
Cyber-Maritime Cycle:
Autonomy of Marine

Robots for Ocean Sensing

Fumin Zhang
Georgia Institute of Technology

fumin@gatech.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2300000037



Foundations and Trends R© in Robotics

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

F. Zhang. Cyber-Maritime Cycle: Autonomy of Marine Robots for Ocean Sensing .
Foundations and TrendsR© in Robotics, vol. 5, no. 1, pp. 1–115, 2014.

This Foundations and TrendsR© issue was typeset in LATEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-233-4
c© 2016 F. Zhang

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2300000037



Foundations and Trends R© in Robotics
Volume 5, Issue 1, 2014

Editorial Board

Editors-in-Chief

Henrik Christensen
Georgia Institute of Technology
United States

Roland Siegwart
ETH Zurich
Switzerland

Editors

Minoru Asada
Osaka University
Antonio Bicchi
University of Pisa
Aude Billard
EPFL
Cynthia Breazeal
MIT
Oliver Brock
TU Berlin
Wolfram Burgard
University of Freiburg
Udo Frese
University of Bremen
Ken Goldberg
UC Berkeley
Hiroshi Ishiguro
Osaka University
Makoto Kaneko
Osaka University
Danica Kragic
KTH Stockholm
Vijay Kumar
University of Pennsylvania

Simon Lacroix
Local Area Augmentation System
Christian Laugier
INRIA
Steve LaValle
UIUC
Yoshihiko Nakamura
University of Tokyo
Brad Nelson
ETH Zurich
Paul Newman
Oxford University
Daniela Rus
MIT
Giulio Sandini
University of Genova
Sebastian Thrun
Stanford University
Manuela Veloso
Carnegie Mellon University
Markus Vincze
Vienna University
Alex Zelinsky
CSIRO

Full text available at: http://dx.doi.org/10.1561/2300000037



Editorial Scope

Topics

Foundations and Trends R© in Robotics publishes survey and tutorial
articles in the following topics:

• Mathematical modelling

• Kinematics

• Dynamics

• Estimation methods

• Artificial intelligence in
robotics

• Software systems and
architectures

• Sensors and estimation

• Planning and control

• Human-robot interaction

• Industrial robotics

• Service robotics

Information for Librarians

Foundations and Trends R© in Robotics, 2014, Volume 5, 4 issues. ISSN
paper version 1935-8253. ISSN online version 1935-8261. Also available
as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2300000037



Foundations and TrendsR© in Robotics
Vol. 5, No. 1 (2014) 1–115
c© 2016 F. Zhang
DOI: 10.1561/2300000037

Cyber-Maritime Cycle: Autonomy of Marine
Robots for Ocean Sensing

Fumin Zhang
Georgia Institute of Technology

fumin@gatech.edu

Full text available at: http://dx.doi.org/10.1561/2300000037



Contents

1 Introduction 2

2 Lagrangian Data Collection 8
2.1 Historical Perspectives . . . . . . . . . . . . . . . . . . . . 8
2.2 Marine Robots . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Communication and Networking . . . . . . . . . . . . . . 14
2.5 Design of Experiment . . . . . . . . . . . . . . . . . . . . 15

3 Path Planning Against Ocean Current 24
3.1 Path Planning Problem . . . . . . . . . . . . . . . . . . . 25
3.2 The Bellman Principle . . . . . . . . . . . . . . . . . . . . 26
3.3 The Pontryagin Maximum Principle . . . . . . . . . . . . 29
3.4 The Minimum Time Path . . . . . . . . . . . . . . . . . . 31
3.5 Numerical Algorithms . . . . . . . . . . . . . . . . . . . . 39
3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 51

4 Controlled Lagrangian Particle Tracking 53
4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . 54
4.2 Error under Feedback Control . . . . . . . . . . . . . . . . 59
4.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 64

2

Full text available at: http://dx.doi.org/10.1561/2300000037



3

5 Data Driven Flow Modeling 66
5.1 Review of Data Assimilation . . . . . . . . . . . . . . . . 68
5.2 The Generic Environment Models (GEM) . . . . . . . . . 70
5.3 Flow Estimate by Sea Gliders . . . . . . . . . . . . . . . . 77
5.4 Data Assimilation for GEM . . . . . . . . . . . . . . . . . 79
5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 82

6 Motion Tomography 84
6.1 Computerized Tomography . . . . . . . . . . . . . . . . . 84
6.2 Glider CT . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Motion Tomography . . . . . . . . . . . . . . . . . . . . . 92
6.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 97

