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Abstract

Perceptive laser and radar sensors provide information from the
surrounding environment and are a critical aspect of many robotics
applications. These sensors are generally subject to many sources of
uncertainty, namely detection and data association uncertainty, spuri-
ous measurements, biases as well as measurement noise. To deal with
such uncertainty, probabilistic methods are most widely adopted. These
probabilistic environmental representations, for autonomous naviga-
tion frameworks with uncertain measurements, can generally be subdi-
vided into two main categories — grid based (GB) and feature based
(FB). GB approaches are popular for robotic exploration, obstacle
avoidance and path planning, whereas FB maps, with their reduced
dimensionality, are primarily used for large scale robotic navigation and
simultaneous localization and map building (SLAM). While researchers
commonly distinguish both approaches based on their environmen-
tal representations, this paper examines the fundamental, theoretical
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aspects of the estimation theoretic algorithms for both approaches.
Emphasis on the measurement likelihoods is used to incorporate
measurement uncertainty, and their impact on the resulting stochas-
tic formulations is examined.

This paper also explores the front-ends of commonly used laser
and radar sensors to develop an in-depth understanding of inherent
measurement uncertainty. In this monograph, perceptive uncertainty
is largely categorized into that related to signal detection and range
measuring. While range noise is commonly addressed in the robotics
literature, there is less emphasis placed on detection uncertainty and
its subsequent impact on stochastic robotic perception algorithms. As
such, following a signal level analysis of both laser and radar range
finders, this paper addresses stochastic measurement modeling and map
representations. In particular, occupancy grid methods based on spatial
statistics are reviewed as well as those more recently based on detec-
tion statistics. Recent work, which proposes that the occupancy state
space is more appropriately propagated by applying the discrete Bayes
recursion using estimates of the detection and false alarm probabili-
ties, as opposed to the commonly used range measurement likelihoods,
is discussed.

A review of FB perception methods is presented, with particular
attention to the important fields of robotic mapping and SLAM. In
particular, comparisons of state-of-the-art Gaussian, Gaussian mix-
ture, and nonparametric map representations are given, demonstrating
the assumptions and advantages of each technique. Finally, recent FB
frameworks using random finite sets are reviewed in which the mea-
surement model is generalized to include detection uncertainty and the
feature map representation is generalized to incorporate uncertainty
in the number of features present. These recent developments add a
new direction to the well-studied problem of robotic perception and
the estimation of any given environment.
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1

Introduction

1.1 Perception

According to the Oxford English dictionary, perception can be defined
as: “To be perceivable, the object must be able to be understood by
the mind through the interplay of sight, sound, taste, touch and smell.
To be perceived, a sensation must pass through the body through one of
the sensory organs, that is, the eye, ear, nose, mouth, or skin. To inter-
pret that sensation is what is known as perception.” A crucial compo-
nent then of perception, is the understanding of information which has
passed through a sensor’s detection process. In the world of autonomous
robotics this takes the form of sensor understanding and modeling, fea-
ture detection, predicting measurements/observations, feature match-
ing, and sensor data representation. This monograph presents a review
of autonomous robotic perception, exploring recent work from the
autonomous robotics and tracking communities in general as well as
from the authors’ own experiences. Throughout the monograph, experi-
ments and results are derived from the authors’ experiences with laser-
and radar-based sensors. The concepts used in the experiments, and
conclusions drawn from them, are compared with state-of-the-art per-
ception methods in a review type fashion.

1
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2 Introduction

The foundation for any form of intelligent mobile robot navigation
is based upon the perception of the environment by the robot. A sen-
sor, or combination of sensors, accompanied by algorithms capable of
automatically extracting useful information from it/them to make esti-
mates about the current state of the robot’s environment are required.
To date, arguably the most impressive results in the application of robot
perception have been based on probabilistic algorithms which take into
consideration uncertainty in sensor data as well as prior information.
This monograph therefore also reviews and presents methods which
cope probabilistically with missed detections (the possibility of a sen-
sor not detecting an object of interest), object spatial uncertainty (in
which detected objects are given uncertain range and/or bearing val-
ues due to sensor noise) and false alarms (the possibility of a sensor
reporting a detection, due to noise, when in fact nothing (or nothing of
interest) is present). Environment measurement models based on these
phenomena are therefore analyzed. A further concept, often over-looked
in the robotic, but apparent in the tracking literature, is that of esti-
mating the correct number of features in an environment. Recent work
which advocates the joint estimation of map features with respect to
their number as well as location will be reviewed.

1.2 Range Estimation with Laser and Radar

Based on the above uncertainties, illustrations, taken from the authors’
work and the robotics literature in general, with laser range finders and
short range (millimetre wave) radars, are given. Laser range finders
transmit well focussed light beams into the environment, which reflect
from the objects they impinge. The detected reflections often yield reli-
able range and bearing measurements, which can be recorded at high
speed. Such devices are now affordable within the robotics community
and indoor and, to a more limited extent, outdoor applications are
evident. In the presence of unpredictable atmospheric (rain, fog, dust,
etc.) and lighting conditions, laser range finders soon become inad-
equate for reliable range perception. In such situations, short range
radar provides a good solution, due to the ability of the transmitted
radio waves to penetrate such media, and its insensitivity to ambient
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1.3 Map Representations with Occupancy Grids 3

light. With common, short range radar technologies, the Fast Fourier
Transform can be used to return a power value at discrete range incre-
ments. This allows for the analysis of detection methods as well as
their effect on subsequent perception algorithms. This comes at the
expense of a lower angular resolution than laser range finders and more
complicated processing to detect objects. Laser and radar based tech-
nologies between them therefore encompass a large application domain
both indoors and outdoors. It should be mentioned that a great deal of
robotic perception work has taken place in the field of machine vision
however, since this is a research field in its own right, this is not cov-
ered in detail here, and robotic range sensing based on laser and radar
techniques is the focus of this monograph.

