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ABSTRACT
For robots to navigate and interact more richly with the
world around them, they will likely require a deeper un-
derstanding of the world in which they operate. In robotics
and related research fields, the study of understanding is
often referred to as semantics, which dictates what does
the world “mean” to a robot, and is strongly tied to the
question of how to represent that meaning. With humans
and robots increasingly operating in the same world, the
prospects of human–robot interaction also bring semantics
and ontology of natural language into the picture. Driven
by need, as well as by enablers like increasing availability
of training data and computational resources, semantics is
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a rapidly growing research area in robotics. The field has
received significant attention in the research literature to
date, but most reviews and surveys have focused on par-
ticular aspects of the topic: the technical research issues
regarding its use in specific robotic topics like mapping or
segmentation, or its relevance to one particular application
domain like autonomous driving. A new treatment is there-
fore required, and is also timely because so much relevant
research has occurred since many of the key surveys were
published. This survey therefore provides an overarching
snapshot of where semantics in robotics stands today. We
establish a taxonomy for semantics research in or relevant
to robotics, split into four broad categories of activity, in
which semantics are extracted, used, or both. Within these
broad categories we survey dozens of major topics includ-
ing fundamentals from the computer vision field and key
robotics research areas utilizing semantics, including map-
ping, navigation and interaction with the world. The survey
also covers key practical considerations, including enablers
like increased data availability and improved computational
hardware, and major application areas where semantics is
or is likely to play a key role. In creating this survey, we
hope to provide researchers across academia and industry
with a comprehensive reference that helps facilitate future
research in this exciting field.
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1
Introduction

For robots to move beyond the niche environments of fulfilment ware-
houses, underground mines and manufacturing plants into widespread
deployment in industry and society, they will need to understand the
world around them. Most mobile robot and drone systems deployed
today make relatively little use of explicit higher level “meaning” and
typically only consider geometric maps of environments, or three di-
mensional models of objects in manufacturing and logistics contexts.
Despite considerable success and uptake to date, there is a large range of
domains with few, if any, commercial robotic deployments; for example:
aged care and assisted living facilities, autonomous on-road vehicles,
and drones operating in close proximity to cluttered, human-filled en-
vironments. Many challenges remain to be solved, but we argue one
of the most significant is simply that robots will need to better under-
stand the world in which they operate, in order for them to move into
useful and safe deployments in more diverse environments. This need
for understanding is where semantics meet robotics.

Semantics is a widely used term, not just in robotics but across
fields ranging from linguistics to philosophy. In the robotics domain,
despite widespread usage of semantics, there is relatively little formal

3
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4 Introduction

definition of what the term means. In this survey, we aim to provide a
taxonomy rather than specific definition of semantics, and note that the
surveyed research exists along a spectrum from traditional, non-semantic
approaches to those which are primarily semantically-based. Broadly
speaking, we can consider semantics in a robotics context to be about
the meaning of things: the meaning of places, objects, other entities
occupying the environment, or even the language used in communicating
between robots and humans or between robots themselves. There are
several areas of relevance to robotics where semantics have been a strong
focus in recent years, including SLAM (Simultaneous Localization And
Mapping), segmentation and object recognition.

Given the importance of semantics for robotics, how can they be
equipped, or learn about meaning in the world? There are multiple
methods, but they can be split into two categories. Firstly, provided
semantics describes situations where the robot is given the knowledge
beforehand. Learnt semantics describes situations where the robot,
either beforehand or during deployment, learns this information. The
learning mechanism leads to further sub categorization: learning from
observation of the entities of interest in the environment, and actual
interaction with the entities of interest, such as through manipulation.
Learning can occur in a supervised, unsupervised or semi-supervised
manner.

Semantics as a research field in robotics has grown rapidly in the
past decade. This growth has been driven in part by the opportunity to
use semantics to improve the capabilities of robotic systems in general,
but several other factors have also contributed. The popularization of
deep learning over the past decade has facilitated much of the research
in semantics for robotics, enabling capabilities like high performance
general object recognition – object class is an important and useful
“meaning” associated with the world. Increases in dataset availability,
access to the cloud and compute resources have also been critical,
providing a much richer source of information from which robots can
learn, and the computational power with which to do so, rapidly and
at scale. Given the popularity of the field, it has been the focus of a
number of key review and survey papers, which we cover here.

