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Abstract

We consider robust covariance estimation with an emphasis on Tyler’s
M-estimator. This method provides accurate inference of an unknown
covariance in non-standard settings, including heavy-tailed distribu-
tions and outlier contaminated scenarios. We begin with a survey of
the estimator and its various derivations in the classical unconstrained
settings. The latter rely on the theory of g-convex analysis which we
briefly review.

Building on this background, we enhance robust covariance estima-
tion via g-convex regularization, and allow accurate inference using a
smaller number of samples. We consider shrinkage, diagonal loading,
and prior knowledge in the form of symmetry and Kronecker struc-
tures. We introduce these concepts to the world of robust covariance
estimation, and demonstrate how to exploit them in a computationally
and statistically efficient manner.

A. Wiesel and T. Zhang. Structured Robust Covariance Estimation. Foundations
and TrendsR© in Signal Processing, vol. 8, no. 3, pp. 127–216, 2014.
DOI: 10.1561/2000000053.
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Notations and Acronyms

We summarize here the notation and acronyms used throughout the
survey.

We denote vectors by boldface lowercase letters, e.g., x ∈ Rn, and
matrices by boldface uppercase letters, e.g., A ∈ Rn,m. The identity
matrix of appropriate dimension is written as I. For a square matrix
A, Tr {A} is the trace, |A| is the determinant, A � 0 (A � 0) means
that A is symmetric and positive (nonnegative) definite, and A � B
means that A−B � 0. We denote the ordered eigenvalues of A ∈ Rp,p

by λ1 (A) ≥ · · · ≥ λp (A). The standard Euclidean norm is denoted
‖x‖. The operator vec (X) stacks the columns of the matrix X one
over the other and outputs a vector. The Kronecker product is denoted
by ⊗. We often denote the set of vectors {xi}ni=1 by X . For a subspace
L ∈ Rn of dimension dim (L), we denote the number of vectors in X
lying on it by N (L).

Following is a list of the most frequently used acronyms:

• LMMSE – Linear minimum mean squared error.

• MLE – Maximum Likelihood estimate.

• i.i.d. – independent and identically distributed.

• RMT – Random matrix theory.

2
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3

• MM – Majorization minimization.

• FIM – Fisher Information matrix.

• CRB – Cramer Rao bound.
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1
Preliminaries

In this chapter, we introduce the theory of g-convexity which will be
used throughout the monograph. We begin with a brief review of re-
lated results from linear algebra. Next, we define the abstract theory
of geodesic convexity over Riemannian manifolds. Finally, we particu-
larize it to the case of positive definite matrices.

1.1 Positive definite matrices

The main object of interest in this monograph is the covariance ma-
trix. Its most obvious properties are that it is symmetric and positive
definite. Thus, we begin by reviewing these concepts.

Definition 1.1. A square matrix Q is positive definite, denoted by Q �
0, if it is symmetric and satisfies

zTQz > 0 ∀ z 6= 0. (1.1)

Similarly, a matrix Q is positive semidefinite, denoted by Q � 0, if it
is symmetric and satisfies

zTQz ≥ 0 ∀ z. (1.2)

4
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1.1. Positive definite matrices 5

A few equivalent characterizations of positive definiteness are:

• A symmetric matrix Q is positive definite if and only if its eigen-
values are positive. Thus, it can be decomposed as

Q = UDUT (1.3)

where U is an orthogonal matrix, and D is a diagonal matrix
with positive elements.

• A matrix Q is positive definite if and only if it has a real square
root, i.e., it can be decomposed as

Q = RRT (1.4)

where R is a square invertible matrix. Two constructive choices
for computing R are the Cholesky and eigenvalue decompositions.

In general, two symmetric matrices cannot always be simultane-
ously diagonalized. However, things simplify when they are positive
definite.

Lemma 1.1 (Simultaneous diagonalization [40]). Let Q0 � 0 and
Q1 � 0 be two matrices. Then, there exist a joint diagonalization
decomposition

Q0 = VVT

Q1 = VDVT (1.5)

where V is square and invertible, and D is a diagonal matrix with
non-negative elements.

