023). “Toolformer: Language
Models Can Teach Themselves to Use Tools”. arXiv: 2302.04761
[cs.CL].

Shang, X., D. Di, J. Xiao, Y. Cao, X. Yang, and T.-S. Chua. (2019).
“Annotating Objects and Relations in User-Generated Videos”. In:
Proceedings of the 2019 on International Conference on Multimedia
Retrieval. ACM. 279–287.

Shang, X., T. Ren, J. Guo, H. Zhang, and T.-S. Chua. (2017). “Video
visual relation detection”. In: Proceedings of the 25th ACM interna-
tional conference on Multimedia. 1300–1308.

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M.
Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I.
Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis. (2016). “Mastering the game of Go with deep neural
networks and tree search”. Nature. 529: 484–503. url: http://www.
nature.com/nature/journal/v529/n7587/full/nature16961.html.

Sinha, K., S. Sodhani, J. Dong, J. Pineau, and W. L. Hamilton. (2019).
“CLUTRR: A Diagnostic Benchmark for Inductive Reasoning from
Text”. arXiv: 1908.06177.

Full text available at: http://dx.doi.org/10.1561/2500000059

https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://arxiv.org/abs/1908.06177

References 131

Soares, L. B., N. Fitzgerald, J. Ling, and T. Kwiatkowski. (2019).
“Matching the Blanks: Distributional Similarity for Relation Learn-
ing”. In: ACL.

Srivastava, A., A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch,
A. R. Brown, A. Santoro, A. Gupta, A. Garriga-Alonso, and et al.
(2023). “Beyond the Imitation Game: Quantifying and extrapolating
the capabilities of language models”. arXiv: 2206.04615.

Sun, J. J., M. Tjandrasuwita, A. Sehgal, A. Solar-Lezama, S. Chaudhuri,
Y. Yue, and O. Costilla-Reyes. (2022). “Neurosymbolic Programming
for Science”. url: https://arxiv.org/abs/2210.05050.

Tenney, I., D. Das, and E. Pavlick. (2019). “BERT Rediscovers the
Classical NLP Pipeline”. In: ACL.

Thomee, B., D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland,
D. Borth, and L.-J. Li. (2016). “YFCC100M: The New Data in
Multimedia Research”. Communications of the ACM. 59(2): 64–73.

Touvron, H., L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N.
Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al. (2023). “Llama 2:
Open Foundation and Fine-Tuned Chat Models”. arXiv: 2307.09288.

Veličković, P., G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y.
Bengio. (2018). “Graph Attention Networks”. In: ICLR.

Wang, P.-W., P. L. Donti, B. Wilder, and Z. Kolter. (2019). “SATNet:
Bridging Deep Learning and Logical Reasoning Using a Differen-
tiable Satisfiability Solver”. In: International Conference on Machine
Learning (ICML). arXiv: 1905.12149.

Watkins, C. J. C. H. (1989). “Learning from delayed rewards”.
Wu, Y., M. Keoliya, K. Chen, N. Velingker, Z. Li, E. J. Getzen, Q. Long,

M. Naik, R. B. Parikh, and E. Wong. (2024). “DISCRET: Synthe-
sizing Faithful Explanations For Treatment Effect Estimation”. url:
https://arxiv.org/abs/2406.00611.

Yang, J., W. Peng, X. Li, Z. Guo, L. Chen, B. Li, Z. Ma, K. Zhou,
W. Zhang, C. C. Loy, and Z. Liu. (2023). “Panoptic Video Scene
Graph Generation”. arXiv: 2311.17058 [cs.CV].

Yang, Z., P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov,
and C. D. Manning. (2018). “HotpotQA: A dataset for diverse,
explainable multi-hop question answering”. arXiv: 1809.09600.

Full text available at: http://dx.doi.org/10.1561/2500000059

https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2210.05050
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1905.12149
https://arxiv.org/abs/2406.00611
https://arxiv.org/abs/2311.17058
https://arxiv.org/abs/1809.09600

132 References

Yi, K., J. Wu, C. Gan, A. Torralba, P. Kohli, and J. Tenenbaum. (2018).
“Neural-Symbolic VQA: Disentangling Reasoning from Vision and
Language Understanding”. In: Conference on Neural Information
Processing Systems (NeurIPS).

Zhai, X., B. Mustafa, A. Kolesnikov, and L. Beyer. (2023). “Sigmoid
Loss for Language Image Pre-Training”. arXiv: 2303.15343 [cs.CV].

Zhu, C., Z. Li, A. Xue, A. P. Bajaj, W. Gibbs, Y. Liu, R. Alur, T.
Bao, H. Dai, A. Doupé, M. Naik, Y. Shoshitaishvili, R. Wang,
and A. Machiry. (2024). “TYGR: Type Inference on Stripped Bi-
naries using Graph Neural Networks”. In: 33rd USENIX Security
Symposium (USENIX Security 24). Philadelphia, PA: USENIX As-
sociation. 4283–4300. url: https://www.usenix.org/conference/
usenixsecurity24/presentation/zhu-chang.

Zhu, G., L. Zhang, Y. Jiang, Y. Dang, H. Hou, P. Shen, M. Feng, X.
Zhao, Q. Miao, S. A. A. Shah, et al. (2022). “Scene graph generation:
A comprehensive survey”. arXiv preprint arXiv:2201.00443.

Full text available at: http://dx.doi.org/10.1561/2500000059

https://arxiv.org/abs/2303.15343
https://www.usenix.org/conference/usenixsecurity24/presentation/zhu-chang
https://www.usenix.org/conference/usenixsecurity24/presentation/zhu-chang