Full text available at: http://dx.doi.org/10.1561/2300000059



1.1. Past Coverage Including Survey and Review Papers 5

1.1 Past Coverage Including Survey and Review Papers

As one of the core fields of research in robotics, SLAM has been the
subject of a number of reviews, surveys and tutorials over the past few
decades, including coverage of semantic concepts. A recent review of
SLAM by Cadena et al. [1] positioned itself and other existing surveys
as belonging to either classical [2]–[5], algorithmic-analysis [6] or the
“robust perception” age [1]. This review highlighted the evolution of
SLAM, from its earlier focus on probabilistic formulations and anal-
yses of fundamental properties to the current and growing focus on
robustness, scalability and high-level understanding of the environment –
where semantics comes to the fore. Also discussed were robustness and
scalability in the context of long-term autonomy and how the underlying
representation models, metric and semantic, shape the SLAM problem
formulation. For the high-level semantic representation and understand-
ing of the environment, [1] discussed literature where SLAM is used for
inferring semantics, and semantics are used to improve SLAM, paving
the way for a joint optimization-based semantic SLAM system. They
further highlight the key challenges of such a system, including consis-
tent fusion of semantic and metric information, task-driven semantic
representations, dynamic adaptation to changes in the environment,
and effective exploitation of semantic reasoning.

Kostavelis and Gasteratos [7] reviewed semantic mapping for mobile
robotics. They categorized algorithms according to scalability, inference
model, temporal coherence and topological map usage, while outlining
their potential applications and emphasizing the role of human interac-
tion, knowledge representation and planning. More recently, [8] reviewed
current progress in SLAM research, proposing that SLAM including
semantic components could evolve into “Spatial AI”, either in the form
of autonomous AI, such as a robot, or as Intelligent Augmentation
(IA), such as in the form of an AR headset. A Spatial AI system would
not only capture and represent the scene intelligently but also take
into account the embodied device’s constraints, thus requiring joint
innovation and co-design of algorithms, processors and sensors. More
recently, [9] presented Gaussian Belief Propagation (GBP) as an algo-
rithmic framework suited to the needs of a Spatial AI system, capable of

Full text available at: http://dx.doi.org/10.1561/2300000059



6 Introduction

delivering high performance despite resource constraints. The proposals
in both [8] and [9] are significantly motivated by rapid developments
in processor hardware, and touch on the opportunities for closing the
gap between intelligent perception and resource-constrained deployment
devices. More recently, [10] surveyed the use of semantics for visual
SLAM, particularly reviewing the integration of “semantic extractors”
(object recognition and semantic segmentation) within modern visual
SLAM pipelines.

Much of the growth in semantics-based approaches has coincided
with the increase in capabilities brought about by the modern deep
learning revolution. Schmidhuber [11] presented a detailed review of deep
learning in neural networks as applied through supervised, unsupervised
and reinforcement learning regimes. They introduced the concept of
“Credit Assignment Paths” (CAPs) representing chains of causal links
between events, which help understand the level of depth required for a
given Neural Network (NN) application. With a vision of creating general
purpose learning algorithms, they highlighted the need for a brain-like
learning system following the rules of fractional neural activation and
sparse neural connectivity. Liu et al. [12] presented a more focused review
of deep learning, surveying generic object detection. They highlighted
the key elements involved in the task such as the accuracy–efficiency
trade-off of detection frameworks, the choice and evolution of backbone
networks, the robustness of object representation and reasoning based
on additionally available context.

A significant body of work has focused on extracting more meaning-
ful abstractions of the raw data typically obtained in robotics such as
3D point clouds. Towards this end, a number of surveys have been con-
ducted in recent years for point cloud filtering [13] and description [14],
3D shape/object classification [15], [16], 3D object detection [15]–[19],
3D object tracking [16] and 3D semantic segmentation [15]–[17], [20]–[24].
With only a couple of exceptions, all of these surveys have particularly
reviewed the use of deep learning on 3D point clouds for respective tasks.
Segmentation has also long been a fundamental component of many
robotic and autonomous vehicle systems, with semantic segmentation
focusing on labeling areas or pixels in an image by class type. In partic-
ular the overall goal is to label by class, not by instance. For example,

Full text available at: http://dx.doi.org/10.1561/2300000059



1.1. Past Coverage Including Survey and Review Papers 7

in an autonomous vehicle context this goal constitutes labeling pixels
as belonging to a vehicle, rather than as a specific instance of a vehicle
(although that is also an important capability). The topic has been the
focus of a large quantity of research with resulting survey papers that
focus primarily on semantic segmentation, such as [22], [25]–[30].