7 Conclusions and Future Directions 99

Acknowledgements 101

References 102

Full text available at: http://dx.doi.org/10.1561/2300000037



Abstract

Marine robots are playing important roles in environmental sensing and
ocean observation applications. This tutorial introduces the overall sys-
tems architecture and patterns for data streams that enable autonomy
for marine robots in environmental sensing applications. The article
proposes the concept of cyber-maritime cycle and surveys its use as a
recent development in marine robotics. Supported by communication
networks, autonomy can be achieved using at least three feedback loops
in a cyber-maritime cycle, each running at different time scales or tem-
poral frequencies. When information is circulating around the cycle, it
is transformed between two representations: the Lagrangian view and
the Eulerian view. Important functional blocks, such as mission plan-
ning, path planning, data assimilation, and data-driven modeling are
discussed as providing conversions between the two views of data. The
tutorial starts with an overview of enabling technologies in sensing,
navigation, and communication for marine robotics. The design of ex-
periment method is then reviewed to plan optimal sensing locations for
the robots. The tutorial discusses a class of path planning methods that
produces desired trajectories of marine robots while combating ocean
current. The lack of an accurate Eulerian map for ocean current will
lead to tracking error when robots attempt to follow the planned paths
to collect Lagrangian data. The performance of robot navigation can be
evaluated through the controlled Lagrangian particle tracking method,
which computes trends and bounds for the growth of the tracking er-
ror. To improve the accuracy of the Eulerian map of ocean current, a
data-driven modeling approach is adopted. Data assimilation methods
are leveraged to convert Lagrangian data into Eulerian map. In addi-
tion, the spatial and temporal resolution of Eulerian data maps can
be further improved by the motion tomography method. This tutorial
gives a comprehensive view of data streams and major functional blocks
underlying autonomy of marine robots.

F. Zhang. Cyber-Maritime Cycle: Autonomy of Marine Robots for Ocean Sensing .
Foundations and TrendsR© in Robotics, vol. 5, no. 1, pp. 1–115, 2014.
DOI: 10.1561/2300000037.
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1
Introduction

Recent developments in autonomous underwater vehicles (AUVs) have
enabled the transition from manned systems to unmanned systems in
maritime operations. Significant progress has been achieved to increase
the endurance of the vehicles. Underwater gliders (Stommel [1989])
such as the Slocum (Webb et al. [2001]), the Spray (Sherman et al.
[2001]) and the Seaglider (Eriksen et al. [2001]) are now able to per-
form missions that last more than a month (Rudnick et al. [2004],
Bhatta et al. [2005]). The various kinds of AUVs (reviewed by Yuh
and West [2001], Valavanis et al. [1997]) can be broadly viewed as
autonomous mobile agents that are able to make decisions to react
to environment changes. As marine platforms are becoming more ma-
ture and reliable, information technology plays a more important role.
The classical perception-plan-action cycle has been adopted by most
platforms to achieve various levels of autonomy. Recent developments
enhance this cycle by incorporating the latest sensing, computing, and
actuation technologies. Furthermore, the last marine robots are sup-
ported by the state-of-the-art communication systems.

Marine robots with networking support is especially preferred in en-
vironmental sensing and ocean observation applications (Zhang et al.
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3

[2015]). Especially, the use of underwater robotic sensor networks for
ocean sampling and surveillance is a perceivable trend (Zhang et al.
[2015]). Observations from the vehicles can be combined to detect
and measure ocean features more effectively than using single vehi-
cle (Leonard et al. [2007], Curtin et al. [1993]). The effectiveness of
robotic sensing networks has recently been demonstrated in a series
of experiments supported by the office of naval research (ONR), the
national science foundation (NSF) and the national oceanic and at-
mospheric administration (NOAA). Plans have been laid to construct
ocean sampling networks in different regions in the US, such as the
National Oceanographic Partnership Program (NOPP) regional ocean
observational networks (Frye et al. [2000], Blaha et al. [2000], Roem-
mich and Owens [2000]). One factor that is key to the effectiveness of
the networked robotic sensing systems is the level of autonomy that
can be achieved. Higher levels of autonomy usually reduce the amount
of human intervention and increase the capability of the overall sys-
tem. Autonomy is highly desired by maritime systems since the marine
environment exhibits many extremes and is hard to predict.

This tutorial article introduces the overall systems architecture and
patterns for data streams that enables autonomy for marine robots to-
wards environmental sensing applications. We propose a concept called
cyber-maritime cycle and survey its use as a recent progress in the ma-
rine robotic community. A diagram shown as Figure 1.1 can be used to
illustrate the generic structure of a cyber-maritime cycle that will be
discussed in this article. It is envisioned that with networking support,
autonomy will be achieved using at least three feedback loops, each
running at different time scales or temporal frequencies.
• The autopilot loop: This is the inner loop that represents the
autopilot control that is implemented inside the embedded com-
puters of a marine robot. This loops runs most frequently.

• The data-driven modeling loop: This loop provides a mapping
service of the environment that the vehicles will navigate. Plan-
ning algorithms use the data-driven models to generate desired
trajectories for the vehicles. This loop runs less frequently than
the autopilot loop.

Full text available at: http://dx.doi.org/10.1561/2300000037



4 Introduction

• The geo-scientific modeling loop: This loop supplies measurement
data to geo-scientific ocean models. The results produced by the
geo-scientific ocean models are used to update the data-driven
models. This loop runs less frequently than the data-driven mod-
eling loop.

The arrows in Figure 1.1 represent flow of information. We can view
autonomy of marine robots as a result of the circulation of information
around the loops, supported by communication networks. This is the
reason for us to call the structure a cyber-maritime cycle.

