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Abstract

Robotic rehabilitation devices have become increasingly important
and popular in clinical and rehabilitation environments to facilitate
prolonged duration of training, increased number of repetitions of
movements, improved patient safety, less strenuous operation by
therapists, and eventually, to improve the therapeutic outcome. Novel
assistive technologies are becoming available as wearable devices that
allow transferring the therapeutic training into home and work envi-
ronments or assist the patient in day-to-day activities. This monograph
summarizes the rationale for robot-assisted therapy and presents the
technological steps in the evolution of the design and development of
lower and upper extremity rehabilitation robots. After presenting the
basic mechanisms of natural and artificial movement restoration, and
the rationale of robot-aided movement therapy, this monograph shows
several design criteria that are relevant for the development of effective
and safe rehabilitation robots. The robotic design depends on the kind
of application (i.e., therapeutic or assistive), and varies with respect to
different kinds of actuation and patient interaction principles, robotic
complexities, and kinematic approaches. Several examples of gait and
arm rehabilitation robots are presented that are in developmental
status or already commercially available. Novel patient-cooperative
strategies are presented, such as impedance control, assistance-as-
needed control and tunnel (path) control. Such patient-cooperative
strategies can increase movement variability and patient activity;
both can have a positive effect on the therapeutic outcome. Special
bio-cooperative control strategies and biofeedback methods are intro-
duced that increase engagement and motivation during the therapy
session. Standardized assessment tools implemented in robotic devices
have shown to be a convenient and accurate method to evaluate the
rehabilitation process of individual patients and entire patient groups,
which can allow therapists and researchers to perform better intra and
inter-subject comparisons. This monograph, which in several parts has
an emphasis on the work from the author’s laboratory, finishes with a
short overview about existing clinical trials that have been performed
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showing that the application of rehabilitation devices is at least as
effective as the application of conventional therapies. It concludes with
the finding that further clinical studies are required to find predictors
for the success of a robot-aided treatment.

R. Riener. Rehabilitation Robotics. Foundations and Trends R© in Robotics, vol. 3,
nos. 1–2, pp. 1–137, 2012.
DOI: 10.1561/2300000028.
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1
Introduction

1.1 Sociomedical need and motivation

Loss of the abilities to walk and grasp represents a major disability for
millions of individuals worldwide, and a major expense for health care
and social support systems. More than 700,000 people in the U.S. suffer
from a stroke each year; 60–75% of these individuals will live beyond
one year after the incident, resulting in a stroke survivor population
of about 3 million people [190, 370]. Almost two-thirds of all stroke
survivors have no functional ability and cannot move without assistance
in the acute phase following the incident [176]. Similarly, for many of
the 10,000 Americans who are affected by a traumatic spinal cord injury
(SCI) per year, the most visible lingering disability is the lost or limited
ability to walk [362].

One major goal in the rehabilitation of patients suffering from
a movement disorder, such as stroke or SCI, is retraining locomotor
and upper extremity function. The approach to stroke physiotherapy
is diverse, as are the theoretical bases assumed by the physiothera-
pists who provide the therapy [76, 82, 225, 249, 277, 282]. Traditional
methodology includes neuro-developmental training (NDT) [26], the

3
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4 Introduction

motor relearning program [49], proprioceptive neuromuscular facilita-
tion [198], and the Rood approach [332].

The effects of the different kinds of training on gait have been shown
to be modest, irrespective of the exact type of training [219]. NDT is
particularly prevalent [21, 76, 225, 305], with the best known stream
being the Bobath concept. Better outcomes in gait rehabilitation have
been elicited from the more direct approach of body weight supported
treadmill training [13, 86, 141, 148, 221, 237, 289, 340, 365, 366], where
the patient walks on a treadmill with the body weight partially sup-
ported, and two or more therapists support the patient and guide their
limbs where required. This type of therapy has the advantages of being
task specific and repetitive but is often very physically intensive [282].
As a result, the training duration can be limited by the fitness of the
therapists themselves.

Restoration of arm and hand function is essential to resuming daily-
living tasks and regaining independence in life. Plenty of studies show
that sensorimotor arm therapy has positive effects on the rehabilitation
progress of stroke patients (see [15, 93, 288] to mention just a few).