Proof. Due to its positivity, we decompose Q0 as Q0 = RRT . We
define Z = R−1Q1(R−1)T and note that Z is positive semidefinite. We
decompose Z as Z = UDUT where U is an orthogonal matrix and
D is a diagonal matrix with non-negative elements. Finally, we define
V = RU and obtain the required result.

Another important result on positive definiteness addresses block
partitioned matrices.

Full text available at: http://dx.doi.org/10.1561/2000000053



6 Preliminaries

Lemma 1.2 (Schur’s Complement [40]). Partition a symmetric matrix
X as

X =
[

A B
BT C

]
(1.6)

with C � 0. Define Schur’s complement as

S = A−BC−1BT . (1.7)

Then, X � 0 if and only if S � 0.

Proof. A matrix X is positive semidefinite if and only if TXTT is
positive semidefinite for an invertible matrix T. If C is invertible then
we have the following block Cholesky decomposition[

A B
BT C

]
=
[

I BC−1

0 I

] [
S 0
0 C

] [
I BC−1

0 I

]T
. (1.8)

The matrix
[

I BC−1

0 I

]
is invertible and a block diagonal matrix is

positive semidefinite if and only if its blocks are positive semidefinite.

Finally, in some derivations it is convenient to represent matrices
using their vectorized version:

Definition 1.2. Let A be an m × n matrix. Then vec (A) is a length
mn vector with the columns of A stacked one over the other.

A related notion is the Kronecker product of two matrices. It is a
generalization of the outer product between two vectors to matrices.

Definition 1.3. Let A be an m× n matrix with the elements aij , and
let B be a p× q matrix, then their Kronecker product is the mp× nq
block matrix

A⊗B =


a11B · · · a1nB
... . . . ...

am1B · · · amnB

 . (1.9)

Full text available at: http://dx.doi.org/10.1561/2000000053



1.2. G-convexity 7

An important identity relating the vec and Kronecker product op-
erators is

Tr
{
ATBCDT

}
= vec (A)T (D⊗B) vec (C) . (1.10)

Other properties of Kronecker products include (see [61] for more de-
tails):

(A⊗B) (C⊗D) = (AC⊗BD) (1.11)

(A⊗B)t =
(
At ⊗Bt

)
(1.12)

|A⊗B| = |A|p |B|p . (1.13)

In the first identity, we assume the matrices are conforming, in the
second we assume they are positive definite and in the last identity, we
assume that both are of size p× p.

1.2 G-convexity

We begin with a brief review on general g-convexity on Riemannian
manifoldsM. More details on this topic can be found in [70, 51, 11].

Definition 1.4. For each pair q0, q1 ∈ M we define a geodesic qq0,q1
t ∈

M for t ∈ [0, 1] as a continuous path connecting the pair1. For sim-
plicity, we omit the superscripts and assume q0 and q1 are understood
from the context.

Definition 1.5. A set S ⊆M is g-convex if qq0,q1
t ∈ S for any q0, q1 ∈ S

and t ∈ [0, 1].

Definition 1.6. A real-valued function f is g-convex on a g-convex set
S if f(qt) ≤ tf(q1) + (1 − t)f(q0) for any q0, q1 ∈ S and t ∈ [0, 1].
The function is strictly g-convex if f(qt) < tf(q1) + (1− t)f(q0) for all
q0 6= q1 ∈ S and t ∈ (0, 1).

1A more rigorous definition of a geodesic requires a metric and is associated with
the unique path of minimal length, but is not necessary for our exposition.
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8 Preliminaries

The most important property of g-convexity is the following theo-
rem.

Theorem 1.3 ([18]). Any local minimum of a g-convex function over
a g-convex set is a global minimum. The global minimizer of a strictly
g-convex function is unique.

Proof. Assume q0 6= q1 ∈ S are local minimizers of a g-convex function
f (q) over a g-convex set S. Assume in contradiction that only q1 is a
global minimizer. Let qq0,q1

t ∈ S be the geodesic between them. Then,

f (qq0,q1
t ) ≤ tf (q1) + (1− t) f (q0)

< f (q0) , ∀ t ∈ (0, 1], (1.14)

where the first inequality is due to geodesic convexity and the second
due to f (q1) < f (q0). For sufficiently small t, this is a contradiction to
local optimality of q0.