Figure 1.1: The structure of a cyber-maritime cycle for networked autonomy.

The autopilot feedback loop is running at faster time scale and
higher frequency than the other two modeling loops. Control laws and
navigation algorithms for autopiloting have received sustained inter-
ests from the marine robotics community, with many published work
(Antonelli [2006], Zhao and Yuh [2005], Fossen [1994], Yuh [1994], Yuh
and West [2001], McEwen et al. [2005], Bennett and Leonard [2000],
Rosenblatt et al. [2002]) and successful implementations on mature
products. Contemporary autopilots are usually implemented by man-
ufacturers of the vehicles and are optimized specifically for different
types of vehicles. An autopilot for a commercial vehicle is usually not

Full text available at: http://dx.doi.org/10.1561/2300000037
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open for modifications unless special agreements are made with the
manufacturer.

The data-driven modeling loop and the geo-scientific modeling loop
are often implemented on computing systems that are outside of a
marine robot. They require communication or networking support to
receive data from the robot and to generate control for the robot. At
the network level, the model for vehicle dynamics are often simplified
so that the detailed differences of dynamics among vehicles can be
ignored. Each vehicle is viewed as a mobile agent with simple particle
dynamics, at least conceptually. This abstraction is reasonable since
the autopilots are designed to (partially) compensate for the dynamics
of the vehicles, so that the vehicles behave like particles with simple
dynamics.

The need for autonomy is justified in ocean sensing applications.
Close interaction between multiple mobile agents and the geo-scientific
models is necessary. Data collected by the mobile sensing agents should
be assimilated into the geo-scientific models to be made useful towards
improving the accuracy of model predictions. On the other hand, more
accurate predictions will help the agents to make correct adaptation
decisions and navigate the adversarial ocean environment. In Chapter
2, we will provide more discussions on the nature of data collections
performed by mobile sensing agents.

The data-driven modeling loop in Figure 1.1 represents the feed-
back loop that enables networked autonomy. The blocks in this loop
represents the major modules that this article will deliberate on. The
“observation” module represents various sensors across multiple agents
that generate information about the ocean. The “generic environmen-
tal model” (GEM) is a data-driven computational model that convert
the data collected by the mobile sensors into a map of the environment
to provide immediate navigational support for the mobile agents. More
discussion of this module will be provided in Section 5.2. The “planning
and control” module represents mission control and navigation meth-
ods that generate desired trajectories for the marine robots, and then
guide the robots to follow these trajectories to achieve certain sampling
patterns. More discussion of this module will be provided in Chapter 3.

Full text available at: http://dx.doi.org/10.1561/2300000037



6 Introduction

The geo-scientific modeling loop in Figure 1.1 represents the need
to incorporate principles and insights from geosciences in ocean sens-
ing missions. The “assimilation” module and the “prediction” module
together represent two key functions of a geo-scientific model that pro-
vides the status of the ocean to be used as templates for data-driven
models. The “assimilation” module represents methods that incorpo-
rate measurement information into the geo-scientific model, which will
be briefly reviewed in Section 5.1. The “prediction” module represents
methods that are able to generate predictions for the ocean states for
planning purposes.

Not all ocean sensing missions use both the data-driven model
and the geo-scientific model. Some field works actually only use geo-
scientific models. But there are benefits of using both models. The
GEMs can be computed much faster and updated much more frequently
than geo-scientific ocean models. Meanwhile, GEMs can provide higher
spatial and temporal resolution than geo-scientific models, which lead
to more accurate navigation performance, as will be shown in Chapter
4. GEMs will NOT replace the classical geo-scientific ocean models.
In fact, GEMs rely on the predictions from the geo-scientific ocean
models to initialize and to reinitialize the environment model, as will
be shown in Section 5.2. Furthermore, GEMs can be constructed in
different ways. Chapter 6 will introduce a method called the motion
tomography to construct a class of GEMs.

When information are circulating around the two modeling loops,
it is transformed between two representations: the Lagrangian view
and the Eulerian view. For the Lagrangian view, information are rep-
resented as data streams along the trajectories of the mobile sensing
agents. The data streams are often generated by the sensors onboard
mobile agents while they are moving in space. For the Eulerian view,
information are represented as data streams at fixed spatial locations,
as if they are generated by sensors installed at fixed locations. For ex-
ample, if we imagine spatially distributed data as the height of trees in
a forest. Then an Eulerian view of the data will be a spatial map of the
tree heights, and the height of each tree increases over time. On the
other hand, suppose a person walks along a trail in the forest, then a
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Lagrangian view of the the data will be the height of the trees encoun-
tered by the person while walking. The main difference between the
two views is whether space and time associated with the data streams
are coupled (Lagrangian) or decoupled (Eulerian). The “assimilation”
module and the GEM transform data from an Lagrangian view to an
Eulerian view. Meanwhile, the “planning and control” module trans-
form Eulerian view of data generated by the “prediction” module and
the GEM into planned paths for the mobile agents, which are of the
Lagrangian view. These two transforms serve as recurring themes for
this article.
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