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ABSTRACT

The low-dimensional-model-based electromagnetic imaging
is an emerging member of the big family of computational
imaging, by which the low-dimensional models of underlying
signals are incorporated into both data acquisition systems
and reconstruction algorithms for electromagnetic imaging,
in order to improve the imaging performance and break
the bottleneck of existing electromagnetic imaging method-
ologies. Over the past decade, we have witnessed profound
impacts of the low-dimensional models on electromagnetic
imaging. However, the low-dimensional-model-based elec-
tromagnetic imaging remains at its early stage, and many
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important issues relevant to practical applications need to
be carefully investigated. Especially, we are in the big-data
era of booming electromagnetic sensing, by which massive
data are being collected for retrieving very detailed informa-
tion of probed objects. This survey gives a comprehensive
overview on the low-dimensional models of structure sig-
nals, along with its relevant theories and low-complexity
algorithms of signal recovery. Afterwards, we review the
recent advancements of low-dimensional-model-based elec-
tromagnetic imaging in various applied areas. We hope this
survey could bridge the gap between the model-based signal
processing and the electromagnetic imaging, advance the de-
velopment of low-dimensional-model-based electromagnetic
imaging, and serve as a basic reference in the future research
of the electromagnetic imaging across various frequency
ranges.

Full text available at: http://dx.doi.org/10.1561/2000000103



1
Introduction

Electromagnetic imaging has been a powerful technique in various civil
and military applications across medical imaging, geophysics, space ex-
ploration, resources and energy survey, etc., where the operational
frequency ranges from the very low frequency (like tens of Hertz)
through microwave, millimeter wave, and Therahertz, up to optical
frequencies [47, 127, 23, 192, 96, 150, 70]. The electromagnetic imaging
problem or the electromagnetic inverse scattering problem consists of
determining the unknown features (including geometrical and physical
parameters) of an object from processing measured electromagnetic
data [127, 192]. Essentially, it is strongly nonlinear and ill-posed due
to the complicated interaction between the electromagnetic wavefield
and the imaging scene [127, 192]. In principle, this problem could be
addressed by employing nonlinear iterative optimization methods, but
these iterative methods are computationally prohibitive even for the
moderate-scale problem [127]. In practice, one resorts to the linearized
approximate solution to the rigorous inverse scattering problem, for
example, Born-approximation [127, 23]. Nonetheless, the resulting in-
verse problem remains notoriously ill-posed since the measurements
available are inadequate typically compared to the unknowns to be

3
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4 Introduction

retrieved. Especially, there are increasing continuously demands on
the imaging resolution of detailed information of probed object nowa-
days, which broaden the gap between the unknowns of interest and
the measurements available further. Moreover, the measurements are
noisy and suffer from unknown ambiguous parameters, which makes
the electromagnetic imaging problem more challenging.

Put formally, the electromagnetic imaging can be formulated as
y = Aθ(x) +n, where the quantity y indicates the vectorized measure-
ments corrupted with additive noise n, x denotes the unknown (e.g., the
reflectivity of imaged scene) to be retrieved, Aθ is a mapping operator
with the subscript θ highlighting possible unknown ambiguous parame-
ters [47, 127, 23, 192, 96, 150]. As argued above, the nonlinear inverse
scattering, i.e. Aθ being nonlinear, is limited to the small-scale problem
due to its very expensive computational cost. For this reason, we are
restricted ourselves into the case of Aθ being linear. Furthermore, with-
out the loss of generality, we assume no ambiguous parameters involved,
implying that the subscript θ vanishes. Consequently, Aθ becomes A.
Then, the electromagnetic imaging problem consists of retrieving the
unknowns x from the noisy measurements y. In probabilistic framework,
the estimation of x amounts to evaluating the posterior probability of
x conditional on y [157, 87, 166]:

Pr (x|y) = 1
Z

Pr (y|x) Pr (x) (1.1)

where Z =
∫

Pr (y|x) Pr (x) dx is the normalized factor (or the partition
function), Pr (y|x) is the likelihood function of x, and Pr (x) is the prior
knowledge on x. Once obtaining the posteriori probability Pr (x|y), we
can numerically or analytically calculate desirable statistical quantities.
We are particularly interested in the maximum a posteriori (MAP)
mode denoted by xMAP [157, 87, 166]:

xMAP = arg max
x

log Pr (x|y)

