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Abstract

The recent availability of massive amounts of imagery, both at home

and on the Internet, has generated substantial interest in systems

for automated image search and retrieval. In this work, we review

a principle for the design of such systems, which formulates the

retrieval problem as one of decision-theory. Under this principle, a

retrieval system searches the images that are likely to satisfy the

query with minimum probability of error (MPE). It is shown how the

MPE principle can be used to design optimal solutions for practical

retrieval problems. This involves a characterization of the fundamental

performance bounds of the MPE retrieval architecture, and the use

of these bounds to derive optimal components for retrieval systems.

These components include a feature space where images are repre-

sented, density estimation methods to produce this representation,

and the similarity function to be used for image matching. It is also

Full text available at: http://dx.doi.org/10.1561/2000000015



shown that many alternative formulations of the retrieval problem

are closely related to the MPE principle, typically resulting from

simplifications or approximations to the MPE architecture. The MPE

principle is then applied to the design of retrieval systems that work

at different levels of abstraction. Query-by-visual-example (QBVE)

systems are strictly visual, matching images by similarity of low-level

features, such as texture or color. This is usually insufficient to

produce perceptually satisfying results, since human users tend to

make similarity judgments on the basis of image semantics, not visual

attributes. This problem is addressed by the introduction of MPE

labeling techniques, which associate descriptive keywords with images,

enabling their search with text queries. This involves computing the

probabilities with which different concepts explain each image. The

query by example paradigm is then combined with these probabilities,

by performing MPE image matching in the associated probability

simplex. This is denoted query-by-semantic-example (QBSE), and

enables example-based retrieval by similarity of semantics.
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1

From Pixels to Semantic Spaces: Advances
in Content-Based Image Search

We are currently living through a confluence of three technological rev-

olutions – the advent of digital imaging, broadband networking, and

inexpensive storage – that allow millions of people to communicate and

express themselves by sharing media. It could be argued, however, that

a few pieces are still missing. While it is now trivial to acquire, store,

and transmit images, it is significantly harder to manipulate, index,

sort, filter, summarize, or search through them. Significant progress has,

without doubt, happened in domains where the visual content is tagged

with text descriptions, due to the advent of modern search engines and

their image/video search off-springs. Nevertheless, because they only

analyze metadata, not the images per se, these are of limited use in

many practical scenarios. For example the reader can, at this moment,

use one of the major image search engines to download 7,860,000 pic-

tures of “kids playing soccer”, most served from Internet sites across

the world. Yet, these are all useless, to the reader , when he/she is look-

ing for pictures of his/her kids playing soccer. Although the latter are

stored in the reader’s hard-drive, literally at “hand’s reach”, they are

completely inaccessible in any organized manner. The reader could, of

course, take the time to manually label them, enabling the computer to

1

Full text available at: http://dx.doi.org/10.1561/2000000015



2 From Pixels to Semantic Spaces: Advances in Content-Based Image Search

perform more effective searches, but this somehow feels wrong. After all,

the machine should be working for the user, not the other way around.

The field of content-based image search aims to develop systems

capable of retrieving images because they understand them and are able

to represent their content in a form that is intuitive to humans. It draws

strongly on computer vision and machine learning, and encompasses

many sub-problems in image representation and intelligent system

design. These include the evaluation of image similarity, the automatic

annotation of images with descriptive captions, the ability to under-

stand user feedback during image search, and support for indexing

structures that can be searched efficiently. In this monograph, we review

the progress accomplished in this field with a formulation of the prob-

lem as one of decision theory. We note that the decision theoretic view

is not the only possible solution to the retrieval problem and that many

alternatives have been proposed in the literature. These alternatives are

covered by recent extensive literature reviews [24, 68, 105, 115] and will

not be discussed in what follows, other than in context of highlighting

possible similarities or differences to MPE retrieval.

