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Abstract

There has been a boost of research activities in robotics using soft ma-
terials in the past ten years. It is expected that the use and control of
soft materials can help realize robotic systems that are safer, cheaper,
and more adaptable than the level that the conventional rigid-material
robots can achieve. Contrary to a number of existing review and posi-
tion papers on soft-material robotics, which mostly present case stud-
ies and/or discuss trends and challenges, the review focuses on the
fundamentals of the research field. First, it gives a definition of soft-
material robotics and introduces its history, which dates back to the
late 1970s. Second, it provides characterization of soft-materials, actua-
tors and sensing elements. Third, it presents two general approaches to
mathematical modelling of kinematics of soft-material robots; that is,
piecewise constant curvature approximation and variable curvature ap-
proach, as well as their related statics and dynamics. Fourth, it summa-
rizes control methods that have been used for soft-material robots and
other continuum robots in both model-based fashion and model-free
fashion. Lastly, applications or potential usage of soft-material robots
are described related to wearable robots, medical robots, grasping and
manipulation.

L. Wang, S. G. Nurzaman and F. Iida. Soft-Material Robotics. Foundations and
TrendsR© in Robotics, vol. 5, no. 3, pp. 191–259, 2014.
DOI: 10.1561/2200000055.
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1
Introduction

In the biological world we find structures made of soft materials every-
where, starting from leaves, bacteria and spider silks, to skins, hairs,
brains, and muscles. In fact it is known that over 80% of body weight of
an adult human consists of soft substances. In general, it is crucial for
biological systems to have soft materials because deformation of struc-
tures is the origin of many functions necessary for their survival, such
as heart deformation for circulating blood, eye lens deformation for
optical focus, and muscle deformation for limb motions [Pfeifer et al.,
2014].

In contrast, most of today’s robots are made of rigid materials such
as metals and hard plastics. The underlying reason is manifold. Rigid
materials are easier to handle for conventional manufacturing technolo-
gies. They are also easier for mathematical modeling and control pur-
poses. Also they are often more stable as materials and robust against
various decays. Body articulations based on rigid parts facilitate re-
placement and repair if necessary. The drawback of the robots is their
tendency to be highly specialized and lack of many properties owned by
their natural counterparts in dealing with unstructured environments,
such as adaptability, energy efficiency of safe interaction with human.

2
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1.1. What is soft-material robotics 3

In the recent years, there has been an increasing interest in the more
active use of soft materials in robotic systems. Having a soft body like
the ones in biological systems can potentially provide a robot with su-
perior capabilities. For example, soft body can help the robots to adap-
tively navigate through small opening, softness can prevent injuries in
human-robot interaction, while deformable body can also store and re-
lease energy, which may lead to energy efficiency in locomotion tasks.
As it will be shown in the review, by building robotic systems with
soft materials, we are able to realize systems that are safer, cheaper,
and more adaptable than the level that the conventional robots can
achieve.

For this reason, there have been a number of review papers on
robotics using soft materials (further detail in §1.3). Different from
those papers, this review focuses on the fundamental aspects of the
research field which have not been covered in depth, to give a strong
foundation for understanding the essential stream of this field. In the
rest of the review, we start with the characterization of soft robots
and the brief history of them, which are followed by more technical
chapters about materials, actuators and sensors, modeling, control, and
applications.

1.1 What is soft-material robotics

The term “soft-material robotics” is sometimes loosely used with “soft
robotics”. The term “soft robotics” has been used in different meanings
and contexts. Its definition has not been widely agreed on but it is con-
verging. According to a review paper [Laschi and Cianchetti, 2014] and
the First Working Paper released in September 2014 from the European
Future and Emerging Technologies Open Coordination Action, Ro-
boSoft 1, softness may refer to both structural compliance and inherent
material compliance. Thus soft robotics may be defined as robotics that
encompasses solutions that interact with environment relying on inher-
ent or structural compliance. According to a position paper [Rossiter
and Hauser, 2016], soft robotics is an umbrella term that covers all

1http://www.robosoftca.eu
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4 Introduction

types of active and reactive compliant systems. For those interested in
the part of soft robotics which deals with structural or active compli-
ance, further information may be found in [Albu-Schaeffer et al., 2008,
Verl et al., 2015] and other papers related to active impedance control
[Hogan, 1985], series elastic actuators [Groothuis et al., 2014, Austin
et al., 2015], and variable stiffness actuators [Pratt and Williamson,
1995, Vandeborght et al., 2013, Austin et al., 2015].

