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Abstract

As a major breakthrough in artificial intelligence, deep learning has
achieved very impressive success in solving grand challenges in many
fields including speech recognition, natural language processing, com-
puter vision, image and video processing, and multimedia. This article
provides a historical overview of deep learning and focus on its appli-
cations in object recognition, detection, and segmentation, which are
key challenges of computer vision and have numerous applications to
images and videos.

The discussed research topics on object recognition include image
classification on ImageNet, face recognition, and video classification.
The detection part covers general object detection on ImageNet, pedes-
trian detection, face landmark detection (face alignment), and human
landmark detection (pose estimation). On the segmentation side, the
article discusses the most recent progress on scene labeling, semantic
segmentation, face parsing, human parsing and saliency detection. Ob-
ject recognition is considered as whole-image classification, while detec-
tion and segmentation are pixelwise classification tasks. Their funda-
mental differences will be discussed in this article. Fully convolutional
neural networks and highly efficient forward and backward propaga-
tion algorithms specially designed for pixelwise classification task will
be introduced.

The covered application domains are also much diversified. Human
and face images have regular structures, while general object and scene
images have much more complex variations in geometric structures and
layout. Videos include the temporal dimension. Therefore, they need
to be processed with different deep models. All the selected domain ap-
plications have received tremendous attentions in the computer vision
and multimedia communities.

Through concrete examples of these applications, we explain the
key points which make deep learning outperform conventional com-
puter vision systems. (1) Different than traditional pattern recogni-
tion systems, which heavily rely on manually designed features, deep
learning automatically learns hierarchical feature representations from
massive training data and disentangles hidden factors of input data
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through multi-level nonlinear mappings. (2) Different than existing pat-
tern recognition systems which sequentially design or train their key
components, deep learning is able to jointly optimize all the compo-
nents and crate synergy through close interactions among them. (3)
While most machine learning models can be approximated with neural
networks with shallow structures, for some tasks, the expressive power
of deep models increases exponentially as their architectures go deep.
Deep models are especially good at learning global contextual feature
representation with their deep structures. (4) Benefitting from the large
learning capacity of deep models, some classical computer vision chal-
lenges can be recast as high-dimensional data transform problems and
can be solved from new perspectives.

Finally, some open questions and future works regarding to deep
learning in object recognition, detection, and segmentation will be dis-
cussed.

X. Wang. Deep Learning in Object Recognition, Detection, and Segmentation.
Foundations and Trends® in Signal Processing, vol. 8, no. 4, pp. 217-382, 2014.

DOI: 10.1561/2000000071.
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1

Historical overview of deep learning

This chapter will give an overview of the development of deep learn-
ing back to neural networks in 1940s, some high-impact results it has
achieved since 2006, and the major differences between deep models and
other machine learning models. It will also explain why neural networks
were once given up by many researchers and why they became popular
again since 2006.

1.1 Machine learning

Since deep learning is a subarea of machine learning, we first give a very
brief introduction on what machine learning is about. Given input data
x, the goal of machine learning is to predict the output y through a
mapping function y = f(x). If y is a discrete value (i.e. class label), it
is a classification problem. y can also be a high-dimensional real-valued
vector, and then it is a regression problem. Machine learning is to find
the mapping function f through a set of training samples. f is assumed
to be characterized with a set of parameters . Deep learning keeps the
same goal.



Full text available at: http://dx.doi.org/10.1561/2000000071

4 Historical overview of deep learning

At the training stage, 6 is estimated from a set of training samples
{x;} with their annotated target outputs {y,}. The prediction accuracy
of the learned f on test data is largely affected by the learning capacity
of f as well as the scale of the training data. In the past decades, the
scale of training data was small and machine learning research focused
on solving the overfitting problem, i.e. the learned f has high predic-
tion accuracy on the training data, while it performs poorly on the
test data. Overfitting is caused by the mismatch between the learning
capacity and the scale of training data. A well known phenomenon is
the curse of dimensionality. As the dimensionality of input data x in-
creases, the number of parameters as well as the learning capacity of
f increases, which makes the overfitting problem even worse. In order
to solve the overfitting problem, much research has been done on how
to reduce model capacity by reducing the number of parameters and
adding various types of regularity.