The monograph advocates an understanding of the sources of noise
in any such sensor as well as principled methods for its incorporation
into subsequent stochastic map representations. A review of methods
for modeling the uncertainty of sensor data is thus initially provided.
A vast array of literature on sensor measurement models exists, in
which the measurement process is modeled as a conditional probabil-
ity density to reflect the nondeterministic aspects of the sensing pro-
cess. Laser and radar sensors with contrasting measurement techniques
are examined in Section 2. These adopt the commonly used Time-
Of-Flight (TOF), Amplitude Modulated Continuous Wave (AMCW)
and, in the case of radar, the Frequency Modulated Continuous Wave
(FMCW) range measurement methods, respectively. In-depth analysis
of the front-end processing units is provided to develop useful mod-
els of the signal noise present and how it effects the measurements of
interest in mobile robotics applications. For many laser range sensors,
users do not have access to the signal detection parameters, however
the analyses given in these sections still gives informative methods for
quantifying various noise sources of interest.

1.3 Map Representations with Occupancy Grids

To date, two fundamentally different approaches, namely the occupancy
grid (OG) [72] and the feature-based (FB) map [105], have emerged as
the most popular means of probabilistic mapping. Numerous examples
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4 Introduction

of impressive localization, mapping and navigation algorithms which
adopt these environment models can be seen both in indoor [33, 38,
52, 64, 111] and outdoor [17, 36, 71, 76, 126] environments. The OG
approach propagates estimates of landmark existence on a grid with
a fixed, predetermined number of cells. In environmental representa-
tions of this type, the number of map states is therefore predefined,
and constant and therefore, only the cells’ “contents,” which typically
correspond to the likelihood of objects’ existences at those cells’ coor-
dinates, need to be updated. Hence, the grid, which fully represents
the environment, can be represented mathematically by either a vec-
tor or matrix of predefined, fixed dimensions. For most OG maps, the
occupancy is distributed in a Gaussian manner as a function of the
returned range. The intensity of the returned signal is rarely consid-
ered however, resulting in discrete observations of occupancy in each
cell. The discrete Bayes filter is then used as a solution, which is possi-
ble as it subtly assumes a completely known occupancy measurement
model to update the posterior occupancy probability.

A review of these techniques will be given in Section 3. Probabilistic
models, based on laser range finders, will be derived which yield range
and bearing uncertainty. It will be demonstrated that such models pro-
vide a useful characterization of spatial uncertainty based on various
parameters, but typically assume an ideal detector. This means that
every detection is treated as a valid reflection from an environmental
landmark and added to the map after passing some heuristic landmark
initialization requirements. Using this assumption, the distribution of
the landmark’s spatial coordinates can be conveniently modeled with
probability density functions (typically Gaussian), where the proba-
bilistic sum under the distribution is unity. That is, complete cer-
tainty is assumed that a landmark exists somewhere within that area,
thus readily allowing for numerous stochastic filtering techniques to be
applied.

The reliability of data from active sensors such as laser range find-
ers, radar and also sonar, often depends on the magnitude of the
received signal strength resulting from the sensor’s transmitted sig-
nal reflecting from an object/objects. A review of the literature, and
the work of the authors, which demonstrates that such sensors exhibit
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1.4 Feature-Based Map Representations 5

object existence uncertainty, as well as estimated spatial uncertainty,
will be given in Section 4. The work reviewed in this section demon-
strates that, contrary to the theories reviewed in Section 3, noise in
such range/bearing measuring sensors is in fact 3 dimensional. This is
because, as well as spatial range/bearing noise, an added uncertainty
exists in the detection process itself. Hence this section begins with
an overview of detection uncertainty and introduces the concepts of
missed detections and false alarms for realistic sensor models and sen-
sor processing algorithms.

1.4 Feature-Based Map Representations

The paper then address the FB map representation and modeling of
measurements used to propagate estimates of such maps. FB mapping
approaches offer the advantage that the sensor data is compressed into
features (such as point clusters, circles, lines, corners, etc.). The origins
of the feature map can be traced back to the seminal work of Smith
et al. [105], in which the environment is assumed to consist of these
simplified representations of the physical landmarks — the features.
The feature map representation has since gained wide spread popu-
larity, particularly in the outdoor robotics domain due to its ability
to estimate large scale maps and provide correction information for
simultaneous vehicle pose estimation. The work also first established
the “vector of all the spatial variables, which we call the system state
vector.”

In this section, a review of state-of-the-art FB map representations,
cast into the popular SLAM framework, will be given. In particular,
popular feature and vehicle descriptions based on Gaussian, Gaussian
mixture, and nonparametric methods will be reviewed and compared.
Finally, recent methods which have reformulated the well known FB
robotic mapping (FBRM) and simultaneous localisation and mapping
(SLAM) problems, by casting them under a random finite set (RFS)
representation, will then be reviewed. This representation will be shown
to exhibit several fundamental advantages over the former vector-based
techniques. In particular the issues of estimating the correct number of
features which have passed through the field(s) of view (FoV) of the
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6 Introduction

sensor(s) as a robot moves, will be shown to be of extreme importance in
mapping. Further, the RFS formulation directly incorporates a sensor’s,
or the corresponding feature detection algorithm’s, probability of false
alarm and missed detection values into the estimation process. Finally,
the concept of a useful error metric, which assesses the true quality of an
estimated map in its entirety, again in terms of the number of features
estimated as well as their spatial locations, will be demonstrated.
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