For the second part of the statement, we assume in contradiction
that q0 6= q1 ∈ S are both global minimizers of a strictly g-convex
function f (q) over a g-convex set S. Let qq0,q1

t ∈ S be the geodesic
between them. Then,

f (qq0,q1
t ) < tf (q1) + (1− t) f (q0) (1.15)

= f (q0) , ∀ t ∈ (0, 1], (1.16)

which is a contradiction to the global optimality of q0.

Theorem 1.3 is of paramount importance. Its application to classical
convexity led to the overwhelming interest in convex optimization in
almost all fields of engineering. Finding local minima of well-behaved
functions is a tractable task via simple descent algorithms, whereas
finding global minima is typically a much harder problem. Thus, in
some sense, convexity has become a synonym for tractability. When one
encounters an optimization problem, it is standard to check whether it
is convex and if it is not then to try and find a convex approximation.
But in fact Theorem 1.3 is more general and holds also for g-convex sets
and functions. This generalization is less known and has only attracted
attention in the last years. Specifically, in this chapter, we will show

Full text available at: http://dx.doi.org/10.1561/2000000053



1.3. G-convexity for positive definite matrices 9

that the optimization problems associated with Tyler’s M-estimator
are all g-convex rather than classically convex.

The above definitions and results are general for arbitrary man-
ifolds. The most famous use of g-convexity is classical convexity on
Euclidean manifolds. In this setting, the geodesic is a simple segment

qq0,q1
t = (1− t)q0 + tq1 (1.17)

and there is a great body of knowledge on its associated convex sets
and functions, e.g. [18].

Two intuitive results allow us to easily identify g-convex functions:

Lemma 1.4 (Convexity with respect to t [70]). A function f on a g-
convex set S is g-convex if f (qt) is classically convex in t ∈ [0, 1] for
any q0, q1 ∈ S.

Lemma 1.5. [Midpoint convexity] A continuous function f on a g-
convex set S is g-convex if f(q 1

2
) ≤ 1

2f(q1) + 1
2f(q0) for any q0, q1 ∈ S.

Proof. By applying midpoint convexity to q0 = 0 and q1 = 1, Def-
inition 1.6 holds for t = 1

2 . Applying midpoint convexity again to
(q0, q1) = (0, 1

2) and (1
2 , 1), Definition 1.6 holds for t = 1

4 ,
2
4 ,

3
4 . Ap-

plying the midpoint convexity repeatedly we obtain Definition 1.6 for
any t = m

2n for integers m,n > 0 and m < 2n. By the continuity of f ,
Definition 1.6 holds for any 0 < t < 1.

1.3 G-convexity for positive definite matrices

In this section, we restrict the attention to g-convexity on a specific
manifold, the cone of positive definite matrices. With each Q0 �
0,Q1 � 0 we associate the geodesic

Qt = Q
1
2
0

(
Q−

1
2

0 Q1Q
− 1

2
0

)t
Q

1
2
0 , t ∈ [0, 1]. (1.18)

The derivation of this fact can be found at [15, Section 6.1.6]. For sim-
plicity, hereinafter we define g-convexity as g-convexity on the positive
definite cone using the above geodesic.

Full text available at: http://dx.doi.org/10.1561/2000000053



10 Preliminaries

To get more insight into the form of this geodesic, it is instructive
to consider the special case in which Q0 and Q1 are positive scalars
denoted q0 and q1. In this case, the geodesic reduces to

qt = q1−t
0 qt1 (1.19)

which is quite intuitive and is simply a regular line after an exponential
change of variable. Throughout this chapter, we will follow each result
by considering its special scalar case. This will provide more intuition
and is important for testing the validity of the results. Note that this
scalar case is in fact the workhorse behind the successful Geometric
Programming (GP) framework [17]. In some sense, one may interpret
the results below as a matrix extension of the GP framework.

The scalar intuition can be formally extended to the matrix case via
joint diagonalization. Using Lemma 1.1, we apply the decomposition

Q0 = VVT

Q1 = VDVT (1.20)

where V is square and invertible, and D is diagonal with positive ele-
ments. It is straightforward to show that the geodesic between them is
simply

Qt = VDtVT (1.21)

There is an interesting relation between the geodesic in (1.18) and
the arithmetic-geometric mean inequality. In scalars, this seminal in-
equality states that

qt = q1−t
0 qt1 ≤ (1− t)q0 + tq1 (1.22)

The geodesic in (1.18) can be interpreted as the natural matrix exten-
sion and follows a similar matrix inequality.