In recent years, as the emergence of large scale training data, people
observed that the performance of f on test data got improved when the
dimensionality of input data increased, which was called “blessing of
dimensionality” [27], because larger training data required larger learn-
ing capacity. As illustrated in Figure the performance of machine
learning models with shallow structures (e.g. SVM and Boosting) gets
saturated when training data becomes very large because of their lim-
ited learning capacity. They face the underfitting problem, i.e. their
prediction accuracy on large-scale training data is not satisfactory.

Differently, deep neural networks could have much larger learning
capacity, because of their very large numbers of parameters and deep
architectures. Therefore, when training data is small, deep learning
does not show major advantage compared with other machine learning
methods and could even perform worse because of the overfitting prob-
lem. Under the setting of machine learning with large scale training
data, deep learning makes a big difference. In order to solve the under-
fitting problem, it requires effectively increasing the learning capacity
of models, better optimization techniques (so that the training process
will not get stuck at a bad local minimum), and enough computation
resources (so that the training process can be completed within a lim-
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Prediction accuracy

N
deep learning

machine learning models with
shallow structures

- MACHINE LEARNING WITH BIG DATA

N

Size of training data

Figure 1.1: The performance of machine learning changes with the scale of training
data. As the training data becomes very large, the performance of machine learning
models with shallow structures gets saturated because their limited learning capac-
ity, while the performance of deep learning keeps increasing. In the past decades,
machine learning research focused on solving the overfitting problem because only
small training data was available. With large-scale training data, people need to
solve the underfitting problem, which is the focus of deep learning.

ited period). The research focus of deep learning has been shifted from
solving the overfitting problem to these aspects, which have not been
well explored in the past decades.

1.2 Neural networks

Deep models are neural networks with deep structures. The history of
neural networks can be traced back to the 1940s [I15]. It was inspired
by simulating the human brain system and the goal was to find a prin-
cipled way to solve general learning problems. It was popular in 1980s
and 1990s. In 1986, Rumelhart, Hinton, and Williams published back-
propagation in Nature [120], and it has been widely used to train neural
networks until now. In the following subsections, we will introduce the
structure of multilayer neural networks, feedforward operation used to
predict output from input, and backward propagation. However, neu-
ral networks were eventually given up by most researchers because of
multiple reasons which will be explained in Section [1.2.4
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6 Historical overview of deep learning

1.2.1 Multilayer neural networks

The computation units of neural networks are called neurons and are
organized into multiple layers. Neurons in adjacent layers are connected
with weights. However, neurons in the same layer are not connected.
In feedforward operation, neurons in a lower layer pass signals to neu-
rons in its upper layer. A neuron is activated if its received signals are
strong enough. Similar to the brain, some connections between neurons
are stronger, while some are weaker, indicated by different weights. Fig-
ure shows an example of a three layer neural network with an input

layer, a hidden layer, and an output layer. x = (x1,...,2,...,2q) is a
d dimensional input data vector. h = (hy,...,h;,..., hi) are responses
at ny hidden neurons. z = (z1,..., 2k, ..., 2.) are the predicted out-

puts at ¢ output neurons of the neural network. In the training set,
each sample x is associated with a target vector t. It is expected that
output y predicted by the learned neural network is close to the target
t as possible.

targett A - 1

C

Y = g(nerk)

1 1 )
1y H e H 13
outputy .} 1 .} k .} c net, = ZH: hjw@ rw,

TN

hiddenvariables h .}'1 .hj .hng h, = g(net )
J

d
/ TW\ nefj = Z xtwﬂ + WJO
i=1

1
s @ - @ @
Xy X; Xq

Figure 1.2: Architecture of a three-layer neural network.
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1.2.2 Feedforward operation

