
Block-Based

Compressed Sensing of

Images and Video

Full text available at: http://dx.doi.org/10.1561/2000000033



Block-Based
Compressed Sensing of

Images and Video

James E. Fowler

Mississippi State University
USA

fowler@ece.msstate.edu

Sungkwang Mun

Mississippi State University
USA

sm655@msstate.edu

Eric W. Tramel

Mississippi State University
USA

ewt16@msstate.edu

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/2000000033



Foundations and Trends R© in
Signal Processing

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is J. E. Fowler, S. Mun and E. W. Tramel,

Block-Based Compressed Sensing of Images and Video, Foundations and Trends R©
in Signal Processing, vol 4, no 4, pp 297–416, 2010

ISBN: 978-1-60198-520-0
c© 2012 J. E. Fowler, S. Mun and E. W. Tramel

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2000000033



Foundations and Trends R© in
Signal Processing

Volume 4 Issue 4, 2010

Editorial Board

Editor-in-Chief:
Robert M. Gray
Dept of Electrical Engineering
Stanford University
350 Serra Mall
Stanford, CA 94305
USA
rmgray@stanford.edu

Editors

Abeer Alwan (UCLA)
John Apostolopoulos (HP Labs)
Pamela Cosman (UCSD)
Michelle Effros (California Institute
of Technology)
Yonina Eldar (Technion)
Yariv Ephraim (George Mason

University)
Sadaoki Furui (Tokyo Institute

of Technology)
Vivek Goyal (MIT)
Sinan Gunturk (Courant Institute)
Christine Guillemot (IRISA)
Sheila Hemami (Cornell)
Lina Karam (Arizona State

University)
Nick Kingsbury (Cambridge

University)
Alex Kot (Nanyang Technical

University)

Jelena Kovacevic (CMU)
Jia Li (Pennsylvania State

University)
B.S. Manjunath (UCSB)
Urbashi Mitra (USC)
Thrasos Pappas (Northwestern

University)
Mihaela van der Shaar (UCLA)
Michael Unser (EPFL)
P.P. Vaidyanathan (California

Institute of Technology)
Rabab Ward (University

of British Columbia)
Susie Wee (HP Labs)
Clifford J. Weinstein (MIT Lincoln

Laboratories)
Min Wu (University of Maryland)
Josiane Zerubia (INRIA)
Pao-Chi CHang (National Central
University)

Full text available at: http://dx.doi.org/10.1561/2000000033



Editorial Scope

Foundations and Trends R© in Signal Processing will publish sur-
vey and tutorial articles on the foundations, algorithms, methods, and
applications of signal processing including the following topics:

• Adaptive signal processing

• Audio signal processing

• Biological and biomedical signal
processing

• Complexity in signal processing

• Digital and multirate signal
processing

• Distributed and network signal
processing

• Image and video processing

• Linear and nonlinear filtering

• Multidimensional signal processing

• Multimodal signal processing

• Multiresolution signal processing

• Nonlinear signal processing

• Randomized algorithms in signal
processing

• Sensor and multiple source signal
processing, source separation

• Signal decompositions, subband
and transform methods, sparse
representations

• Signal processing for
communications

• Signal processing for security and
forensic analysis, biometric signal
processing

• Signal quantization, sampling,
analog-to-digital conversion,
coding and compression

• Signal reconstruction,
digital-to-analog conversion,
enhancement, decoding and
inverse problems

• Speech/audio/image/video
compression

• Speech and spoken language
processing

• Statistical/machine learning

• Statistical signal processing

• classification and detection

• estimation and regression

• tree-structured methods

Information for Librarians
Foundations and Trends R© in Signal Processing, 2010, Volume 4, 4 issues. ISSN
paper version 1932-8346. ISSN online version 1932-8354. Also available as a
combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2000000033



Foundations and Trends R© in
Signal Processing

Vol. 4, No. 4 (2010) 297–416
c© 2012 J. E. Fowler, S. Mun and E. W. Tramel

DOI: 10.1561/2000000033

Block-Based Compressed
Sensing of Images and Video

James E. Fowler1, Sungkwang Mun2

and Eric W. Tramel3

1 Department of Electrical & Computer Engineering, Geosystems Research
Institute, Mississippi State University, Mississippi State, MS 39762, USA,
fowler@ece.msstate.edu

2 Department of Electrical & Computer Engineering, Geosystems Research
Institute, Mississippi State University, Mississippi State, MS 39762, USA,
sm655@msstate.edu

3 Department of Electrical & Computer Engineering, Geosystems Research
Institute, Mississippi State University, Mississippi State, MS 39762, USA,
ewt16@msstate.edu