1.2 Natural and artificial mechanisms of
movement restoration

Motion impairments resulting from neural and musculoskeletal lesions
can be restored by natural and artificial mechanisms. The central
nervous system is characterized by three basic natural mechanisms
that can enable partial or complete restoration of sensor and motor
functions. First, lost motor functions can be adapted or compensated
by other existing functions not being affected by the lesion. Second,
tasks of injured brain regions can be transferred to other non-affected
brain regions by generation of new synaptic connections. This prop-
erty is known as “plasticity” of the central nervous system. And third,
damaged brain regions can partly recover via different regeneration
principles. These mechanisms can be enhanced and accelerated by phar-
maceutical, physiotherapeutic, or surgical treatments.

However, the recovery of the central nervous system is limited due to
the presence of inhibiting factors. These inhibiting factors are missing
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1.3. Rationale for movement therapy 5

in the peripheral nervous system. Therefore, minor nerve damages
(neuropraxies) can heal without any additional treatment. After full
nerve transection, an artificial nerve graft can be surgically inserted to
support nerve growth.

Natural restoration of the musculoskeletal system is limited to heal-
ing effects of muscles and bones, e.g., after muscle fiber lesions or
bone fracture, whereas any kind of amputations cannot be restored
by natural mechanisms (such as in certain animals).

If the impairment of the nervous or musculoskeletal system can-
not be restored by natural mechanisms, artificial technical support
is required. Totally lost functions can be substituted by prostheses,
whereas orthoses are used to support remaining (but impaired) body
functions. A mechanical orthosis is an orthopedic apparatus used to
stabilize, support, and guide body limbs during movements. Typical
examples for mechanical orthoses are crutches, shells, and gait and
stance orthoses. Orthotic devices for upper and lower extremities can be
applied in two different ways: first, as therapy devices, usually in clini-
cal settings that aim at restoring movement function based on intensive
training, and second, as assistive devices that support activities of daily
living (ADL) tasks in home and work environments, and at leisure. Also
assistive devices can have a therapeutic effect on the patient.

1.3 Rationale for movement therapy

Task-oriented repetitive movements can improve muscular strength and
movement coordination in patients with impairments due to neuro-
logical or orthopedic problems. A typical repetitive movement is the
human gait. Treadmill training has been shown to improve gait and
lower limb motor function in patients with locomotor disorders. Man-
ually assisted treadmill training was first used approximately 20 years
ago as a regular therapy for patients with SCI or stroke. Currently,
treadmill training is well-established at most large neuro-rehabilitation
centers, and its use is steadily increasing. Numerous clinical studies
support the effectiveness of the training, particularly in SCI and stroke
patients [12, 86, 141].
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6 Introduction

Similarly, arm therapy is used for patients with paralyzed upper
extremities after stroke or SCI. Several studies prove that arm therapy
has positive effects on the rehabilitation progress of stroke patients
(see [288], for review). Besides recovering of motor function and
improving movement coordination, arm therapy serves also to learn
new motion strategies, so-called “trick movements” or “compensatory
movements”, to better cope with different ADL tasks.

Lower and upper extremity movement therapy serves also to pre-
vent secondary complications such as muscle atrophy, osteoporosis, and
spasticity. It was observed that longer training sessions and a longer
total training duration have a positive effect on the motor function.
In a meta-analysis comprising nine controlled studies with 1051 stroke
patients Kwakkel et al. [212] showed that increased training intensity
yields positive effects on neuromuscular function and ADL. This study
did not distinguish between upper and lower extremities. The finding
that the rehabilitation progress depends on the training intensity moti-
vates the application of robot-aided arm therapy.

1.4 Neuronal basis underlying movement training

Stroke and traumatic brain or spinal cord injury result in neurological
disorders associated with impaired or total loss of locomotion, hand
function, and other body functions. Basic research studies in the
animal model including the cat have shown that repetitive execution
of the movement (supported by any external help) can improve motor
function of the affected limbs, especially during locomotion [13]. These
improvements seem to be based on neuroplasticity of the central ner-
vous system at many levels and result in compensation for the loss of
lesioned brain or spinal cord areas [70, 88, 246]. In SCI, the supraspinal
control over the neural circuitry in the spinal cord is impaired, while
the spinal and supraspinal neural centers underlying locomotion
remain intact. Evidence for the existence of a human spinal pattern
generator is indicated by the observation of spontaneously occurring
step-like movements [46] and myoclonus [43] as well as from late flexion
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1.5. Rationale for robot-aided training 7

