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Abstract

The human visual system (HVS) has evolved to have the ability to se-
lectively focus on the most relevant parts of a visual scene. This mecha-
nism, referred to as visual attention (VA), has been the focus of several
neurological and psychological studies in the past few decades. These
studies have inspired several computational VA models which have been
successfully applied to problems in computer vision and robotics. In
this paper we provide a comprehensive survey of the state-of-the-art in
computational VA modeling with a special focus on the latest trends.
We review several models published since 2012. We also discuss the-
oretical advantages and disadvantages of each approach. In addition,
we describe existing methodologies to evaluate computational models
through the use of eye-tracking data along with the VA performance
metrics used. We also discuss shortcomings in existing approaches and
describe approaches to overcome these shortcomings. A recent subjec-
tive evaluation for benchmarking existing VA metrics is also presented
and open problems in VA are discussed.

M. S. Gide and L. J. Karam Computational Visual Attention Models. Foundations
and TrendsR© in Signal Processing, vol. 10, no. 4, pp. 347–427, 2016.
DOI: 10.1561/2000000055.
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1
Introduction

1.1 What is visual attention?

Everyone knows what attention is. It is the taking posses-
sion by the mind, in clear and vivid form, of one out of
what seem several simultaneously possible objects or trains
of thought.

William James, 1890.

Every time we open our eyes, the human visual system (HVS) is bom-
barded with vast amounts of visual information. It is estimated that
this information is in the order of 109 bits per second [35, 48]. This in-
formation is so vast that the neuronal “hardware” in our brain (specif-
ically the visual cortex) is not capable of processing it all at once. As
a result, our brains have evolved certain mechanisms that allow us to
selectively process relevant portions of the information by using the
available limited resources. The broad area of research that involves
the study of the neuro-physiological underpinnings and computational
modeling of these mechanisms is known as visual attention (VA).

Figure 1.1 illustrates how humans employ the VA mechanism in
real life. Eye-tracking maps obtained over 15 human observers while

2
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1.2. Different aspects of VA 3

Stimulus

Eye-tracking
(a)Telephone (b) Stop Sign (c) Weights

Figure 1.1: Demonstration of VA while viewing stationary scenes. On casual view-
ing of these images most humans focus on selective regions in them like the telephone,
the stop sign and the weights. Images and eye-tracking data have been taken from
the Toronto dataset [5].

viewing the stimulus images show that humans tend to notice only the
main objects of interest, i.e., the phone, the stop sign and the weights in
these images, and tend to ignore the background when the images are
viewed casually as we would a photo-album. In the eye-tracking maps
a brighter pixel value denotes a higher probability of the corresponding
pixel being fixated by humans.

1.2 Different aspects of VA

VA has been an active topic of research over the past few decades
and researchers from diverse scientific backgrounds such as psychology,
physiology and neuroscience have expounded different theories to ex-
plain different aspects of VA such as pre-attentive and attentive VA,
bottom-up and top-down components of VA, serial and parallel search
in VA, overt and covert VA and so on. Although these different aspects
of VA have some overlap, it is useful to delve into them to understand
VA in more details.

1.2.1 Preattentive and attentive stages of visual attention

Neisser and Hoffman [53, 24] proposed a theory in which the VA pro-
cess is looked at from a signal processing view point, and is divided into

Full text available at: http://dx.doi.org/10.1561/2000000055



4 Introduction

two stages. The first stage is a pre-attentive stage in which basic fea-
tures like color, orientation, edge-information, or motion are extracted
from the scene. This extraction of features occurs over the entire scene
independent of attention. This theory is based on the fact that, in the
primary visual cortex, there are several simple cells that extract these
features based on their receptive fields by applying different filters on
the input stimulus. The pre-attentive stage consists of high speed and
parallelized operations that are involuntary in nature. Once these pre-
attentive features are extracted, they are integrated by an attention
stage that identifies the regions with the most “relevant” information
and fixates on these regions to observe them in greater detail. Due
to the integration, different features in the pre-attentive stage may be
bound together or the dominant features may be selected. The pre-
attentive stage and the attention stage are also referred to as “vision
before attention” and “vision with attention” attention stage called
vision with attention in some works such as [81], respectively.