Beyond these flagship domains, semantics have also been investigated
in a range of other subdomains. Ramirez-Amaro et al. [31] reviewed the
use of semantics in the context of understanding human actions and
activities, to enable a robot to execute a task. They classified semantics-
based methods for recognition into four categories: syntactic methods
based on symbols and rules, affordance-based understanding of objects
in the environment, graph-based encoding of complex variable relations,
and knowledge-based methods. In conjunction with recognition, dif-
ferent methods to learn and execute various tasks were also reviewed
including learning by demonstration, learning by observation and exe-
cution based on structured plans. Likewise for the service robotics field,
[32] presented a survey of vision-based semantic mapping, particularly
focusing on its need for an effective human–robot interface for service
robots, beyond pure navigation capabilities. Paulius and Sun [33] also
surveyed knowledge representations in service robotics.

Many robots are likely to require image retrieval capabilities where
semantics may play a key role, including in scenarios where humans are
interacting with the robotic systems. Enser and Sandom [34] and Liu
et al. [35] surveyed the “semantic gap” in current content-based image
retrieval systems, highlighting the discrepancy between the limited
descriptive power of low-level image features and the typical richness
of (human) user semantics. Bridging this gap is likely to be important
for both improved robot capabilities and better interfaces with humans.
Some of the reviewed approaches to reducing the semantic gap, as
discussed in [35], include the use of object ontology, learning meaningful
associations between image features and query concepts and learning
the user’s intention by relevance feedback. This semantic gap concept
has gained significant attention and is reviewed in a range of other
papers including [36]–[42]. Acting upon the enriched understanding
of the scene, robots are also likely to require sophisticated grasping
capabilities, as reviewed in [43], covering vision-based robotic grasping in

Full text available at: http://dx.doi.org/10.1561/2300000059



8 Introduction

the context of object localization, pose estimation, grasp detection and
motion planning. Enriched interaction with the environment based on an
understanding of what can be done with an object – its “affordances” – is
also important, as reviewed in [44]. Enriched interaction with humans is
also likely to require an understanding of language, as reviewed recently
by [45]. This review covers some of the key elements of language usage
by robots: collaboration via dialogue with a person, language as a means
to drive learning and understanding natural language requests, and
deployment, as shown in application examples.

1.2 Summary and Rationale for This Survey

The majority of semantics coverage in the literature to date has occurred
with respect to a specific research topic, such as SLAM or segmentation,
or targeted to specific application areas, such as autonomous vehicles.
As can be seen in the previous subsection, there has been both extensive
research across these fields as well as a number of key survey and review
papers summarizing progress to date. These deep dives into specific
sub-areas in robotics can provide readers with a deep understanding
of technical considerations regarding semantics in that context. As the
field continues to grow however there is increasing need for an overview
that more broadly covers semantics across all of robotics, whilst still
providing sufficient technical coverage to be of use to practitioners
working in these fields. For example, while [1] extensively considers
the use of semantics primarily within SLAM research, there is a need
to cover the role of semantics more broadly in various robotics tasks
and competencies which are closely related to each other. The task,
“bring a cup of coffee”, likely requires semantic understanding borne
out of both the underlying SLAM system and the affordance-grasping
pipeline. This survey therefore goes beyond specific application domains
or methodologies to provide an overarching survey of semantics across
all of robotics, as well as the semantics-enabling research that occurs in
related fields like computer vision and machine learning. To encompass
such a broad range of topics in this survey, we have divided our coverage
of research relating to semantics into (a) the fundamentals underlying
the current and potential use of semantics in robotics, (b) the widespread
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1.2. Summary and Rationale for This Survey 9

use of semantics in robotic mapping and navigation systems, and (c) the
use of semantics to enhance the range of interactions robots have with
the world, with humans, and with other robots.