Soft-material robotics, which is the focus of the review, is the part
that deals with inherent material compliance. Soft material (also called
soft matter) includes liquids, polymers, foams, gels, colloids, granular
materials, as well as most soft biological materials, according to the
scientific journal Nature 2. The common feature of soft material is
that it consists of large molecules or assemblies of molecules that move
collectively, and, as a result, it gives large, slow, and nonlinear response
to small forces [Doi, 2013].

To elaborate on inherent material compliance, soft-material robotics
may be defined as robotics that studies how deformation of soft material
can be exploited or controlled to achieve robotic functions [Wang and
Iida, 2015]. Other definitions exist [Laschi et al., 2016] but the shared
keyword is “deformation”. In the case of solid soft-materials, many re-
searchers focuses on materials with a relatively low modulus (below 1
GPa) at room temperature [Majidi, 2013, Rus and Tolley, 2015]. This
excludes soft-materials such as certain thermoplastics, which have been
used to build supporting structures or kinematic linkages as cheaper
alternatives to metals. Since the novelty of soft-material robotics lies
in deformation, technologies where other aspects (e.g. adhesion) of
soft materials are exploited are also excluded (as opposed to includ-
ing climbing technologies in [Laschi et al., 2016]). Furthermore, studies
related to micro-robots or the so-called nano-robots are not consid-
ered here, even if soft materials such as certain biological materials are
used. By doing this, we hope to define the research field more clearly
and differentiate it from existing fields.

According to [Trivedi et al., 2008b, Marchese et al., 2016], soft(-
material) robots are a subset of continuum robots [Robinson and

2http://www.nature.com/subjects/soft-materials
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1.2. History of soft-material robotics 5

Figure 1.1: Early pneumatically-actuated robots with continuously-deforming air
chambers or channels. Left, an arm comprised of pneumatically-actuated bellow-
like segments [Wilson, 1984, Wilson and Mahajan, 1989]. Right, a hexapod and a
hand whose legs and fingers were comprised of pneumatically-actuated tri-celluar
segments [Suzumori et al., 1991a,b]. All figures are snapshots from videos 3under
Standard Youtube License.

Davies, 1999], which are a further subset of hyper-redundant robots
[Chirikjian and Burdick, 1991]. However, not all continuum robots are
soft and even continuum robots referred to as soft [Trivedi et al., 2008b]
have varying degrees of rigidity [Marchese et al., 2016]. To the best
of our knowledge, the first published paper to use the term “soft” to
describe a robot is [Hirose and Umetani, 1978]. The “soft gripper”
presented in that paper should be more appropriately seen as a hyper-
redundant robot.

1.2 History of soft-material robotics

The history of soft-material robotics dates back to at least the late
1970s, when robot grippers based on granular materials were first pub-
lished [Cardaun, 1978, Schmidt, 1978, Perovskii, 1980]. Recent reviews
[Rus and Tolley, 2015, Laschi et al., 2016] date the history back to
middle 1980s or early 1990s, which may be due to their focus on a par-

3https://www.youtube.com/watch?v=Dh7dsLCazss,
https://www.youtube.com/watch?v=kHGLYRUKWeM
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6 Introduction

Figure 1.2: Early robots made from gels. Left, a fingered gripper made from
temperature-sensitive N-isopropylacrylamide gel and acrylamide gel [Hu et al., 1995].
Right, a legged robot made from electroactive polymer gel [Otake et al., 2000]. All
figures are reproduced with permission of the copyright owners.

ticular type of soft material such as elastomers and overlooking earlier
published work on other types of soft material such as granular mate-
rials. Robots based on other soft materials, such as elastomers, fluids,
and gels emerged in the 1980s and 1990s.

The first piece of published work on using elastomers for a
continuously-deforming body is [Wilson, 1984, Wilson and Mahajan,
1989]. The pneumatically-actuated robot arm was comprised of 4-5
bellows with two additional bellows used as grippers. Upon bending of
these bellows, the arm was able to pick, move and place an irregularly
shaped object (see Figure 1.1). The second piece of published work
with a similar robot is probably [Suzumori et al., 1991a,b]. Instead of
bellow-like units, tri-cellular units were designed and made, where the
three cells are distributed about a central axis with each spanning 120◦.
With a number of these units, hands and hexapod could be made for
manipulation and walking (see Figure 1.1).

