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ABSTRACT

The rise of audio deepfakes presents a significant security
threat that undermines trust in digital communications and
media. These synthetic audio technologies can convincingly
mimic a person’s voice, enabling malicious activities like
impersonation, fraud, and misinformation. Addressing this
growing threat requires robust detection systems to ensure
the authenticity of digital content.

In this survey, we provide a comprehensive analysis of the
state-of-the-art techniques in audio deepfake generation and
detection. We examine various methods used to generate
audio deepfakes, including Text-to-Speech (TTS) and Voice
Conversion (VC) technologies, and discuss their capabili-
ties in producing highly realistic synthetic audio. On the
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detection front, we explore a wide range of approaches,
encompassing traditional machine learning and deep learn-
ing models for feature extraction and classification. The
importance of publicly available datasets for training and
evaluating these models is emphasized, showcasing their role
in advancing detection capabilities.

Additionally, the integration of audio and video deepfake
detection systems is discussed, providing a comprehensive
defense against sophisticated attacks. This survey critically
assesses existing methods and datasets, highlighting chal-
lenges like the high realism of deepfakes, limited data di-
versity, and the need for models that generalize well. It
aims to guide future research in enhancing detection and
safeguarding digital media integrity.
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1
Introduction

In recent years, social media platforms have revolutionized informa-
tion dissemination, marking a significant departure from traditional
communication channels. By breaking down geographical and cultural
barriers, they have become essential for knowledge sharing, fostering
global connections, and enabling in-depth discussions. Social media
has significantly broadened our horizons, allowing for the exchange
of diverse ideas, experiences, and perspectives that would otherwise
remain localized (Ali et al., 2023). The capacity of social media to
unite individuals from varied backgrounds, amplify underrepresented
voices, and initiate collaborative ventures has fundamentally altered
our engagement with the world. However, this landscape is not without
its challenges. The openness and immediacy that facilitate information
flow also expose these platforms to misuse. A concerning aspect has
emerged, characterized by the spread of harmful content intended to
mislead and manipulate public perception (Chen et al., 2023). In this
interconnected era, the swift spread of misinformation and deceptive
narratives poses notable risks to societal well-being. This juxtaposition

3
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4 Introduction

reflects the delicate balance between the beneficial and adverse impacts
of digital platforms, highlighting the need for careful vigilance and
responsible management in the digital area.

Central to this digital transformation is the advent of artificial
intelligence (AI), particularly its subset, deep learning (DL), which
mimics the complex processes of the human brain. DL has emerged as
a transformative force across various sectors, enabling organizations
to innovate their products and services significantly (Saxena et al.,
2023). An illustrative example is Instagram’s use of DL to address
cyberbullying, showcasing how sophisticated algorithms can foster safer
digital communities by identifying and mitigating harmful interactions
(Sachdeva, 2021; Yi and Zubiaga, 2023). Such applications of AI and DL
not only demonstrate technology’s potential to enhance digital spaces
but also reflect a commitment to social responsibility. Moreover, DL’s
influence extends to the realm of communication, as seen in Gmail’s
smart replies and the development of AI-driven chatbots (Chen et al.,
2019). These innovations, characterized by their ability to offer person-
alized and context-aware interactions, represent the synergy between
human intelligence and machine efficiency. They pave the way for a
new era of human-machine communication, enhancing user experiences
across industries through seamless, natural language-based interactions
(Olujimi and Ade-Ibijola, 2023).

However, this digital utopia is counterbalanced by the insidious
rise of deepfake technology, a phenomenon that tests the boundaries of
media manipulation (Xiao et al., 2023). The term “deepfake,” derived
from “deep learning” and “fake,” encapsulates the essence of this AI-
driven manipulation. Through the employment of deep neural networks,
hyper-realistic yet entirely fabricated content, spanning images, audio,
and videos, are generated (Yan, 2023). The use of multimedia content
as evidence in the legal world has become increasingly common, but it
presents a significant challenge due to the rise of sophisticated manip-
ulation tools. The authenticity and integrity of audio-visual evidence
must be rigorously verified to ensure its credibility in legal proceed-
ings. However, the emergence of easily accessible manipulation tools,

Full text available at: http://dx.doi.org/10.1561/3300000048
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such as FaceApp1, Sound Forge2, DeepFaceLab3, Wombo4, REFACE5,
Wav2Lip6, Avatarify7, and Deepart.io8, have made it easier to create
realistic fabricated data.