At each hidden neuron j, the weighted sum of input neurons is first

computed as
d

netj = Z TiWji + Wjo. (11)
i=1
net; is considered as the net activation of the hidden neuron. {wj;}
are the weights of connections between the input layer and the hidden
layer, and {wjo} are the bias terms. The hidden neuron emits an output
y; through a nonlinear activation function, i.e.

y;j = g(net;). (1.2)

The tanh function as shown in Figure [I.3] was widely used as the non-
linear activation function in the past. In recent years, it was found that
Rectified Linear Unit (ReLU) leads to sparse neural responses and is
more effective in many cases. There are also other choices, such as Pa-
rameterized Rectified Linear Unit (PReLU) [63]. Taking ReLU as an
example, the hidden neuron emits no response unless the activation is
larger than a threshold.

g(net) = tanh(net) g(net) = max(0, net)

Figure 1.3: Examples of nonlinear activation functions. (a) is the tanh fuction,
(b) is the Rectified Linear Unit (ReLU), i.e. g(net) =

enet _—net

enet fe—mnet*

ie. g(net) =
maz (0, net).

In the output layer, each output neuron k also first compute its net
activation from the signals sent by hidden neurons,

4

nety = Z YjWij + Wio- (1.3)
j=1
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{wy;} are the weights and {wyo} are the bias terms. The output neuron
k emits z; through the nonlinear activation function of its net activa-
tion, i.e.

zi = g(nety,). (1.4)

Summarizing Eq. (1.1)) - (1.4)), the output of the neural network is
equivalent to a set of discriminant functions

nyg d
fk(x) =zr,=9g Zwkjg (Z Wjix; + wj0> + wro | - (1.5)

j=1 i=1

It is achieved by a series of linear and nonlinear transforms computed
at multiple layers.

1.2.3 Backpropagation

Training a neural network is to find an optimal set of weights (including
bias terms) W to minimize an objective function J(W), such that
the predicted outputs z of training samples are close to the targets t
as possible. Backpropagation (BP) [120] proposed in 1980s is still the
most widely used method for supervised training of neural networks. It
is a gradient descent algorithm. Weights are randomly initialized and
them updated iteratively. At each iteration, weights are changed in a
direction to reduce the objective function,

W+ W — nVJ(W), (1.6)

where 7 is a hyperparameter of learning rate and V.J(W) is gradient
of the objective function w.r.t. weights W. As shown in Figure [1.4
(a), training samples are fed in the input layer of the neural network.
With feedforward operation, outputs are predicted in the output layer.
Prediction errors are computed by comparing with the target values.
With BP, errors are propagated back to each layer and used to compute
the gradients of weights in each layer. A detailed description of the BP
algorithm can be found in [46].

The surface of the objective function of a neural network is typi-
cally highly complex with many local minima as shown in Figure [I.4]
(b). There is no theoretical guarantee that the global minimum can be
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W W -5nv J(W)

Objective
function

4 | Targetvalues |

T l, Initial poin

| Outputlayer |
Feedforward Back error
operation | T ‘l’ | propagation

Hidden layers

T v

| Input layer | Parameter space

@ ®)

Figure 1.4: Backpropagation. (a) Illustration the BP process of training neural
networks. (b) The performance of the trained neural networks with BP depends on
the initialization point.

achieved by BP on general neural networks. The local minimum reach
by gradient descent depends on the initialization of network weights.
Some works [66] have been done to pretrain neural networks such that
they can start with a good initialization point and reach a better local
minimum after the convergence of BP.

Given n training samples, in batch gradient descent, the objective
function can be expressed as

T(W) = 3" J,(W), (1.7)

where J,(W) is the prediction cost on the pth training sample, and the
weights are updated as

n
W— W =1 > VJ,(W). (1.8)
p=1

However, when the training set is large, evaluating the sum-gradient

is computationally expensive. Stochastic gradient descent samples a
subset of summand functions at every iteration. This is very effective
in the case of large-scale machine learning problems. In stochastic train-
ing, the training set is divided into mini-batches, and the true gradient
of J(W) is approximated at a mini-batch of samples. Estimate of the
gradient is noisy, and the weights may not move precisely down the gra-
dient at each iteration, but is much faster than batch learning. On the
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other hand, noise may result in better solutions. The weights fluctuate,
which makes it possible to jump out of bad local minima.