This survey is also motivated by timeliness: the use of semantics is a
rapidly evolving area, due to both significant current interest in this field,
as well as technological advances in local and cloud compute, and the
increasing availability of data that is critical to developing or training
these semantic systems. Consequently, with many of the key papers now
half a decade old or more, it is useful to capture a snapshot of the field as
it stands now, and to update the treatment of various topic areas based
on recently proposed paradigms. For example, this survey discusses
recent semantic mapping paradigms that mostly post-date key papers
by [1], [7], such as combining single- and multi-view point clouds with
semantic segmentation to directly obtain a local semantic map [46]–
[50]. Whilst contributing a new overview of the use of semantics across
robotics in general, we are also careful to adhere where possible to recent
proposed taxonomies in specific research areas. For example, in the area
of 3D point clouds and their usage for semantics, within Subsection 3.3,
with the help of key representative papers, we briefly describe the recent
research evolution of using 3D point cloud representations for learning
object- or pixel-level semantic labeling, in line with the taxonomy
proposed by existing comprehensive surveys [15]–[17], [22], [23]. Finally,
beyond covering new high level conceptual developments, there is also
the need to simply update the paper-level coverage of what has been an
incredibly large volume of research in these fields even over the past five
years. The survey refers to well over 100 research works from the past
year alone, representative of a much larger total number of research
works. This breadth of coverage would normally come at the cost of
some depth of coverage: here we have attempted to cover the individual
topics in as much detail as possible, with over 900 referenced works
covered in total. Where appropriate we also make reference to prior
survey and review papers where further detailed coverage may be of
interest, such as for the topic of 3D point clouds and their usage for
semantics.

Full text available at: http://dx.doi.org/10.1561/2300000059



10 Introduction

Moving beyond single application domains, we also provide an
overview of how the use of semantics is becoming an increasingly in-
tegral part of many trial (and in some cases full scale commercial)
deployments including in autonomous vehicles, service robotics and
drones. A richer understanding of the world will open up opportunities
for robotic deployments in contexts traditionally too difficult for safe
robotic deployment: nowhere is this more apparent perhaps than for
on-road autonomous vehicles, where a subtle, nuanced understanding
of all aspects of the driving task is likely required before robot cars
become comparable to, or ideally superior to, human drivers. Compute
and data availability has also enabled many of the advancements in
semantics-based robotics research; likewise these technological advances
have also facilitated investigation of their deployment in robotic appli-
cations that previously would have been unthinkable – such as enabling
sufficient on-board computation for deploying semantic techniques on
power- and weight-limited drones. We cover the current and likely future
advancements in computational technology relevant to semantics, both
local and online versions, as well as the burgeoning availability of rich,
informative datasets that can be used for training semantically-informed
systems.

In summary, this survey aims to provide a unifying overview of
the development and use of semantics across the entire robotics field,
covering as much detailed work as feasible whilst referencing the reader
to further details where appropriate. Beyond its breadth, the survey
represents a substantial update to the semantics topics covered in survey
and review papers published even only a few years ago. By surveying the
technical research, the application domains and the technology enablers
in a single treatment of the field, we can provide a unified snapshot of
what is possible now and what is likely to be possible in the near future.

1.3 Taxonomy and Survey Structure

Existing literature covering the role of semantics in robotics is frag-
mented and is usually discussed in a variety of task- and application-
specific contexts. In this survey, we consolidate the disconnected
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1.3. Taxonomy and Survey Structure 11

semantics research in robotics; draw links with the fundamental com-
puter vision capabilities of extracting semantic information; cover a
range of potential applications that typically require high-level decision
making; and discuss critical upcoming enhancers for improving the
scope and use of semantics. To aid in navigating this rapidly growing
and already sizable field, here we propose a taxonomy of semantics as
it pertains to robotics (see Figure 1.1). We find the relevant literature
can be divided into four broad categories:

1. Static or Un-embodied Scene Understanding, where the focus of
research is typically on developing intrinsic capability to extract
semantic information from images, for example, object recognition
and image classification. The majority of research in this direction
uses single image-based 2D input to infer the underlying semantic
or 3D content of that image. However, image acquisition and
processing in this case is primarily static in nature (including
videos shot by a static camera), separating it conceptually from a
mobile embodied agent’s dynamic perception of the environment
due to motion of the agent. Because RGB cameras are widely
used in robotics, and the tasks being performed, such as object
recognition, are also performed by robots, advances in this area
are relevant to robotics research. In Section 2, we introduce the
fundamental components of semantics that relate to or enable
robotics, focusing on topics that have been primarily or initially
investigated in non-robotics but related research fields, such as
computer vision. We cover the key components of semantics as
regards object detection, segmentation, scene representations and
image retrieval, all highly relevant capabilities for robotics, even if
not all the work has yet been demonstrated on robotic platforms.