1.2.2 Bottom-up and top-down mechanisms of visual attention

A number of experiments [81, 10] conducted in the past few decades
point to a two-component framework for explaining how attention is de-
ployed. According to this framework, VA mechanisms can be separated
into bottom-up and top-down components that are inter-related but
conceptually complementary to each other. Bottom-up attention usu-
ally occurs in the pre-attention stage and is a result of simple center-
surround operations on basic features extracted in the pre-attentive
stage like color, orientation, motion, etc. The bottom-up component
of VA is attracted to visually conspicuous areas in the scene automati-
cally irrespective of task and hence is also known as the stimulus-driven
attention component. The bottom-up component is a very fast, almost
instantaneous component, as it is handled by early vision regions in
the primary visual cortex that operate in parallel. On the other hand,
the top-down component is highly dependent on the task at hand as
well as the mental state and prior experiences of the observer. In a
famous experiment conducted by Yarbus [83], a complex scene of peo-
ple in a family room was shown to several human observers and they
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1.2. Different aspects of VA 5

were either asked no questions or were asked questions of a varying na-
ture like estimating the age of the people in the scene, or remembering
the position of certain objects in the scene. The results showed that
the eye tracking data of the observers varied significantly depending
on whether a question was asked and if a question was asked, also on
the type of question. For example, when the observers were asked to
estimate the age of the people in the scene, most eye-movements were
located on the faces. When they were asked to remember the position
of an object, the fixations were located on or near the objects. As the
top-down component depends on the task in question, it is also called
the task-driven component. The top-down component is believed to be
processed in the higher visual cortex and is a much slower component
than the bottom-up component. In general, the top-down component
is not totally independent of the bottom-up component, and the VA
mechanism is considered to be the result of an interplay of both these
components.

1.2.3 Parallel vs serial processing in VA

The vast network of interconnected neurons in the human brain allows
visual information incident on the retina to be processed in parallel.
This is true specially in certain areas of the primary visual cortex that
are part of the pre-attentive processing described earlier. However, the
shifts in gaze that are guided by attention which helps humans focus on
different objects in a complex scene, take place serially. Triesman and
Gelade [74] constructed certain psychovisual examples of serial and par-
allel processing similar to those seen in Figure 1.2. The results showed
that when the target differs from the distractors in a single feature,
it is identified instantaneously through a parallel search mechanism
as seen in Figure 1.2(a) where the target differs from the distractors
in only the color dimension. Also, in this case, the speed with which
the target is identified does not change with an increasing number of
distractors. On the other hand, when the target differs from the dis-
tractors in more than one feature, the search is serial and the time
taken to find the target is much more and increases with an increase
in the number of distractors. This is seen in Figure 1.2(b) where the
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6 Introduction

(a) Parallel Search. (b) Serial Search.

Figure 1.2: Illustration of parallel vs serial search.

target differs from the distractors in both color and shape. As a result,
for real-world complex scenes, the search for the target is mostly serial
in nature.

1.2.4 Overt and covert VA

The human visual system (HVS) is constantly seeking relevant infor-
mation from a visual scene by shifting the gaze from one interesting
region to another through a process known as attention shift [37]. As
part of this process, the uniqueness of an already fixated upon region
weakens and the next interesting region is fixated upon. This shift in
gaze involves eye-movements to the next interesting location and is
known as overt attention. Most studies in VA use eye-tracking devices
to track the eye-movements of humans while viewing stimuli images.
As a result, most of the computational models are geared towards overt
attention.

The HVS also has an ability to attend to regions in a scene with-
out explicit eye-movements. This type of attention is known as covert
attention. An example of covert attention is when a driver notices and
understands traffic signs without explicitly moving his eyes towards
them. Covert attention is an important evolutionary trait that helps
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1.3. Psychological and physiological theories explaining VA 7

humans attend to important changes in the visual environment in the
periphery without loosing focus of the current attended object.