1.2.4 Difficulties of employing neural networks

People encountered several major problems when employing neural net-
works in various applications in 1980s and 1990s. Neural networks typ-
ically have a large number of parameters and it was difficult to train
them. It was easy for neural networks to overfit on training sets, while
they performed poorly on test sets. It lacked large scale training data,
which made the overfitting problem even more severe. Even a relatively
large training set only had a few hundred training samples. Moreover,
with very limited computational power available in 1980s and 1990s,
it took a long time to train a small neural network. In general, the
performance of neural networks was not significantly better than other
machine learning tools and it was much more difficult to train neu-
ral networks. Therefore, many researchers gave up neural networks in
early 2000s and turned to other machine learning tools such as SVM,
Boosting, decision tree, and K-Nearest Neighbor.

1.3 Other machine learning models

Other machine learning models can be approximated with neural net-
works with only one or two hidden layers. Therefore, they are called
models with shallow structures. An example of SVM is shown in Fig-
ure [I.5] The prediction function of SVM can be written as

M
fx) =b+) K(xi,x). (1.9)

i=1
X is a test sample. x; is a support vector. There are totally M support
vectors. K is the kernel function to measure the similarity between x
and x;. As shown in Figure SVM can be implemented with a three-
layer neural network with M 4 1 hidden neurons. K(x;,x) is output at

each hidden neuron i.

These models have loose ties with biological systems. Instead of
solving general learning problems, people designed specific systems
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output f(x)=b+> e K(x,x,)

hidden K(x, x))

input x

Figure 1.5: SVM can be approximated with a three layer neural network.

(models) for specific tasks and used different handcrafted features. For
example, HMM-GMM was used in speech recognition, SIF'T was used
in object recognition, LBP was used in face recognition, and HOG was
used in human detection.

1.4 Deep learning

Deep learning has become popular since 2006 [67), 66]. A major break-
through in deep learning was first achieved in speech recognition [65]. It
outperformed HMM-GMM, which dominated the field for many years,
by a large margin. There are a few reasons making neural networks
successful again. First of all, a key reason is the emergence of large
scale training data with annotations. For example, ImageNet [36] has
millions of images with annotated class labels. With large-scale train-
ing data, deep neural networks show significant advantages compared
with shallow models because of their very large learning capacity. With
the fast development of high performance parallel computing systems,
such as GPU clusters, it has become much easier to train large-scale
deep neural networks with millions of parameters.

Moreover, there has been significant advances in the design of net-
work structures, models, and training strategies. For example, unsuper-
vised and layerwise pre-training has been proposed. It makes a neural
network reach a good initialization point. Based on that, fine-tuning
with BP can find a better local minimum. It helps to solve the un-
derfitting problem in large-scale training sets to some extent. Dropout
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and data augmentation [80] have been proposed to solve the overfit-
ting problem in training. Batch normalization [96] has been proposed
to train very deep neural networks efficiently. Various network struc-
tures such as AlexNet [80], Clarifai [I73], Overfeat [125], GoogLeNet
[138], and VGG [128] have been extensively studied to optimize the
performance of deep learning.

1.5 Deep learning achievements in computer vision

1.5.1 Object recognition and detection

Deep learning started to have a huge impact on computer vision in 2012,
when Hinton’s group won the ImageNet Large Scale Visaul Recogni-
tion Challenge (ILSVRC) with deep learning [80]. Before that, there
were attempts to apply deep learning to relatively small datasets and
the obtained improvement was marginal compared with other com-
puter vision methods. The computer vision community was not fully
convinced that deep learning would bring revolutionary breakthrough
without strong evidence on grand challenges until 2012.