= arg max
x

[log Pr (y|x) + log Pr (x)] (1.2)

= arg min
x

[1
2‖y −A (x) ‖22 − log Pr (x)

]
(1.3)

As pointed out previously, Eq. 1.3 is ill-posed due to the inadequate
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measurements compared to the unknowns to be retrieved, especially
when the finer details of probed scene are desirable. Since the measure-
ments are incomplete, an infinite number of solutions, however, being
non-meaningful, match measurements. Therefore, one crucial task of
electromagnetic imaging is to select the most meaningful solution out
of the potential solutions. In terms of Bayesian analysis, the model
function Pr (x) provides the speculative knowledge on the underlying
signal x, which is, if correct, helpful in suppressing remarkably the so-
lution uncertainty by complementing the incomplete measurements. In
this sense, one feasible approach to the above task is the exploration of
the correct model Pr (x) in the design of imaging systems and imaging
algorithms.

Most of real-world signals have low-dimensional models, known as
being of the structured sparsity or structured compressibility [16, 62, 46,
10]. Here, we mean by structure that a transformed domain or manifold,
being either deterministic or probabilistic, exists such that over which
the transformed coefficients are sparse or compressible. By sparsity,
we mean that a signal of length n has k � n nonzero elements; in
contrast, we mean by compressibility that a signal of length n can be
approximated with certain accuracy by a signal with only k � n nonzero
coefficients [16]. Low-dimensional signal models affect significantly the
data acquisition, analysis and later processing [63, 172, 59], which has
profoundly broken bottlenecks set by the well-known Nyquist-Shannon
theory founded by Kotelnikov, Nyquist, Shannon, Whittaker et al. A
celebrated theory known as compressive sensing, founded by Candès,
Tao, Romberg, Donoho et al., states that the sparse or compressible
signal can be accurately and efficiently retrieved from its low-dimensional
projections [32, 31, 30, 29, 48]. Afterwards, many more realistic and
richer low-dimensional signal models along with the guarantee of theories
and algorithms have been discovered and investigated, which affect the
data acquisition, analysis and processing significantly [59, 15, 80, 81,
64]. For instance, for tree- and block-structured signals, Baraniuk et al.
established the theory of model-based compressive sensing (CS) along
with reconstruction algorithms [80].

Low-dimensional-model based signal processing (model-based SP,

Full text available at: http://dx.doi.org/10.1561/2000000103



6 Introduction

for short) differs from the Nyquist-Shannon theory based methods
(conventional SP, for short) in several important aspects, as summarized
in Table 1.1. As opposed to the conventional SP, which only uses the
information provided by the measurement, model-based SP uses both the
measurement and the prior knowledge, enabling us to break the limits
in classical signal processing. For example, the number of measurements
required by the Nyquist-Shannon theory can be dramatically reduced
[80, 81, 64, 20], the Rayleigh resolution limit can be readily beat [35,
27], and so on. In addition, these two frameworks differ in the manner
in which they deal with signal recovery. For conventional SP, the signal
recovery is accomplished through simple sinc interpolation with marginal
computational cost [46]. In contrast, the model-based signal recovery is
achieved by implementing nonlinear iterative algorithms, which needs
apparently expensive computational resources [80, 81, 64].

Table 1.1: Comparisons between two frameworks of conventional and low-
dimensional-model-based signal processing.