1.1 Query by Visual Example

Query by visual example (QBVE) is the classical paradigm for content-

based image search. It is based on strict visual matching, ranking

database images by similarity to a user-provided query image. The steps

are as follows: user provides query, retrieval system extracts a signature

from it, this signature is compared to those previously computed for

the images in the database, and the closest matches are returned to the

user. There are, of course, many possibilities for composing image signa-

tures or evaluating their similarity, and a rich literature has evolved on

this topic [105]. While early solutions, such as the pioneering query-by-

image-content system [80], were based on very simple image processing

(e.g., matching of histograms of image colors), modern systems (1) rely

on more sophisticated representations, and (2) aim for provably optimal

retrieval performance.

In what follows, we review one such approach, usually denoted as

minimum probability of error (MPE) retrieval. The retrieval problem is

Full text available at: http://dx.doi.org/10.1561/2000000015



1.1 Query by Visual Example 3

Fig. 1.1 MPE retrieval architecture. Images are decomposed into bags of local features,

and characterized by their distributions on feature space. Database images are ranked by
posterior probability of having generated the query features.

formulated as one of classification, and all components of the retrieval

system are designed to achieve optimality in the MPE sense. This leads

to the retrieval architecture depicted in Figure 1.1. Images are first

represented as bags of local features (that measure properties such as

texture, edginess, color, etc.), and a probabilistic model (in the figure a

Gaussian mixture) is learned from the bag extracted from each image.

The image signature is, therefore, a compact probabilistic representa-

tion of how it populates the feature space. When faced with a query,

the retrieval system extracts a bag of features from it, and computes

how well this bag is explained by each of the probabilistic models in

the database. In particular, it ranks the database models according to

their posterior probability, given the query. As we will see later on, this

is optimal in the MPE sense.

Note that, besides finding the closest matches, the system assigns

a probability of match to all images in the database. This allows the

combination of visual matching with other sources of information that

may impact the relevance of each database image. For example, the text

in an accompanying web page [92], how well the image matches previous

Full text available at: http://dx.doi.org/10.1561/2000000015



4 From Pixels to Semantic Spaces: Advances in Content-Based Image Search

Fig. 1.2 MPE retrieval results. Each row shows the top three matches (among 1,500) to
the query on the left.

queries [127, 128], external events that could increase the relevance of

certain images on certain days (e.g., high demand for football images

on Sunday night), etc.

The retrieval architecture of Figure 1.1 is currently among the top

performers in QBVE [124]. These systems work well when similarity

of visual appearance correlates with human judgments of similarity.

This is illustrated by Figure 1.2, which presents the top matches, from

a database of 1500 images, to four queries. Note that the database is

quite diverse, and the images are basically unconstrained in terms of

lighting conditions, object poses, etc. (even though they are all good

quality images taken by professional photographers). The system is able

to identify the different visual attributes that, in each case, contribute

to the perception of image similarity. For example, similar color distri-

butions seem to be determinant in the matches of the first row, while

texture appears to play a more significant role in the third, shape (of the

Full text available at: http://dx.doi.org/10.1561/2000000015



1.1 Query by Visual Example 5

Fig. 1.3 A query image (left) and its top four matches by a QBVE system (right). Humans

frequently discard strong visual cues in their similarity judgments. Failure to do this can
lead to severe QBVE errors. For example, the visually distinctive arch-like structure in

the train query induces the QBVE system to retrieve images of bridges or other arch-like

structures.

flower petals) is probably the strongest cue for the results of the fourth,

and the matches of the second row are likely due to the commonality

of edge patterns in the building structures present in all images.

There are, nevertheless, many queries for which visual similarity

does not correlate strongly with human similarity judgments. Figure 1.3

presents an example of how people frequently discard very strong visual

cues in their similarity judgments. As can be seen from the close-up, the

“train” query contains a very predominant arch-like structure. From a

strictly visual standpoint, this makes it very compatible with concepts

such as “bridges” or “arches”. A QBVE system will fall in this trap,

returning as top matches the four images also shown. Note that three of

these do contain bridges or arch-like structures. Yet, the “train” inter-

pretation of the query is completely dominant for humans, which assign

very little probability to the alternative interpretations, and expect

images of trains among the retrieved results.