ILSVRC is one of the most important grand challenges in computer
vision, and has drawn the a lot of attention recently especially after
the great success of deep learning in 2012. It was originally proposed in
2009 [36]. The challenge was to classify images collected from the web
into 1,000 categories. Its training data includes more than one million
images, much large than other datasets previously used to evaluate
deep learning, such as MNIST ﬂ This competition has been running
for several years and many top computer vision groups participated in
the competition. However, different computer vision systems for object
recognition tended to converge and there was no real breakthrough until
2012. This section reviews the ILSVRC results from 2012 to 2014, so
that readers can understand how fast deep learning has been developing
in computer vision.

Hinton’s group participated in this challenge at ILSVRC 2012. As
shown in Table the teams ranking from No. 2 to No. 4 all used
conventional computer vision technologies and handcrafted features.

"http://yann.lecun.com/exdb/mnist/
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Rank Group Top-5 error rate (%) Description
1 U. Toronto 15.132 Deep learning
2 U. Tokyo 26.172 Handcrafted features
3 U. Oxford 26.979 Handcrafted features
4 Xerox/INRIA 27.058 Handcrafted features

Table 1.1: Performance of top ranked groups on the image classification task in
ILSVRC 2012. Since each image from ImageNet may contain multiple objects, top-
5 error rate was commonly used for evaluation. Deep learning outperformed other
computer vision methods based on handcrafted features by more than 10%.

The differences between their classification accuracies were less than
1%. Since each image from ImageNet may contain multiple objects,
top-5 error rate was commonly used for evaluation. The classification
of an image is considered as correct if its labeled ground truth is among
the top five classes predicted by the model. However, Hinton’s group
outperformed them by more than 10%, reaching the top-5 error rate
of 15.3%. They employed the convolutional neural network (CNN) [83]
implemented with two GPUs.

The computer vision community was shocked by this result. Many
people believed that a revolutionary breakthrough was brought by deep
learning to this field. Shortly thereafter, people found that the visual
feature representation learned from ImageNet could be well generalized
to other datasets and computer vision tasks, such as object detection
[56], image segmentation [97], image retrieval [154] and object tracking
[69]. For example, another well known object recognition and detection
challenge is PASCAL VOC. However, its training set is too small to
train deep models. Girshick et al. [56] applied the features learned from
ImageNet with the image classification task and deep CNN to object
detection on PSACAL VOC. The detection rate was improved by 20%.
This conclusion has significant impact. It indicates that once better fea-
tures are learned by deep learning on ImageNet, many other computer
vision problems can be improved accordingly. Therefore, deep learning
on ImageNet has become the engine driving the computer vision field.
That is one of the reasons that it has drawn most attention recently.
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Rank | Group | Top-5 error rate (%) | Description
1 NYU 11.197 Deep learning
2 NUS 12.535 Deep learning
3 Oxford 13.555 Deep learning

Table 1.2: Performance of top ranked groups on the image classification task in
ILSVRC 2013.

Rank Group mAP (%) Description
1 UvA-Euvision | 22.581 Handcrafed features
2 NEC-MU 20.895 Handcrafed features
3 NYU 19.400 Deep learning

Table 1.3: Performance of top ranked groups on the object detection task in
ILSVRC 2013.

In ILSVRC 2013, the teams ranking top 20 all used deep learning.
As shown in Table the winner deep model was called Clarifai from
NYU. The error rate was reduced to 11.19%. In that year, an object
detection challenge was added. It required detecting objects of 200 cate-
gories from 40, 000 test images. It is much more challenging than image
classification, since each image may contain multiple objects of differ-
ent categories. The highest mean Average Precision (mAP) was only
22.58%. The top two winners still used handcrafted features instead of
deep learning.

In ILSVRC 2014, much deeper CNNs were employed. As shown in

Rank | Group | Top-5 error rate (%) | Description
1 Google 6.656 Deep learning
2 Oxford 7.325 Deep learning
3 MSRA 8.062 Deep learning

Table 1.4: Performance of top ranked groups on the image classification task in
ILSVRC 2014.
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Rank Group mAP (%) | Description
1 Google 43.933 Deep learning
2 CUHK 40.656 Deep learning
3 Deeplnsight 40.452 Deep learning
4 UvA-Euvision 35.421 Deep learning
5 Berkley 34.521 Deep learning

Table 1.5: Performance of top ranked groups on the object detection task in
ILSVRC 2014.