Theorem 1.6. The matrix geodesic satisfies the arithmetic-geometric
inequality

Qt = Q
1
2
0

(
Q−

1
2

0 Q1Q
− 1

2
0

)t
Q

1
2
0 � (1− t)Q0 + tQ1 (1.23)

Full text available at: http://dx.doi.org/10.1561/2000000053



1.3. G-convexity for positive definite matrices 11

Proof. Using the simultaneous diagonalization definition of the
geodesic, we need to show that

RDtRT � R [(1− t) I + tD] RT (1.24)

The matrix R is invertible, and the inequality reduces to

I1−tDt � (1− t) I + tD (1.25)

which, due to the diagonal structure, is simply multiple scalar
arithmetic-geometric inequalities.

The midpoint of the geodesic, denoted by Q 1
2
, is typically inter-

preted as the matrix geometric mean [60]. It has an elegant character-
ization via its extremal properties.

Theorem 1.7 (Extremal characterization of geometric mean). The posi-
tive definite geometric mean satisfies

Q 1
2
� Z (1.26)

for any symmetric Z that satisfies[
Q0 Z
Z Q1

]
� 0. (1.27)

Scalar intuition: In the scalar case, we have[
q0 z

z q1

]
� 0 ⇔ |z| ≤ √q0q1 (1.28)

and the maximum value of z is the well known scalar geometric mean.

Proof. Using the simultaneous diagonalization definition of the
geodesic, we need to show that

D
1
2 � Z ∀ Z = ZT :

[
I Z
Z D

]
� 0. (1.29)

Using Schur’s Lemma 1.2, the condition is equivalent to D � ZZT .
Both sides of this matrix inequality are positive definite, thus we can
take their square roots and obtain the required result.
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12 Preliminaries

In the sequel, the following properties of the geodesic will be useful.

Lemma 1.8. The inverse operator commutes with the geodesic

([Q]t)
−1 =

[
Q−1

]
t
. (1.30)

Scalar intuition: This lemma is trivial in the scalar case.

Proof. The proof is straightforward by the fact that the inverse opera-
tor commutes with the matrix power operation in the definition of the
geodesic.

Lemma 1.9. The matrix Kronecker product commutes with the
geodesic

[Q1]t ⊗ · · · ⊗ [QK ]t = [Q1 ⊗ · · · ⊗QK ]t . (1.31)

Proof. The identity holds due to properties (1.11)-(1.12).

Lemma 1.10 (Positive linear maps [15]). Let B � 0 and define the
positive linear map

φ (Q) = AQAT + B (1.32)

then the following inequality holds

φ
(
[Q] 1

2

)
� [φ (Q)] 1

2
. (1.33)

Equality holds when B = 0 and A is square and invertible .

Proof. By the extremal characterization of [φ (Q)] 1
2
we have

[φ (Q)] 1
2
� Z ∀ Z = ZT :

[
φ (Q0) Z

Z φ (Q1)

]
� 0 (1.34)

Thus, we need to show that Z = φ
(
[Q] 1

2

)
satisfies the condition on Z.

By extreme characterization of the Q 1
2
we know that

[
Q0 Q 1

2
Q 1

2
Q1

]
� 0. (1.35)

Full text available at: http://dx.doi.org/10.1561/2000000053



1.3. G-convexity for positive definite matrices 13

Define

Ã =
[

A 0
0 A

]
, B̃ =

[
B B
B B

]
(1.36)

and note that B̃ is positive semidefinite. Multiplying both sides by Ã
and ÃT and adding B̃ � 0 will not change the inequality, and we obtain[

AQ0AT + B AQ 1
2
AT + B

AQ 1
2
AT + B AQ1AT + B

]
=
[
φ (Q0) φ (Z)
φ (Z) φ (Q1)

]
� 0 (1.37)

which is exactly what we needed to show. When B = 0 and A is invert-
ible, equality holds since the product of invertible matrices commutes
with the inverse and matrix square root operation.

It is straightforward to consider joint g-convexity on multiple pos-
itive definite matrices. The joint geodesic between multiple pairs of
matrices is simply the multiple individual geodesics. Actually, it can
be conveniently expressed using a single large block-diagonal and pos-
itive definite matrix.