The mismatch between the similarity judgments of user and

machine can make the retrieval operation very unsatisfying. In the

“train” example, most people would not be to able justify the matches

Full text available at: http://dx.doi.org/10.1561/2000000015



6 From Pixels to Semantic Spaces: Advances in Content-Based Image Search

returned by the retrieval system, despite the obvious similarities of

the visual stimuli. This is the nightmare scenario for image retrieval,

since users not only end up unhappy with the retrieval results, but also

acquire the feeling that the system just “does not get it”. This can be

an enormous source of user frustration.

1.2 Semantic Retrieval

The discussion above reveals what is often called a semantic gap

between user and machine. Unlike QBVE systems, people seem to first

classify images as belonging to a number of semantic classes, and then

make judgments of similarity in the higher level semantic space where

those classes are defined. This has motivated significant interest, over

the last decade, in semantic image retrieval. A semantic retrieval system

aims for the two complementary goals of image annotation and search.

The starting point is a training image database, where each image is

annotated with a natural language caption, from which the retrieval

system learns a mapping between words and visual features. This map-

ping is then used to (1) annotate unseen images with the captions that

best describe them, and (2) find the database images that best satisfy

a natural language query.

Usually, the training corpus is only weakly labeled , in the sense that

(1) the absence of a label from a caption does not necessarily mean

that the associated visual concept is absent from the image, and (2) it

is not known which image regions are associated with each label. For

example, an image containing “sky” may not be explicitly annotated

with that label and, when it is, no indication is available regarding

which image pixels actually depict sky. Note that the implementation

of a semantic retrieval system does not require individual users to label

training images. While this can certainly be supported, to personalize

the vocabulary, the default is to rely on generic vocabularies, shared

by many systems.

Under the MPE retrieval framework, a semantic retrieval system is

a simple extension of a QBVE system. As shown in Figure 1.4, it can be

implemented by learning probabilistic models from image sets, instead

of single images. In particular, the set of training images labeled with

Full text available at: http://dx.doi.org/10.1561/2000000015



1.2 Semantic Retrieval 7

Fig. 1.4 Semantic MPE labeling. Top: images are grouped by semantic concept, and a
probabilistic model learned for each concept. Bottom: each image is represented by a vector

of posterior concept probabilities.

a particular keyword (“mountain”, in the figure) is used to learn the

model for the associated visual concept. As discussed in Section 6, this

procedure converges to the true concept distribution plus a background

uniform component that has small amplitude, if the set of training

images is very diverse [16]. Given a set of models for different visual

concepts, any image can be optimally labeled, in the MPE sense, by

computing how well its features are explained by each model. In par-

ticular, the concepts are ordered by posterior probability, given the

image, and the image is annotated with those of largest probability.

Full text available at: http://dx.doi.org/10.1561/2000000015



8 From Pixels to Semantic Spaces: Advances in Content-Based Image Search

This is shown in Figure 1.4 where, among a vocabulary of more than

350 semantic concepts, an image of a country house receives, as most

likely, the labels “tree”, “garden”, and “house”.

It turns out that, under the MPE framework, it is possible to learn

semantic models very efficiently, when individual image models are

already available, i.e., when QBVE is also supported. In fact, it can

be shown that the design of a semantic MPE retrieval system has

complexity equivalent to that of an MPE system that only supports

QBVE [16, 17]. Some examples of retrieval and annotation are shown in

Figures 1.5 and 1.6. Note that the system recognizes concepts as diverse

as “blooms”, “mountains”, “swimming pools”, “smoke”, or “woman”.

In fact, the system has learned that these classes can exhibit a wide

diversity of patterns of visual appearance, e.g., that smoke can be both

Fig. 1.5 Semantic retrieval results. Each row shows the top four matches to a semantic
query. From first to fifth row: ‘blooms’, ‘mountain’, ‘pool’, ‘smoke’, and ‘woman’ .