1.3 Psychological and physiological theories explaining visual
attention

1.3.1 Gestalt principles

Gestalt principles are rules of perceptual organization formulated by
a group of researchers in the early 20th century to explain how hu-
mans group multiple elements in a complex visual scene. Gestalt is the
German word for “shape” or “form”. These rules dictate how humans
perceive certain objects as individual items whereas in other cases a
group of objects with common features are thought of as a single en-
tity. Some of the basic principles that are exploited in computational
VA models follow:

• Figure-ground articulation: In the case of a uniform image with no
variation, according to the Gestalt principles there is no internal
organization. However, in the case of an inhomogenous field with
a patch of color surrounded by a different background color as
shown in Figure 1.3, the field is considered to be composed of
two distinct components, the figure (colored patch) on ground
(surrounding background). The difference in figure-ground could
be in any other dimension apart from color. The figure is assigned
object-like properties and receives more attention, whereas the
ground is treated as background and is not considered salient.
This leads to the important property of surroundedness of salient
objects that is used in VA models like BMS ([84]) as discussed
later in Section 2.1.2.

• Proximity: In a scene, objects close to each other are usually
grouped together as one single entity. For example in Figure 1.4,
in the image to the left, the group of circles is taken to be a single
object (a square), whereas in the image to the left, three different
“columns” of circles are perceived.

Full text available at: http://dx.doi.org/10.1561/2000000055



8 Introduction

Figure 1.3: Figure-ground articulation.

• Similarity: In a scene, objects similar to each other in some re-
spect are also grouped as one single entity. For example in Fig-
ure 1.5, the rows of dark and light circles are considered as dif-
ferent entities even though according to the proximity principle
they could be considered as a single square entity.

• Symmetry: According to this principle the HVS has a tendency
to be sensitive towards objects that possess symmetry. As a re-
sult, two unconnected elements which are symmetric about a cer-
tain axis will be perceived as a single object. This is illustrated
in Figure 1.6. The image shown is interpreted as three sets of
parentheses instead of six different ones. The symmetry princi-
ple is applied in the VA model developed by Kootstra [40] that
equates saliency of a region to how symmetric it is.

1.3.2 Feature integration theory

The feature integration theory introduced by Triesman and Gelade [74]
is based on the notion of pre-attentive vision (Section 1.2.1) in which
features are extracted early, involuntarily, and in parallel over the entire
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1.3. Psychological and physiological theories explaining VA 9

Figure 1.4: Proximity.

Figure 1.5: Similarity.

Figure 1.6: Symmetry.

scene, before objects are recognized. The recognition of objects happens
at a much later stage and in a separate process that requires focused
attention. Basic separable features like color, orientation, spatial fre-
quency, and motion are extracted at the early stage to give feature
maps. According to this hypothesis, at this stage, the feature maps
float free, in that though they are perceived, they do not contribute

Full text available at: http://dx.doi.org/10.1561/2000000055



10 Introduction

to knowledge about location of objects as such. In the attentive stage,
these features are combined by stimulus location and features that are
present for a specific attentive fixation are combined to form an object,
the focal attention providing a glue that binds together the initially
independent features. Once the objects have been recognized, they are
stored and remembered for some time before memory decay or inter-
ference may cause the features to go into a free-floating state again.
According to this theory, without focused attention, the features can-
not be related to each other and stay independent and separable. The
feature maps can be treated as binary maps, which signal the pres-
ence or absence of a certain feature. If the presence of a single feature
is enough to complete the task (i.e., identify the target from the dis-
tractors in the experiments conducted in [74]), the attention stage is
not required and the task is completed in parallel and in a rapid man-
ner. However, if the task requires conjunction and relies on more than
one feature, the attention stage is called upon and fixated regions are
scanned serially to complete the task.

1.3.3 Boolean map theory

A competitive theory to the feature integration theory is the Boolean
Map Theory proposed by Huang and Pashler [28]. This theory deals
with the aspects of “access” and “selection” in VA. “Access” defines
what an observer can visually apprehend in the scene at any given
moment whereas “selection” represents the mechanism of VA that con-
trol what regions are accessed. A boolean map is considered to be a
spatial representation that partitions the visual scene into two distinct
regions, a selected region and a non-selected region, based on a single
featural label per dimension. A featural label provides an overall feat-
ural description of the entire map. For example, in Figure 1.7, for the
Boolean map, there could be a label that covers the two shapes but
this label does not define the greenness or redness of the objects as
that would not cover both the objects. There can be independent fea-
tural labels that can comprise a Boolean map that belong to different
dimensions; for example, a Boolean map can have redness as a color
label and verticalness as an orientation label. A single Boolean map
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1.3. Psychological and physiological theories explaining VA 11