The geodesic in (1.18) is the starting point for the following g-
convex analysis. We now review its fundamental g-convex sets, g-convex
functions and the operations that preserve g-convexity.

1.3.1 G-convex sets

The most obvious g-convex set is the manifold itself, i.e., the cone of
positive definite matrices. The Cartesian product of a few such cones
is also g-convex. The canonical approach to characterize this manifold
is via a block diagonal matrix which consists of the various positive
definite matrices in its diagonal blocks.

Theorem 1.11. The set of block diagonal positive definite matrices
(with prescribed and known blocks) is g-convex. A special case is the
set of diagonal positive definite matrices.

The proof is trivial and omitted.
Another g-convex set is the set of matrices which are invariant to

congruence transformations:
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14 Preliminaries

Theorem 1.12. Let U be a set of orthogonal matrices, then the set
F =

{
Q � 0 : Q = UQUT ∀ U ∈ U

}
is g-convex.

Proof. We assume that Q0 = UQ0UT and Q1 = UQ1UT . By def-
inition, Qt is the geodesic between Q0 and Q1. Due to the assump-
tion, it is also the geodesic between UQ0UT and UQ1UT . Therefore,
Qt =

[
UQUT

]
t
and applying Lemma 1.10 yields Qt = UQtUT as

required.

Surprisingly, Theorems 1.11 and 1.12 are highly related. Group rep-
resentation theory shows that if U is a unitary group2, then the set F
can be characterized as the set of matrices that can be “rotated” into a
block diagonal form using a known and prescribed basis, e.g., [73, 74].
A well known example is the set of circular positive definite matrices.
It is invariant to shifts, and can be rotated into a diagonal form using
the Fourier transform.

1.3.2 G-convex functions

Next, we turn to the basic g-convex functions. First, we introduce the
fundamental g-linear function which is both g-convex and g-concave
(i.e., its negative is g-convex). In the scalar case, g-convexity is sim-
ply convexity after an exponential change of variables. Thus, the scalar
g-linear function is the logarithm. The natural multidimensional exten-
sion is the log-determinant.

Lemma 1.13. The functions

f (Q) = ±log |Q| (1.38)

are g-convex.

Proof. Plugging the geodesic in (1.21) into the function yields

f (Qt) = ±log
∣∣∣RDtRT

∣∣∣
= ±2log |R| ± tlog |D| (1.39)

2A unitary group is a set of unitary matrices including the identity matrix and
closed under multiplication and inversion
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1.3. G-convexity for positive definite matrices 15

which is clearly a linear (and convex function) in t:

f (Qt) = tf (Q0) + (1− t)f (Q0) .

This result is counterintuitive. In classical convexity the log deter-
minant is a concave function whereas in our manifold it is g-convex.

Lemma 1.14. Let h ∈ Rm. The function

f (Q) = hTQh (1.40)

is strictly g-convex (unless h = 0).

Scalar intuition: In this case, the function reduces to h2q. After a
change of variable q = ez, we obtain a simple convex function h2ez.

Proof. Substituting Qt in (1.21) instead of Q yields

f (Qt) = hTRDtRTh

=
m∑
i=1

[
RTh

]2
i
Dt
ii

=
m∑
i=1

[
RTh

]2
i
etlog Dii (1.41)

which is strictly convex in t since it is a positively weighted sum of
strictly convex exponential functions. Strictness is due to the full rank
property of R and RTh 6= 0. Strict g-convexity of f(Q) follows from
the definition and the strict convexity in t.

A direct consequence is the following result.

Lemma 1.15. The function g(Q) = Tr {Q} is strictly g-convex.

Proof. The trace is the sum of (1.40) with hi being the unit vectors.
Thus, the proof is a direct application of Lemma (1.14).

Lemma 1.16. The condition number

f (Q) = λmax (Q)
λmin (Q) . (1.42)

is g-convex.
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Proof. We use the variational characterization of extreme eigenvalues:

λmax (Q) = max
u:‖u‖=1

uTQu (1.43)

1
λmin (Q) = λmax

(
Q−1

)
= max

v:‖v‖=1
vTQ−1v (1.44)

Due to the monotonicity of the logarithm, we obtain

f (Q) = emaxu:‖u‖=1 log(uTQu)+maxv:‖v‖=1 log(vTQ−1v). (1.45)

Plugging in the geodesic in (1.18) yields convex log-sum-exp functions
in the maximizations objective. Finally, the point-wise maximum of a
set of convex functions is convex, and the exponent of a convex function
is also convex, e.g., [18].