reflexes [43] and from locomotor movements induced in body-weight
supported paraplegic patients walking on a treadmill [85, 86]. Other
studies have shown that a locomotor pattern may be induced and
trained even in completely paraplegic patients when leg movements
are assisted externally and an appropriate afferent input to the spinal
cord is provided [84, 85, 86, 87, 92]. Nevertheless, the amplitude of leg
muscle electromyographic (EMG) activity in these patients is small
when compared with healthy subjects but increases during locomotor
training sessions [86]. These studies provide indirect but sufficient
evidence for the existence of a Central Pattern Generator (CPG) in
human subjects. The spinal pattern generator and an appropriate
proprioceptive feedback can be implemented in a training system to
target neural circuits to induce plastic changes. Body un-loading and
re-loading are considered to be of crucial importance to induce training
effects upon the neurological locomotor centers because the afferent
input from receptors signaling contact forces during the stance phase is
essential for the activation of spinal locomotor centers [136]. Therefore,
this cyclic loading is considered to be important for achieving training
effects in cat [280] and man [83, 90]. Because the available muscle force
is not sufficient to support the body weight during walking, partial
body weight unloading is necessary in order to allow for stable and
safe locomotor training. Recent findings demonstrated that following
an acute, incomplete SCI in humans, an improvement of locomotor
function was observed and was specifically attributed to the functional
locomotor training [88, 373] in addition to the spontaneous recovery
of spinal cord function that can occur over several months following
SCI [72, 73, 74, 184].

1.5 Rationale for robot-aided training

Manually assisted movement training has several major limitations.
Treatment for stroke, SCI, and other neurological diseases is very costly
and accounts for a large percentage of health care budgets [305]. The
training is labor-intensive, and, therefore, training duration is usually
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8 Introduction

limited by personnel shortage and fatigue of the therapist, not by that
of the patient. During treadmill training, therapists often suffer from
back pain, because the training has to be performed in an ergonomi-
cally unfavorable posture. During upper extremity training, the ther-
apist has to lift the arm of the patient, thus, carrying the complete
weight of the upper limb or a portion of it. The disadvantageous con-
sequence is that the training sessions are shorter than required to gain
an optimal therapeutic outcome. Finally, manually-assisted movement
training lacks repeatability and objective measures of patient perfor-
mance and progress.

In contrast, with automated, i.e., robot-assisted, gait and arm train-
ing the duration and number of training sessions can be increased,
while reducing the number of therapists required per patient. Long-
term automated therapy can be an efficient way to make intensive
movement training affordable for clinical use. One therapist may be
able to train two or more patients at a time. Thus, personnel costs can
be significantly reduced and more patients can be treated satisfying the
need for a higher treatment capacity due to the increasing number of
age-related neurological patients.

Furthermore, the robot provides quantitative measures, thus, allow-
ing the observation and quantitative assessment of the rehabilitation
process. Even more, some of the recorded data can be online-processed
and displayed to the patient as “biofeedback” signals so that the patient
immediately understands how she or he performs. This can help the
patient to try to improve the movement pattern and performance dur-
ing the robot-aided training sessions. This kind of feedback can be
further exploited via the application of virtual reality (VR) technolo-
gies. Allowing the patient to perform a movement task within a virtual
environment, does not only allow to instruct the patient in an easy,
convenient, and very intuitive way, but it also increases the patient’s
engagement during task execution and the general motivation to par-
ticipate in the rehabilitation program.

These advantages of the use of robots as compared to conventional
therapy are based on common wisdom and plausibility. Not many pub-
lications exist that prove these arguments yet.
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1.6 Definition of “Rehabilitation Robotics” and scope 9

1.6 Definition of “Rehabilitation Robotics” and scope of this
monograph

The term “Rehabilitation Robotics” has become popular in the early
nineties of the last century, when the first assistive technologies, and a
bit later, also rehabilitation training devices have been developed and
become available for clinical use, some of them even on a commercial
level. To better understand the meaning of the term “Rehabilitation
Robotics” and to formulate a definition, it is worth to look into meaning
of the two sub-terms “Robotics” and “Rehabilitation”.