RCNN | Berkley | Deeplnsight | GoogLeNet | DeepID-Net
Vision (Google) (CUHK)
Avg n/a n/a 40.5 43.9 50.3
Single 314 34.5 40.2 38.0 47.9

Table 1.6: Summary of mAP on ImageNet with different deep learning based ob-
ject detection methods. “Single” represents the results achieved with single models.
“Avg” represents the results achieved with model averaging. It has been well known
that model averaging generally leads to improvement on image classification and
object detection.

Table GoogLeNet [I38] had more than 20 layers, and won both the
image classification and object detection challenges. VGG [128] from
Oxford won the localization challenge also with a very deep network.
The image classification top-5 error rate was reduced to 6.66% and the
mAP for object detection was largely improved to 43.93% as shown
in Table Table summaries the progress of deep learning based
object detection on ImageNet. RCNN [56] was the first widely used deep
learning pipeline for general object detection and was proposed in 2013.
The most recent work DeepID-Net [109] has significantly advanced the
state-of-the-art to mAP of 50.3.

1.5.2 Face recognition

Another major challenge in computer vision is face recognition. Labeled
Faces in the Wild (LFW) [73] is the most well known benchmark in face
recognition. Most of the groups or companies working on face recog-
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nition reported their results on LEW. Many face recognition datasets
were collected in lab environments under controlled condition. In 2007,
Huang et al. created the LFW dataset, which included face images of
celebrities from the web, in order to evaluate face recognition perfor-
mance in unconstrained conditions. Its test set includes 6,000 pairs of
images and computation algorithms need to tell whether an image pair
comes from the same person or not. The chance of random guess is
50%. According to the study [82], when only the central face regions
(excluding hair) were cropped and shown to humans, the face verifi-
cation accuracy by human eyes was 97.53%. When the whole images
including hairs were shown to humans, the face verification accuracy by
human eyes was 99.20%. A classical face recognition method, i.e. Eigen-
face [148], only has 60% accuracy on LFW. It shows that the dataset
is quite challenging. The best performing non-deep-learning technology
[27] obtained 96.33% face verification on LFW. With deep learning, it
was the first time for DeeplD2 [135] to achieve face verification accu-
racy of 99.15% on LFW, comparable with human performance on this
benchmark. Now the new state-of-the-art DeepID2+ [137] and FaceNet
[123] have achieved face verification accuracy of 99.45% and 99.63% on
LFW respectively, surpassing human performance.

1.5.3 Impact on industry

Deep learning brings big impact on the computer vision community
as well industry. Six months after Hinton’s group won ILSVRC 2012,
both Google and Baidu released their new visual search engines by
applying the same deep model used by Hinton’s group in ILSVRC
2012 to their own data. It was observed that the average precision
was doubled. The following paragraph is from the news released by
Google:

“On our test set we saw double the average precision when com-
pared to other approaches we had tried. We acquired the rights to the
technology and went full speed ahead adapting it to run at large scale
on Google’s computers. We took cutting edge research straight out
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of an academic research lab and launched it, in just a little over six
months”

Hinton joined Google a few months after he won ILSVRC 2012.
Baidu established the Institute of Deep Learning in 2012, and recruited
Andrew Ng, a well known professor from Stanford working on deep
learning, as the director of their new lab in the silicon valley in May
2014. In December 2014, Facebook established a new Al lab in the
NewYork City, dedicated to deep learning, and recruited Yann LeCun
as the director, who is a well known pioneer on deep learning. In Jan-
uary 2014, Google spent 400 million US dollars to acquire DeepMind,
a startup company working on deep learning. Nowadays, many startup
companies emerge and work on computer vision applications with deep
learning technologies. MIT technology review listed deep learning as
one of the top ten breakthrough technologies in 2013.
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