1.3.3 Operations that preserve g-convexity

To enrich the class of g-convex sets and functions, it is instructive to
consider operations that preserve g-convexity. See also [77] for more
results and details.

Lemma 1.17. Let f (Q) be a g-convex function. Then so is g (Q) =
f
(
Q−1).

Proof. We use the following chain of inequalities

g (Qt) = f
(
([Q]t)

−1
)

= f
([

Q−1
]
t

)
Lemma 1.8

≤ (1− t)f
([

Q−1
]

0

)
+ tf

([
Q−1

]
1

)
= (1− t)g (Q0) + tg (Q1) (1.46)

Scalar intuition: Thus, q = ez and its inverse is given by q−1 = e−z.
If f(ez) is convex then f(e−z) is convex too since affine transformations
preserve convexity.

In the classical sense, the most important operation that preserves
convexity is affine transformations. In the g-convexity counterpart,
these transformations are more complex as we must remain within the
symmetric positive definite cone.
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1.3. G-convexity for positive definite matrices 17

Lemma 1.18 ([77]). Let f (Q) be a continuous, monotonically in-
creasing in the sense that f (Q1) ≤ f (Q2) for Q1 � Q2, and g-
convex function. Let A and B � 0 be fixed matrices. Then g (Q) =
f
(
AQAT + B

)
is also g-convex.

Proof. We use the following chain of inequalities

g
(
Q 1

2

)
= f

(
A [Q] 1

2
AT + B

)
≤ f

([
AQAT + B

]
1
2

)
≤ 1

2f
([

AQAT + B
]

0

)
+ 1

2f
([

AQAT + B
]

1

)
= 1

2g (Q0) + 1
2g (Q1) (1.47)

where the first inequality is due to monotonicity and Lemma 1.10,
and the second due to g-convexity. Applying Lemma 1.5, the geodesic
midpoint convexity (1.47) of a continuous function implies its geodesic
convexity.

Scalar intuition: Specializing AQAT + B to the scalar case yields
ezloga2+logb. This is an affine transformation which preserves convexity.

Note the expressive power of Lemmas 1.17 and 1.18. The following
result is a direct corollary.

Lemma 1.19. Let Hi for i = 1, · · · , n be a set of fixed matri-
ces whose columns span the real space. The function f (Q) =
log

∣∣∣∑n
i=1 HiQ±1HT

i

∣∣∣ is g-convex.
Scalar intuition: In the scalar case, the logdet function is a simple

logarithm and, after a change of variables, its argument is a sum of
exponents. Indeed, it is well known that the log-sum-exp function is
convex.

In the special case when Hi are vectors, we can also examine strict
g-convexity.

Lemma 1.20. Let hi ∈ Rm be nonzero vectors for i = 1, · · · , n. The
function

f (Q) = log
(

n∑
i=1

hTi Qhi
)

(1.48)
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is g-convex. Equality holds in f([Q] 1
2
) ≤ 1

2(f(Q0) + f(Q1)) if and only

if {Q
1
2
0 hi}ni=1 spans an eigenspace of Q−

1
2

0 Q1Q
− 1

2
0 .

Proof. G-convexity can be proved as a special case of Lemma 1.19. To
analyze the strictness condition, we use a different proof. Eliminating
the logarithms, we need to show that(

n∑
i=1

hTi [Q] 1
2

hi
)2

≤
(

n∑
i=1

hTi Q0hi
)(

n∑
i=1

hTi Q1hi
)

(1.49)

To simplify the notation, we define

ui = Q
1
2
0 hi

vi =
(

Q−
1
2

0 Q1Q
− 1

2
0

) 1
2

Q
1
2
0 hi (1.50)

and (1.49) is equivalent to(
n∑
i=1

uTi vi
)2

≤
(

n∑
i=1
‖ui‖2

)(
n∑
i=1
‖vi‖2

)
. (1.51)