Deepfake technology encompasses various categories, including face-
swap, lip-synching, puppet-master, face synthesis and attribute manipu-
lation, and audio-only deepfakes. Face-swap deepfakes involve replacing
a person’s face with another person’s face, often targeting famous indi-
viduals in scenarios they never appeared in (Walczyna and Piotrowski,
2023). Lip-synching-based deepfakes manipulate a target person’s lip
movements to sync with a specific audio recording, making it appear as
though they are saying something they did not (Kumar et al., 2017).
Puppet-master deepfakes mimic a target person’s expressions, including
eye movement and facial expressions, to create a video that animates
the impersonator’s desires (Pantelić and Gavrovska, 2022). Face syn-
thesis and attribute manipulation involve generating photo-realistic
face images and editing facial attributes, often used for spreading disin-
formation on social media. These technologies have witnessed a rising
presence in society, with discernible repercussions across various di-
mensions. This is exemplified by instances such as manipulated videos
altering the public perception of figures like Nancy Pelosi (Funke, 2020)
or misleading political campaign content featuring Joe Biden (Kessler,
2020). Deepfakes have also found a place in entertainment and creative
applications, with programs like Spangler and Murphy (Spangler, 2020)
and Huang’s face-swapping tool (Murphy and Huang, 2019).

Audio deepfakes are centred on the generation of a target speaker’s
voice, employing advanced deep learning methodologies to convincingly
replicate speech patterns and vocal characteristics. This technology
offers the potential to make individuals appear as if they are uttering
statements they have never actually articulated. Two prevalent ap-
proaches in audio deepfake creation are text-to-speech synthesis (TTS)

1www.faceapp.com
2www.magix.com/us/music-editing/sound-forge/
3https://www.deepfakevfx.com/downloads/deepfacelab/
4www.wombo.ai/
5reface.ai
6github.com/Rudrabha/Wav2Lip
7https://avatarify.ai/
8https://creativitywith.ai/deepartio/
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6 Introduction

and voice conversion (VC) (Masood et al., 2023). In TTS-based deep-
fakes, the system generates natural-sounding voice waveforms based on
provided text input, effectively mimicking the target speaker’s voice
(Taylor, 2009). For instance, a malicious actor could use TTS to fab-
ricate an audio clip of a political figure endorsing a policy they never
supported. On the other hand, VC techniques transform the speech
signal of a source speaker to make it appear as though it was spoken
by the target speaker while preserving linguistic content. An example
of VC-based deepfake might involve altering a recorded statement from
one individual to make it sound like it was said by a different person,
potentially leading to significant misinformation and misattribution
(Mohammadi and Kain, 2017). As audio deepfake technology advances,
it poses substantial challenges to the integrity of voice-based commu-
nication and authentication; the instance of a CEO falling victim to a
deepfake voice impersonation scam demonstrates the tangible financial
risks associated with this technology (Stupp, 2019; Levine, 2020).

The emergence of deepfake technology has raised both challenges
and opportunities, offering significant potential for diversifying into
various commercial ventures and fostering innovation (Johnson and
Diakopoulos, 2021). Deepfakes possess the capacity to reshape and
advance business models, particularly as consumers increasingly engage
in virtual environments (Kietzmann et al., 2020). Companies like Meta,
formerly Facebook, are actively investing substantial amounts, such as
$10 billion in 2021 alone, in developing a virtual reality world known as
the Metaverse, featuring deepfake-generated objects, signalling novel
prospects alongside new challenges (Mateo, 2023). This dualistic nature
of deepfake technology motivates exploration of both its risks and
opportunities, a facet that remains relatively uncharted in the current
business literature.

Furthermore, deepfakes on the internet and social media platforms
have become integral to personal and professional interactions, provid-
ing easy-to-use avenues for real-time discussions, ideological expression,
and information sharing (Karnouskos, 2020). This rapid dissemination,
combined with the increasing integration of digital technologies into
society, is poised to have far-reaching consequences in the marketplace.
However, due to the intricate and emergent nature of deepfake technol-

Full text available at: http://dx.doi.org/10.1561/3300000048
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ogy, the current comprehension of its implications remains fragmented,
limited, and in its early stages of development (Dwivedi et al., 2021).
In light of the multifaceted implications of deepfake technology, it’s
essential to note that, thus far, the predominant focus of research and
development efforts has been directed towards video deepfakes, given
their visually compelling nature and potential for misuse (Chesney and
Citron, 2018). A substantial body of work has emerged, encompassing
everything from detection methodologies to ethical and legal considera-
tions, all geared towards mitigating the negative impacts of video-based
deepfakes. However, it’s important to acknowledge that, while video
deepfakes have been a primary focus, audio deepfakes have received
comparatively limited attention in both research and public discourse
(Somoray and Miller, 2023).