Full text available at: http://dx.doi.org/10.1561/2000000015



1.2 Semantic Retrieval 9

Fig. 1.6 Comparison of the annotations produced by the system with those of a human
subject.

white or very dark, that both blooms and humans can come in multiple

colors, multiple sizes (depending on image scale), and multiple poses, or

that pools can be mostly about water, mostly about people (swimmers),

or both. This type of generalization is impossible for QBVE systems,

where each image is modeled independently of the others.

The annotation results of Figure 1.6 illustrate a second form of

generalization, based on contextual relationships, that humans also

regularly exploit. For example, the fact that stores usually contain

Full text available at: http://dx.doi.org/10.1561/2000000015



10 From Pixels to Semantic Spaces: Advances in Content-Based Image Search

people, makes us more prone to label an image of a store (where no

people are visible) with the “people” keyword, than an image that

depicts an animal in the wild. This is also the case for the MPE seman-

tic retrieval system, whose errors tend to be (in significant part) due

to this type of contextual associations. Note, for example, that the sys-

tem erroneously associates the concept “prop” with a jet fighter, the

concept “leaf” with grass, the concepts “people” and “skyline” with a

store display, and so forth. Of course, there are also many situations

in which these associations are highly beneficial and allow the correct

identification of concepts that would otherwise be difficult to detect

(due to occlusion, poor imaging conditions, etc.).

The ability to make such contextual generalizations stems from the

weakly supervised nature of the training of the labeling system. Because

concept models are learned from unsegmented images, most positive

examples of “shop” are also part of the positive set for “people” (even

though the latter will include many non-shopping related images as

well). Hence, an image of a shop will originate some response from the

“people” model, even when it does not contain people. That response

will be weaker than that of an image of a shop that contains people, but

stronger than the response of the “shop” model to a picture of people

on a non-shopping context, e.g., fishing in a lake. These asymmetries

are routine in human reasoning and, therefore, appear natural to users,

making the errors of a semantic retrieval system less annoying than

those of its QBVE counterpart. In fact, informal surveys conducted in

our lab have shown that (1) humans frequently miss the labeling errors,

and (2) even when the error is noted, the user can frequently find an

explanation for it (e.g., “it confused a jet for a propeller plane”). This

creates the sense that, even in making errors, the semantic retrieval

system “gets it”.

1.3 Exploring Semantic Feature Spaces

Despite all its advantages, semantic retrieval is not free of limita-

tions. An obvious difficulty is that most images have multiple semantic

interpretations. Since training images are usually labeled with a short

caption, some concepts may never be identified as present. This reduces

Full text available at: http://dx.doi.org/10.1561/2000000015



1.3 Exploring Semantic Feature Spaces 11

the number of training examples and can impair the learning of con-

cepts that (1) have high variability of visual appearance, or (2) are

relatively rare. Furthermore, the semantic retrieval system is limited

by the size of its vocabulary. Since it is still difficult to learn massive

vocabularies, this can severely compromise generalization. It is, in fact,

important to distinguish two types of generalization. The first is with

respect to the concepts on which the system is trained, or within the

semantic space. The second is with respect to all other concepts, or

outside the semantic space.

While, as discussed in the previous section, semantic retrieval gen-

eralizes better (than QBVE) inside the semantic space, this is usually

not true outside of it. One possibility, to address this problem, is to

return to the query-by-example paradigm, but now at the semantic

level, i.e., to adopt query by semantic example (QBSE) [91]. The idea

is to represent each image by its vector of posterior concept probabil-

ities (the π vector of Figure 1.4), and perform query by example in

the simplex of these probabilities. Because the probability vectors are

multinomial distributions over the space of semantic concepts, we refer

to them as semantic multinomials. A similarity function between these

objects is defined, the user provides a query image, and the images in

the database are ranked by the distance of their semantic multinomials

to that of the query. The process is illustrated in Figure 1.7.