Abstract

A number of techniques for the compressed sensing of imagery are sur-
veyed. Various imaging media are considered, including still images,
motion video, as well as multiview image sets and multiview video.
A particular emphasis is placed on block-based compressed sensing
due to its advantages in terms of both lightweight reconstruction
complexity as well as a reduced memory burden for the random-
projection measurement operator. For multiple-image scenarios, includ-
ing video and multiview imagery, motion and disparity compensation is
employed to exploit frame-to-frame redundancies due to object motion
and parallax, resulting in residual frames which are more compressible
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and thus more easily reconstructed from compressed-sensing measure-
ments. Extensive experimental comparisons evaluate various prominent
reconstruction algorithms for still-image, motion-video, and multiview
scenarios in terms of both reconstruction quality as well as computa-
tional complexity.
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1

Introduction

The sampling theorem is arguably the best known component of the
theoretical foundations of the signal-processing and communications
fields; its importance is paramount in that it underlies all modern
signal-acquisition, sampling, sensing, and analog-to-digital conversion
devices. Although introduced to the signal-processing and communi-
cations communities by Shannon in 1949 [109], the sampling theorem
can be traced to earlier work by telegraphers and mathematicians (see,
e.g., [82]). In essence, the sampling theorem states that, if a signal con-
tains no frequencies higher than bandlimit W , then it can be perfectly
reconstructed from samples acquired at a rate of at least 2W . This
latter quantity, commonly known as the Nyquist rate, thus represents
the slowest rate at which sampling of any bandlimited signal can be
acquired and still permit perfect reconstruction.

However, this traditional sampling theory is founded on relatively
minimal prior knowledge on the signal being sampled — i.e., its band-
limit W . While traditional sampling theory has the advantage of apply-
ing to any signal satisfying this bandlimit constraint, we are commonly
interested in more restricted classes of signals, i.e., those that are known
to possess much more structure, and thus fewer degrees of freedom,

5
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6 Introduction

than dictated by the signal bandlimit [8]. A well-known example is
that of bandpass signals in which the signal is present over only a lim-
ited band of frequencies — under such bandpass structure, bandpass
sampling (e.g., [129]) can acquire the signal with a sampling rate slower
than 2W . More recent literature has witnessed an explosion of interest
in sensing that exploits structured prior knowledge in the general form
of sparsity, meaning that signals can be represented by only a few coef-
ficients in some transform basis. Like bandpass sampling, exploitation
of such sparse structure within signals can effectively permit sampling
at rates well below 2W .

Central to much of this recent work is the paradigm of compressed
sensing (CS)1 (e.g., [18, 22, 38]) which permits relatively few mea-
surements of the signal to be acquired in a linear fashion while still
permitting exact reconstruction via a relatively complex and nonlinear
recovery process. While much CS literature is rather generic in that it
is not tied to any specific class of signal beyond a general assumption
of sparsity, there has been significant interest in CS specifically tailored
to imaging applications. Indeed, recent work in the CS field has seen
proposals for not only sensor devices but also reconstruction algorithms
designed specifically for a variety of imagery signals.

The goal of this monograph is to overview some of these meth-
ods. A primary focus is an examination of the state of the art in CS
reconstruction for various imaging modalities, including still images,
motion video, and multiview imagery. Throughout, we focus on photo-
graphic imagery which is acquired in the spatial domain of the image,
a paradigm which is ubiquitous throughout image-processing applica-
tions. This stands in contrast to a significant portion of existing CS
literature that has targeted, with substantial success, specific medical-
imaging applications — in particular, magnetic resonance imaging
(MRI), which is acquired directly in a Fourier-transform space. The
potential for CS to significantly expedite MRI acquisition is rela-
tively well established and already well covered tutorially in the liter-
ature (e.g., [83, 84]). On the other hand, CS for photographic imagery

1 Also known as compressive sampling or compressive sensing.
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7

acquired in the spatial domain is a comparatively emerging area and,
thus, the topic of the present monograph.

An additional focus of this monograph is on CS reconstruction
as applied on image blocks. In such block-based compressed sensing
(BCS), an image is partitioned into small non-overlapping blocks which
are acquired independently but reconstructed jointly. BCS is motivated
primarily for reasons of reduced computational complexity and mem-
ory burdens. These can become impractically large for the CS of images
and video as a result of the increased dimensionality (i.e., 2D and 3D)
of such signals.