We prove this using the Cauchy-Schwartz inequality twice(
n∑
i=1

uTi vi
)2

=
(

n∑
i=1
|uTi vi|

)2

≤
(

n∑
i=1
‖ui‖‖vi‖

)2

≤
(

n∑
i=1
‖ui‖2

)(
n∑
i=1
‖vi‖2

)
(1.52)

In the first inequality, we bound each bilinear term independently. In
the second inequality, we bound their sum. Equalities hold if and only
if ui = civi for some ci and for all i, and ‖ui‖ = d‖vi‖ for some d and
for all i. Together, ci must all be identical. In terms of Q0, Q1 and
hi, this means that {Q

1
2
0 hi}ni=1 are all eigenvectors of Q−

1
2

0 Q1Q
− 1

2
0 and

share the same eigenvalue.

Lemma 1.21. Let f (Q) be a g-convex function, then g (Q1, · · · ,QK) =
f (Q1 ⊗ · · · ⊗QK) is jointly g-convex in all of its arguments.
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Proof.

tf ([Q1]1 ⊗ · · · ⊗ [QJ ]1) + (1− t)f ([Q1]0 ⊗ · · · ⊗ [QJ ]0)
= tf ([Q1 ⊗ · · · ⊗QJ ]1) + (1− t)f ([Q1 ⊗ · · · ⊗QJ ]0)
≥ f ([Q1 ⊗ · · · ⊗QJ ]t) g − convexity
= f ([Q1]t ⊗ · · · ⊗ [QJ ]t) Lemma 1.9 (1.53)

Scalar intuition: In the scalar case, the Kronecker product is a regu-
lar product. After an exponential change of variables, products become
sum. It is well known that regular convexity is preserved under sums.

1.4 Majorization-minimization algorithm

In this section, we provide an introduction to the majorization-
minimization (MM) algorithm. More details on the method and its
analysis are available in [41, 31, 71]. The approach seeks to minimize
a difficult objective function by iteratively minimizing “easier” upper
bounds. Formally, suppose we want to find the minimizer of f(x) in a
set D, denoted by

arg min
x∈D

f (x) . (1.54)

The iterations are defined as

xk+1 = T (xk), T (xk) = arg min
x∈D

U (x, xk) , (1.55)

where the majorization surrogate function (the upper bound) satisfies

U (x, xk) ≥ f (x) ∀ x, xk,

U (xk, xk) = f (xk) ∀ xk. (1.56)

Under technical conditions formally described below, these properties
ensure monotonicity of the algorithm and attainment of a local mini-
mum. The convergence of algorithms in the rest of the book are proved
by combining this theorem with the properties of the functions f and
U used in the various algorithms.
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Theorem 1.22. When f and T are continuous functions and f is
bounded from below, any accumulation point of the sequence xk, x̂,
is a minimizer of U(x, x̂) if it lies in the interior of D. In particular:

• If the minimizer of U(x, x̂) is unique, then x̂ = T (x̂), that is, x̂ is the
fixed point of the mapping T .

• If U and f are differentiable, then x̂ is a stationary point of f(x).

Proof. First of all, f(xk) is a nonincreasing sequence:

f(T (xk)) = f(xk+1) ≤ U(xk+1, xk) ≤ U(xk, xk) = f(xk). (1.57)

Since f is bounded from below, f(xk) converges. Therefore, for the
converging subsequence {xmk}k → x̂, limk→∞ f(T (xmk))−f(xmk) = 0.
Applying the continuity of f and T , we have f(T (x̂)) = f(x̂), and the
equality in (1.57) holds if xk and xk+1 are replaced by x̂ and T (x̂).
Since the second inequality in (1.57) achieves equality, x̂ is a minimizer
of U(x, x̂).

The proof of the special cases are as follows:

• When the minimizer of U(x, x̂) is unique, by definition it is T (x̂),
and we have T (x̂) = x̂.

• If x̂ is not a stationary point of f , then U ′(x, x̂)|x=x̂ = f ′(x̂) 6= 0,
and we have U(T (x̂), x̂) = minx U(x, x̂) < U(x̂, x̂), where the first
equality follows from (1.56). Applying the same argument as in
(1.57), it contradicts the conclusion that f(x̂) = f(T (x̂)).
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