2. Mobile Environment Understanding and Mapping, where the re-
search is typically motivated by the mobile or dynamic nature of
robots and their surroundings. The research literature in this cate-
gory includes the task of semantic mapping, which could be topo-
logical, or a dense and precise 3D reconstruction. These mapping
tasks can often leverage advances in static scene understanding
research, for example, place categorization (image classification)
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12 Introduction

Figure 1.1: A taxonomy for semantics in robotics. Four broad categories of seman-
tics research are complemented by technological, knowledge and training-related
enhancers and lead to a range of robotic applications. Areas can be primarily involved
in extracting semantics, using semantics or a combination of both.

forming the basis of semantic topological mapping, or pixel-wise
semantic segmentation being used as part of a semantic 3D re-
construction pipeline. Semantic maps provide a representation of
information and understanding at an environment or spatial level.
With the increasing use of 3D sensing devices, along with the ma-
turity of visual SLAM, research on semantic understanding of 3D
point clouds is also growing, aimed at enabling a richer semantic
representation of the 3D world. In Section 3, we cover the use of
semantics for developing representations and understanding at an
environment level. This includes the use of places, objects and
scene graphs for semantic mapping, and 3D scene understanding
through Simultaneous Localization And Mapping (SLAM) and
point clouds processing.

3. Interaction, where the existing research “connects the dots” be-
tween the ability to perceive and the ability to act. The literature
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1.3. Taxonomy and Survey Structure 13

in this space can be further divided into the “perception of inter-
action” and “perception for interaction”. The former includes the
basic abilities of understanding actions and activities of humans
and other dynamic agents, and enabling robots to learn from
demonstration. The latter encompasses research related to the
use of the perceived information to act or perform a task, for
example, developing a manipulation strategy for a detected object.
In the context of robotics, detecting an object’s affordances can
be as important as recognizing that object, enabling semantic
reasoning relevant to the task and affordances (e.g., “cut” and
“contain”) rather than to the specific object category (e.g., “knife”
and “jar”). While object grasping and manipulation relate to a
robot’s interaction with the environment, research on interaction
with other humans and robots includes the use of natural language
to generate inverse semantics, or to follow navigation instructions.
Section 4 addresses the use of semantics to facilitate robot inter-
action with the world, as well as with the humans and robots
that inhabit that world. It looks at key issues around affordances,
grasping, manipulation, higher-level goals and decision making,
human–robot interaction and vision-and-language navigation.

4. Improving Task Capability, where researchers have focused on uti-
lizing semantic representations to improve the capability of other
tasks. This includes for example the use of semantics for high-level
reasoning to improve localization and visual place recognition tech-
niques. Furthermore, semantic information can be used to solve
more challenging problems such as dealing with challenging envi-
ronmental conditions. Robotics researchers have also focused on
techniques that unlock the full potential of semantics in robotics,
since existing research has not always been motivated by or had
to deal with the challenges of real world robotic applications, by
addressing challenges like noise, clutter, cost, uncertainty and effi-
ciency. In Section 5, we discuss various ways in which researchers
extract or employ semantic representations for localization and
visual place recognition, dealing with challenging environmental
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conditions, and generally enabling semantics in a robotics context
through addressing additional challenges.

The four broad categories presented above encompass the relevant
literature on how semantics are defined or used in various contexts in
robotics and related fields. This is also reflected in Figure 1.1 through
“extract semantics” and “use semantics” labels associated with different
sections of the taxonomy. Extracting semantics from images, videos, 3D
point clouds, or by actively traversing an environment are all methods
of creating semantic representations. Such semantic representations
can be input into high-level reasoning and decision-making processes,
enabling execution of complex tasks such as path planning in a crowded
environment, pedestrian intention prediction, and vehicle trajectory pre-
diction. Moreover, the use of semantics is often fine-tuned to particular
applications like agricultural robotics, autonomous driving, augmented
reality and UAVs. Rather than simply being exploited, the semantic
representations themselves can be jointly developed and defined in con-
sideration of how they are then used. Hence, in Figure 1.1, the sections
associated with “use semantics” are also associated with “extract seman-
tics”. These high-level tasks can benefit from advances in fundamental
and applied research related to semantics. But this research alone is
not enough: advances in other areas are critical, such as better cloud
infrastructure, advanced hardware architectures and compute capabil-
ity, and the availability of large datasets and knowledge repositories.
Section 6 reviews the influx of semantics-based approaches for robotic
deployments across a wide range of domains, as well as the critical tech-
nology enablers underpinning much of this current and future progress.
Finally, Section 7 discusses some of the key remaining challenges in the
field and opportunities for addressing them through future research,
concluding coverage of what is likely to remain an exciting and highly
active research area into the future.
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