When compared to semantic retrieval, a QBSE system is sig-

nificantly less affected by the problems of (1) multiple semantic

interpretations, and (2) difficult generalization outside of the semantic

space. This follows from the fact that the system is not faced with a

definitive natural language query, but an image that it expands into

its internal semantic representation. For example, a system not trained

with images of the concept “fishing”, can still expand a query image

of this subject into a number of alternative concepts, such as “water”,

“boat”, “people”, and “nets”, in its vocabulary. This is likely to pro-

duce high scores for other images of fishing.

When compared to QBVE, QBSE has the advantage of a fea-

ture space where it is much easier to generalize. This is illustrated

by Figure 1.8, which shows the QBSE matches to the query image

of Figure 1.3. Note how these correlate much better with human

Full text available at: http://dx.doi.org/10.1561/2000000015



12 From Pixels to Semantic Spaces: Advances in Content-Based Image Search

Fig. 1.7 Query by semantic example. Images are represented as vectors of concept proba-

bilities, i.e., points on the semantic probability simplex. The vector computed from a query
image is compared to those extracted from the images in the database, using a suitable

similarity function. The closest matches are returned by the retrieval system.

Fig. 1.8 Top four matches to the QBSE query derived from the image shown on the left.

Because good matches require agreement along various dimensions of the semantic space,

QBSE is significantly less prone to the errors made by QBVE. This can be seen by comparing
this set of image matches to those of Figure 1.3.

judgments of similarity that the QBVE matches of that figure.

Inspection of the semantic multinomials associated with all images

shown reveals that, although the query image receives a fair amount

Full text available at: http://dx.doi.org/10.1561/2000000015



1.4 Organization of the Manuscript and Acknowledgments 13

of probability for the concept “bridge”, it receives only slightly inferior

amounts of probability for concepts such as “locomotive”, “railroad”,

and “train”. The latter are consistent with the semantic multinomi-

als of other images depicting trains, but not necessarily with those of

images depicting bridges. Hence, while the erroneous “bridge” label

is individually dominant, it looses this dominance when the semantic

multinomials are matched as a whole.

1.4 Organization of the Manuscript and Acknowledgments

In the following sections, we study in greater detail the fundamen-

tal properties of MPE retrieval. We start by laying out its theoretical

foundations in Section 2. The sources of error of a retrieval system are

identified, and upper and lower bounds on the resulting probability of

error are derived. In Section 3, MPE retrieval architectures are related

to a number of other approaches in literature. It is shown that many

of the latter are special cases of the former, under simplifying assump-

tions that are not always sensible. In Section 4, we start to address the

practical design of retrieval systems, by proposing a particular MPE

implementation. This architecture is shown to have a number of inter-

esting properties, and perform well in QBVE retrieval experiments.

In Section 5, we consider the problem of semantic retrieval, by intro-

ducing MPE techniques for image annotation, and showing how they

can be used to retrieve images with keyword-based queries. Some core

technical issues in automated image annotation are then discussed in

Section 6, where we study the possibility of learning image labels from

weakly annotated training sets. The issue of generalization beyond the

semantic space is introduced in Section 7, where we discuss QBSE.

Finally, some conclusions are drawn in Section 8.

At this point, we would like to acknowledge the contributions of a

number of colleagues that, over the last 10 years, have helped shape
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most of the QBSE framework, as well as a number of more recent

contributions that are not discussed here, mostly for lack of space.

Since this manuscript follows closely a number of papers that we

have co-written with all these colleagues, we will not include a more

extensive discussion of who-did-what here. If interested, please refer

to [16, 91, 119, 120, 124, 125]. Instead, we would like to thank a number

of other people who were instrumental in the development of many of

the ideas discussed here, including Andrew Lippman at MIT, and sev-

eral students at the Statistical Visual Computing Laboratory at UCSD.

These include Dashan Gao, Hamed Masnadi-Shirazi, Sunhyoung Han,

and Vijay Mahadevan, among others. The many discussions that we

have had over the years, about retrieval and related topics, have made

our ideas much more clear and effective.
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