The first piece of published work on using electrorheological (ER)
fluid in robot grippers is [Kenaley and Cutkosky, 1989]. The first piece
of published work on using gels in robot grippers is probably [Hu et al.,
1995] (see Figure 1.2). Other work using gels which is worth mention-
ing includes the crawling robot made from electroactive polymer gel

Full text available at: http://dx.doi.org/10.1561/2300000055



1.3. Soft-material robotics today 7

Otake et al. [1999]. Both ER fluid and electroactive polymer gel belong
to electroactive polymers (EAPs) [Bar-Cohen, 2004]. However, not all
EAPs are soft-materials e.g. ionometic polymer-metal composites may
not be considered as soft-material due to the presence of metals, despite
its use in robot grippers in the late 1990s.

The influences of shape, deformation, and material properties to
functions and behaviors of robots have also been attracting many
robotics researchers for a long time. Probably one of the earliest at-
tempt to establish the conceptual formulations was in the context of
Embodied Artificial Intelligence research [Pfeifer, 2000, 2003]. The work
highlighted how control of robots is related to “morphology” of them by
introducing several earlier case studies of rigid shape changing robots,
with an additional notation about how the concept can be extended
for soft-material robots. In the last decade, this research area was pop-
ulated by a number of biologically inspired robot case studies to learn
how nature takes advantage of softness and deformation for adaptive
functions and behaviours [Pfeifer et al., 2007, 2014]. As discussed more
details in Chapter 6, based on these bio-inspired soft robotics research,
body deformation can be explained and exploited for the purposes of
actuation, sensing, and computation of robots, that provides an alter-
native way to design and construct intelligent robots not fully relying
on the conventional sensory-motor control architectures.

1.3 Soft-material robotics today

Today the landscape of soft-material robotics research has changed,
even though the basic concepts haven’t. Technologies have been im-
proved and made finer. [Wang and Iida, 2015] listed five probable rea-
sons why soft-material robotics has resurfaced and gained substantial
traction at the beginning of the 21st century, which has led to the
branding of the research field.

• Soft material has been established as a field in material science
since the 1990s.

• A large amount of new soft material has been synthesized and
made commercially available.

Full text available at: http://dx.doi.org/10.1561/2300000055



8 Introduction

• Diverse fabrication techniques for soft material have been in-
vented and made accessible.

• An increasing amount of work demonstrating the use of soft ma-
terial in robotics has been published in high-profile journals.

• Researchers generally agree that soft-material-based technologies
should be used in robotic applications in the future as they are
intrinsically cheaper, safer, and more adaptive in complex task
environments as compared with the conventional rigid systems.

An important aspect lies in the fact that we are beginning to un-
derstand the boundaries of what the conventional rigid robots can and
cannot do. Elegant natural motions we often encounter in very small
animals to large ones, for example, cannot be realized without consider-
ing the exploitation of material dynamics and functions. The impressive
work done by conventional engineers in the last decade made it explicit
that there are many things rigid robots cannot do even if we push them
to the limit; this in turn has led many researchers to start exploring
new dimensions, especially those related to mechanical dynamics and
materials.

Another aspect is that integration of essential components for a soft
robot is possible because of the maturity and accessibility of individual
technologies such as those for materials, actuators, sensors and elec-
tronics, etc. As a result, research has progressed towards integration
of these technologies and demonstration of superior functions at the
system level.

A third aspect that has progressed from decades ago is that soft-
material robotics research no longer requires high cost in time and
budget. Off-the-shelf technologies, including materials, sensors, motors,
and prototyping machines, allow even a hobbyist to make a robot in
a matter of hours with pocket money. Computational tools such as
physics engines, computer vision, and high-power microprocessors also
facilitate the ways younger students are becoming involved in research
projects. The Internet provides countless ready-made sample programs
to set a stage for the research, most of which one had to develop from
scratch decades ago. This naturally allows a number of interdisciplinary

Full text available at: http://dx.doi.org/10.1561/2300000055



1.3. Soft-material robotics today 9

researchers, not only engineers but also chemists, material scientists,
and biologists, to join the community.

To give a clear picture of the growth of the research field and to
show our contribution with this review effort, we summarize eight re-
view papers on soft-material robots and compare them to our work
in Table 1.1. We only select those review papers which cover various
technical aspects of a soft-material robotic system. Hence review pa-
pers on a single aspect, such as design [Manti et al., 2016], fabrication
[Cho et al., 2009] and sensing [Nanshu and Hyeong, 2013] are not listed
for comparison. System integration is challenging and a technological
component may not work for a robotic system unless proven.

In addition to all the review papers, there have been a number of
notable position papers related to soft-material robotics [Pfeifer et al.,
2012, Lipson, 2013, Majidi, 2013, Kovac, 2013, Pfeifer et al., 2014,
Nurzaman et al., 2014a], where opinions on principles, activities, trends
and challenges are presented.
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