We note also that our discussion is not intended to serve as an in-
depth tutorial on the theory or mathematics of CS; rather, there exist
several excellent overviews on this subject (e.g., [7, 20, 22]). Instead,
our coverage of CS theory here will be brief, while the specifics of the
application of BCS to natural imagery will consume the bulk of the
discussion.

The remainder of the monograph is organized as follows. Section 2
briefly overviews CS theory, including acquisition and reconstruction
processes. Section 3 then considers the CS of a single still image, focus-
ing on a variety of techniques to reconstruct such images from ran-
dom CS measurements. Section 4 extends these concepts to the CS of
video with an emphasis on reconstruction from motion-compensated
residuals, and then Section 5 adds multihypothesis prediction to such
motion-based CS reconstruction. Section 6 finally considers the CS of
multiview images and video in which a scene is imaged from several
viewpoints simultaneously. We end the monograph by making several
concluding remarks.
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[107] L. Şendur and I. W. Selesnick, “Bivariate shrinkage functions for wavelet-
based denoising exploiting interscale dependency,” IEEE Transactions on Sig-
nal Processing, vol. 50, no. 11, pp. 2744–2756, November 2002.

[108] C. E. Shannon, “A mathematical theory of communication,” The Bell System
Technical Journal, vol. 27, pp. 379–423, 623–656, July, October 1948.

[109] C. E. Shannon, “Communication in the presence of noise,” Proceedings of the
IRE, vol. 37, no. 1, pp. 10–21, January 1949.

[110] C. E. Shannon, “Coding theorems for a discrete source with a fidelity cri-
terion,” IRE International Convention Record, Part 4, vol. 7, pp. 142–163,
1959.

[111] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coeffi-
cients,” IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3445–
3462, December 1993.

[112] G. J. Sullivan, “Multi-hypothesis motion compensation for low bit-rate video
coding,” in Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing, pp. 437–440, Minneapolis, MN, April 1993.

[113] R. Sundaresan, Y. Kim, M. S. Nadar, and A. Bilgin, “Motion-compensated
compressed sensing for dynamic imaging,” in Applications of Digital Image
Processing XXXIII, (A. G. Tescher, ed.), p. 77980A, San Diego: Proc. SPIE
7798, August 2010.

Full text available at: http://dx.doi.org/10.1561/2000000033



References 121

[114] W. Sweldens, “The lifting scheme: A new philosophy in biorthogonal wavelet
constructions,” in Wavelet Applications in Signal and Image Processing III,
(A. F. Laine, M. A. Unser, and M. V. Wickerhauser, eds.), pp. 68–79, San
Diego, CA: Proc. SPIE 2569, July 1995.

[115] D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham,
K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architec-
ture using optical-domain compression,” in Computational Imaging IV, (C. A.
Bouman, E. L. Miller, and I. Pollak, eds.), p. 606509, San Jose, CA: Proc. SPIE
6065, January 2006.

[116] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of
the Royal Statistical Society, Series B, vol. 58, no. 1, pp. 267–288, 1996.

[117] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems. Wash-
ington, D.C.: V. H. Winston & Sons, 1977.

[118] E. W. Tramel and J. E. Fowler, “Video compressed sensing with multihypoth-
esis,” in Proceedings of the IEEE Data Compression Conference, (J. A. Storer
and M. W. Marcellin, eds.), pp. 193–202, Snowbird, UT, March 2011.

[119] M. Trocan, T. Maugey, J. E. Fowler, and B. Pesquet-Popescu, “Disparity-
compensated compressed-sensing reconstruction for multiview images,” in
Proceedings of the IEEE International Conference on Multimedia and Expo,
pp. 1225–1229, Singapore, July 2010.

[120] M. Trocan, T. Maugey, E. W. Tramel, J. E. Fowler, and B. Pesquet-Popescu,
“Compressed sensing of multiview images using disparity compensation,” in
Proceedings of the International Conference on Image Processing, pp. 3345–
3348, Hong Kong, September 2010.

[121] M. Trocan, T. Maugey, E. W. Tramel, J. E. Fowler, and B. Pesquet-Popescu,
“Multistage compressed-sensing reconstruction of multiview images,” in Pro-
ceedings of the IEEE Workshop on Multimedia Signal Processing, pp. 111–115,
Saint-Malo, France, October 2010.

[122] M. Trocan, B. Pesquet-Popescu, and J. E. Fowler, “Graph-cut rate distor-
tion algorithm for contourlet-based image compression,” in Proceedings of the
International Conference on Image Processing, pp. 169–172, San Antonio, TX,
September 2007.

[123] J. Tropp and A. Gilbert, “Signal recovery from random measurements via
orthogonal matching pursuit,” IEEE Transactions on Information Theory,
vol. 53, no. 12, pp. 4655–4666, December 2007.