Figure 1.7: Figure illustrating the concept of a boolean map. The three possible
boolean maps are (top) map describing the shape and color of the red disk, (middle)
map the shape and color of the green-square, (bottom) map describing only the
shapes of the two circle and square objects but not their color. Image reproduced
from Huang and Pashler [28].

describes the visual awareness of an observer of a scene at any given
time instant. For complex scenes, different Boolean maps are combined
through operations of intersection and union to direct attention. The
boolean map theory is used by the Boolean Map Saliency (BMS) [84]
algorithm described in Section 2.1.2.

1.3.4 Computational modeling of VA

Concept of saliency map

Koch and Ulman [37] developed the first biologically inspired VA model
that was based on the Feature Integration Theory. In this work, the
concept of a saliency map was introduced for the first time. The saliency
map is a two dimensional topographic map that denotes the visual
conspicuousness of a pixel. The higher the value, the more conspicuous
or salient a pixel will be. In Koch and Ulman [37], first low-level features
are first extracted in parallel similar to that in the pre-attentive stage to
obtain several topographic feature maps. These feature maps are then
combined to give a global topographic saliency maps. All the other VA
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12 Introduction

models that have been developed since then use a similar concept of a
saliency map.

Main stages in computational modeling

Most computational VA models that are in some way based on the
feature integration theory and the concept of a “saliency map” consist
of the following stages in their processing pipeline [21]:

1. Feature Extraction

In this stage, features based on color, orientation, depth, motion
and other low-level properties of images are extracted over the
entire spatial extent of the image. These feature-extraction oper-
ations mimic those performed by the simple cells in the primary
visual cortex and usually include some level of multi-resolution
analysis in the form of pyramidal decompositions.

2. Feature Activation

This stage performs the center-surround difference operations
that correspond to those performed by the receptive-fields of the
neurons in the HVS which helps in identifying regions that “pop-
out” from their surroundings.

3. Normalization/Combination

In this stage, the different activation maps are combined after
normalization to give the final saliency map which denotes how
salient each pixel in the image is.

1.4 Eye-tracking data and evaluation of VA models

Ideally, the saliency map that is produced by a computational VA
model should highlight the regions that are attended to by humans.
Thus, to evaluate the performance of VA models, first, a set of images
varying in their content are shown to a number of humans under an
experimental setup and the humans’ fixations are recorded by instru-
ments known as eye-trackers. The eye-trackers work on the principle
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1.4. Eye-tracking data and evaluation of VA models 13

(a) Fixation points (b)Fixation density map

Figure 1.8: Fixation points and fixation density map for an image from the Toronto
database [5].

Figure 1.9: Block diagram for the typical process of VA model evaluation using
eye-tracking data.

of Purkinje reflections in which infra-red light incident on the eyeballs
of the subject gets reflected in three different ways. The angle of the
reflected light can then be used to compute the location which was
fixated upon on the screen. The data obtained is averaged over sev-
eral subjects to get eye-tracking data that is made available for the
research community to use along with the stimuli images in the form
of a dataset. There are several such datasets that are covered in detail
in Section 3.1. This data is available in two forms: (1) as fixation loca-
tions or (2) as fixation density maps which are obtained by placing 2D
Gaussian kernels on the fixation locations and normalizing the resultant
maps. The standard deviation of the Gaussian kernels is set such that
the full width at half maximum of the Gaussian is equal to the visual
angle subtended by the fovea on the screen surface. Figure 1.8 shows an
image along with the fixation locations based on 15 subjects along with
the corresponding fixation density map. The eye-tracking data is then
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14 Introduction

compared with the predicted saliency maps output by computational
VA models through a comparison measure called a performance metric
or VA metric (used interchangeably here). The process can be summa-
rized by the block diagram shown in Figure 1.9. Section 3.2 describes
existing popular and newly proposed VA metrics that are used in the
research community.
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