According to Wikipedia a “Robot” can be defined as “a mechan-
ical or virtual agent, usually an electro-mechanical machine that is
guided by a computer program or electronic circuitry. Robots can be
autonomous or semi-autonomous and range from humanoids [. . . ] to
industrial robots [. . . ]”. According to Oxford Dictionaries (2011) and
Wikipedia, the term “Robotics” can be defined as “the branch of tech-
nology that deals with the design, construction, operation, and appli-
cation of robots as well as computer systems for their control, sensory
feedback, and information processing. These technologies deal with
automated machines that can take the place of humans in danger-
ous environments or manufacturing processes, or resemble humans in
appearance, behavior, and/or cognition.”

W. Reich from Uppsala University, Sweden, once described a robot
as “an artificial, physically embodied ‘agent tool’ ” (Robots Podcast &
Community, March 12, 2010 www.robotspodcast.com). According to
his definition, a robot is a physical object, which has been constructed
by someone and fulfills a function for someone, which makes it a ‘tool’,
etc. Similarly, K. Makice defines a robot as “a physical machine manip-
ulated to automatically perform an undesirable work function that sup-
ports a desired human outcome” and P. Agius claims that “A robot is
an intelligent machine that moves, reacts and interacts with its envi-
ronment in an autonomous manner” (Robots Podcast & Community,
March 12, 2010 www.robotspodcast.com).

Many further definitions exist that are similar or deviate from
above-mentioned descriptions. Robots applied to the field of rehabilita-
tion can be considered as “service robots”, which have been defined as
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10 Introduction

“those robotics systems that assist people in their daily lives at work,
in their houses, for leisure, and as part of assistance to the handicapped
and elderly. [. . . ] service robotics’ tasks are performed in spaces occu-
pied by humans and typically in direct collaboration with people” [64].

The term “Rehabilitation” has its original meaning from the Latin
term “habilitare” (to enable). State lawyer, physician, and politician
Franz Josef Ritter von Buss was one of the first, who gave the term
“Rehabilitation” its current meaning already in 1844. According to
unconfirmed sources, he said that the “invalid person should rise up
from the position he was descended”, and that “he should regain his/her
feeling of dignity and with it a new life”. He already considers rehabili-
tation has a recovery of function to improve quality of life rather than
(only) a healing of body structures.

A more modern definition was presented by C. Robinson, who
defined rehabilitation as “the (re-)integration of an individual with a
disability into society. This can be done either by enhancing exist-
ing capabilities or by providing alternative means to perform various
functions or to substitute for specific sensations” [313]. His definition
comprises two important aspects of rehabilitation. First, he mentions
“enhancement of existing capabilities”, which can be achieved through
therapy and training. And second, he speaks about “alternative means”
to perform functions or to substitute sensations, which can be reached
by the application of assistive technologies. Both meanings are relevant
to reintegrate disabled people into society so that they can regain their
dignity and reach a satisfactory quality of life, even if an impaired
body structure cannot be completely restored (i.e., healed), such as
limb amputation or spinal cord injury.

From the above-mentioned definitions, one could derive the follow-
ing most generous definition:

Rehabilitation Robotics is the application of robotic
methods to train or assist an individual with a disability,
supporting this individual to get (re-)integrated into society.

This broad definition includes a variety of different mechatronic
machines that support gait and arm therapy in a clinical setting,
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1.6. Definition of “Rehabilitation Robotics” and scope 11

powered orthotics for use in daily life environments, actuated exo-
prosthetics, ranging even to intelligent wheelchairs that have some
autonomous function of mobility. Also devices supporting human
sensory and vegetative functions can be included, when the technol-
ogy is based on robotic methods.

This monograph focuses on robotic devices that provide a technical
support to the impaired human motor system. A large overview of
different technologies and approaches is presented that can be used for
the therapeutic training or daily assistance of mainly neurologically
impaired patients. Therefore, prosthetic technologies as well as sensory
restoration systems were excluded. Also wheelchair technologies have
not been treated in this overview. Several parts of this monograph
have an emphasis on the work from the author’s laboratory, thus this
monograph is not a complete, though a broad review of the field.
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