The availability of deepfake databases and generation algorithms
has democratised the creation of convincing deepfake content, leading to
an exponential increase in their dissemination across online platforms,
amplified by the rapid reach and sharing capabilities of social media.
This surge in deepfake-related issues is mirrored in the growing body
of scientific literature, which delves into the technological aspects of
deepfake generation and detection and explores the ethical, social, and
legal dimensions. While there are existing reviews in specific subfields,
such as deepfake creation and detection (Heidari et al., 2024; Masood
et al., 2023; Dagar and Vishwakarma, 2022), (Mirsky and Lee (2021)
and Abu-Ein et al. (2022)), legal considerations (Akpuokwe et al., 2024;
Kaddoura and Al Husseiny, 2023; Silva, 2021; Perot and Mostert, 2020),
forensics (Kingra et al., 2023; Amerini et al., 2021; Verdoliva, 2020),
social spam (Qazi et al., 2024; Aljabri et al., 2023; Rao et al., 2021;
Yurtseven et al., 2021) and social impact (Wazid et al., 2024; Al-Khazraji
et al., 2023; Hancock and Bailenson, 2021; Gamage et al., 2021), none
comprehensively encompass the entire spectrum of deepfake research
areas. This gap presents an opportunity for researchers seeking to
contribute to this rapidly evolving field, which spans diverse disciplines
and continuously adapts to emerging trends and funding opportunities.
Despite its relative novelty, deepfake research holds immense potential
for interdisciplinary collaboration and innovation, with the potential to
shape the future of digital content and its societal implications.

Full text available at: http://dx.doi.org/10.1561/3300000048



8 Introduction

Figure 1.1 shows the trend in the number of research publications
related to Deepfakes from 2015 to 2024, based on data from Dimen-
sions.ai.9 The graph indicates a significant increase in publications on
both Video Deepfakes and Audio Deepfakes over this period. Notably,
publications on Video deepfakes consistently exceed those on Audio
Deepfakes, suggesting a stronger research focus on visual deception
in deepfake technology. This trend reflects the broader impact and
challenges associated with video deepfakes, particularly in areas like
multimedia manipulation, digital forensics, and societal impacts. Al-
though Audio deepfakes have garnered attention, the volume of research
remains lower, highlighting a need for more focused studies on the
implications and challenges of audio deepfakes. The objective of this
survey is to address this gap by exploring the unique aspects of audio
deepfakes within the broader context of deepfake technology, which has
predominantly focused on visual deception.

Figure 1.1: Trends in research publications on ‘Deepfakes’ from 2015 to 2024. The
graph illustrates a higher number of publications on Video Deepfakes compared to
Audio Deepfakes throughout the period, reflecting a predominant research focus on
visual deception technologies.

9app.dimensions.ai/discover/publication

Full text available at: http://dx.doi.org/10.1561/3300000048
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9

In this survey, we set the stage by providing an overview of the
significance of audio deepfakes, their potential threats to security and
trust in digital communications, and the necessity for robust detec-
tion systems. Section 2 traces the development of deepfake technology
from its inception to its current state. We discuss the advancements
in generative models and the increasing sophistication of deepfake cre-
ation techniques over time. We discuss the specific methods used to
generate audio deepfakes in Section 3. This includes an exploration of
Text-to-Speech (TTS) and Voice Conversion (VC) technologies, and the
tools that enable these processes. Section 4 discusses audio deepfake
detection systems. We examine the various techniques employed to
extract meaningful features from audio data for the purpose of deepfake
detection. This includes both traditional and deep learning approaches.
Also, discuss the different classifiers used in detecting audio deepfakes.
We cover a range of methods from machine learning to deep learning
classifiers, highlighting their strengths and weaknesses in various detec-
tion scenarios. Section 5 provides an extensive review of the datasets
commonly used for training and evaluating deepfake detection models.
Section 6 provides the comparative analysis of various strategies applied
in audio deepfake detection. Section 7 provides a detailed overview of
the evaluation metrics considered throughout the cited works. Section
8 identifies and elaborates on the significant challenges in the field.
Finally, in Section 9, we summarize the key findings of the survey and
draw the conclusions.

Full text available at: http://dx.doi.org/10.1561/3300000048
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