[124] J. A. Tropp and S. J. Wright, “Computational methods for sparse solution of
linear inverse problems,” Proceedings of the IEEE, vol. 98, no. 6, pp. 948–958,
June 2010.

[125] Y. Tsaig and D. L. Donoho, “Extensions of compressed sensing,” Signal Pro-
cessing, vol. 86, no. 3, pp. 549–571, March 2006.

[126] N. Vaswani, “Kalman filtered compressed sensing,” in Proceedings of the Inter-
national Conference on Image Processing, pp. 893–896, San Diego, CA, Octo-
ber 2008.

[127] N. Vaswani, “LS-CS-Residual (LS-CS): Compressive sensing on least squares
residual,” IEEE Transactions on Signal Processing, vol. 57, no. 8, pp. 4108–
4120, August 2010.

Full text available at: http://dx.doi.org/10.1561/2000000033



122 References

[128] N. Vaswani and W. Lu, “Modified-CS: Modifiying compressive sensing for
problems with partially known support,” IEEE Transactions on Signal Pro-
cessing, vol. 58, no. 9, pp. 4595–4607, September 2010.

[129] R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass sam-
pling,” IEEE Transactions on Signal Processing, vol. 39, no. 9, pp. 1973–1984,
September 1991.

[130] M. B. Wakin, “A manifold lifting algorithm for multi-view compressive imag-
ing,” in Proceedings of the Picture Coding Symposium, Chicago, IL, May 2009.

[131] M. B. Wakin, J. N. Laska, M. F. Duarte, D. Baron, S. Sarvotham, D. Takhar,
K. F. Kelly, and R. G. Baraniuk, “An architecture for compressive imag-
ing,” in Proceedings of the International Conference on Image Processing,
pp. 1273–1276, Atlanta, GA, October 2006.

[132] M. B. Wakin, J. N. Laska, M. F. Duarte, D. Baron, S. Sarvotham, D. Takhar,
K. F. Kelly, and R. G. Baraniuk, “Compressive imaging for video represen-
tation and coding,” in Proceedings of the Picture Coding Symposium, Beijing,
China, April 2006.

[133] L. Wang, X. Wu, and G. Shi, “Progressive quantization of compressive sensing
measurements,” in Proceedings of the IEEE Data Compression Conference,
(J. A. Storer and M. W. Marcellin, eds.), pp. 233–242, Snowbird, UT, March
2011.

[134] T. Wiegand, X. Zhang, and B. Girod, “Long-term memory motion-
compensated prediction,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 9, no. 1, pp. 70–84, February 1999.

[135] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “Sparse reconstruction by
separable approximation,” IEEE Transactions on Signal Processing, vol. 57,
no. 7, pp. 2479–2493, July 2009.

[136] X. Wu, X. Zhang, and J. Wang, “Model-guided adaptive recovery of com-
pressive sensing,” in Proceedings of the IEEE Data Compression Conference,
(J. A. Storer and M. W. Marcellin, eds.), pp. 123–132, Snowbird, UT, March
2009.

Full text available at: http://dx.doi.org/10.1561/2000000033


	Acronyms
	Introduction
	Compressed Sensing
	An Overview of CS Theory
	Approaches to CS-Based Signal Acquisition
	Approaches to CS Reconstruction
	CS versus Source Coding

	Block-Based Compressed Sensing for Still Images
	CS Acquisition of Still Images
	Straightforward Reconstruction for Images
	Total-Variation Reconstruction
	CS with Blocks in the Spatial Domain
	CS with Blocks in the Wavelet-Domain
	Other Approaches to CS Reconstruction of Images
	Comparison of Various CS Techniques for Images
	Perspectives

	Block-Based Compressed Sensing for Video
	CS Acquisition of Video
	Straightforward CS Reconstruction for Video
	The Motion-Compensated BCS-SPL Algorithm
	Other Approaches to CS Reconstruction of Video
	Experimental Observations
	Perspectives

	Multihypothesis Prediction for Compressed Sensing of Video
	Prediction Strategies for Residual Reconstruction
	SH Frame Prediction for CS Reconstruction
	MH Frame Prediction for CS Reconstruction
	An Alternate 1-Based MH Regularization
	Experimental Observations
	Comparison of Various CS Techniques for Video
	Perspectives

	Compressed Sensing of Multiview Image and Video
	Single-View Reconstruction
	Multistage Reconstruction of Multiview Images
	Reconstruction of Multiview Video
	Experimental Observations
	Perspectives

	Conclusions
	Acknowledgments
	References