Conventional SP Model-based SP
Data input Measurements Measurements plus

prior knowledge
Math. Model
y = Ax

dim (y) ≥ dim (x) dim (y)� dim (x)

Data acquisition Nyquist sampling rate RIP criterion
Data

communication
Sampling followed by

compression
Compressed sampling

Representation Independent pixels Structure or pattern
Statistical model Gaussian Non-Gaussian
Signal Recovery Sinc interpolation Nonlinear optimization

Resolution Rayleigh limit Better than Rayleigh
limit

Over past years, we have witnessed the notable impacts of low-
dimensional-model-based signal processing, more strictly, the sparse-
model-based signal processing, on the electromagnetic imaging [30, 114,
113, 131, 85, 101, 151, 9, 144, 21, 176, 86, 149, 147, 125, 17, 37, 38,
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84, 20]. Imaging techniques, that exploit low-dimensional-model of the
underlying scene, are becoming more and more popular thanks to their
ability to mitigate the theoretical and practical difficulties arising in
the associated inverse problem, while properly complying with several
common applicative requirements (e.g., reduced computational costs,
high spatial resolution, and robustness to the noise). Such an increased
interest is proved by a vast of publications in several areas (e.g., elec-
tromagnetic inverse scattering, radar, microwave imaging, and array
synthesis), and special sessions in relevant international conferences, as
well as special issues in leading-edge journals. Invoked by the concept
of compressive sensing, Hunt et al. [85] and Li et al. [101] invented the
single-pixel images for microwave imaging of sparse scenes, demonstrat-
ing the important potential of sparse-signal model of imaged scene in
developing the apparatus of low-complexity and low-cost data acquisi-
tion. By now, the most affected issue related to electromagnetic imaging
is the development of low-order model-based imaging algorithms. For
instance, there are a large amount of efforts have been made to melt the
sparsity-promoted regularization with the iterative algorithms of electro-
magnetic inverse scattering, being different in the selection of sparsifying
transformations, leading to the feature-enhanced reconstruction. As ar-
gued above, the non-linear electromagnetic inverse scattering is limited
to the small-scale problem due to very expensive computational com-
plexity. For this reason, we leave the discussion about them out of this
survey, and refer to [151, 9, 144, 21, 176] for detailed discussions. For the
linearized electromagnetic imaging (Born-based tomography [86, 149,
147, 125] and signal-based radar imaging [17, 37, 38, 84, 180, 99, 195,
185]), the sparse-model (or compressible-model) of imaged scene have
been exploited, and a large amount of low-order model-based imaging
algorithms have been developed, demonstrating that the usefulness of
sparse-model in enhancing the image quality and reducing the number
of measurements. It is really appealing to incorporate low-dimensional
models of underlying signals into the electromagnetic imaging, in order
to reduce the number of measurements, improve the imaging resolution,
enhance the capability of object recognition and classification, and so
on. For this reason, we refer to this methodology of electromagnetic
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8 Introduction

imaging as the low-dimensional-model-based electromagnetic imaging
(model-based electromagnetic imaging, for short). Here, we would like
to give a formal description about it:

Definition 1: The low-dimensional-model-based electromagnetic imag-
ing is the object-oriented and feature-enhanced electromagnetic imaging
methodology by incorporating the knowledge of the structured models of
underlying signals into the data acquisition system and the reconstruction
algorithm, in order to reducing the number of measurements, improve
the imaging resolution, enhance the capability of object recognition and
classification, and so on.

Although the model-based signal processing by itself has arrived
at relatively mature level with a solid body of theories [59, 32, 31, 30,
29, 48, 15, 80, 81, 64, 35, 27, 76, 34, 28, 54, 49, 50, 51, 52, 53] and
algorithms [55, 159, 41, 94, 198, 33, 112, 115, 120, 183, 160, 168, 72, 161,
91], its interactions with electromagnetic imaging remains challenging
and many important issues are deserved to be studied in-depth. The
model-based electromagnetic imaging focuses on four major aspects as
following.

First, it is desirable the development of the next-generation imaging
system with low-cost, low-complexity and high efficiency by the way of
the optimal design of the waveform, the programmable or reconfigurable
antenna, the configuration of sparse sensor array, etc. For instance, the
establishment of novel compressive radar is appealing for ultra-wideband
(UWB) radar imaging [84, 180], since it is really too costly, or even
physically impossible, to build devices capable of acquiring samples at
the necessary rate in the context of classical signal processing.

Second, it is desirable to establish an easy-implementation of imag-
ing formulations, which account for the real interaction between the
electromagnetic wavefield and the probed scene. The interaction be-
tween the electromagnetic wavefield and the probed scene is nonlinear
in essence; however, most of mathematical formulations of electromag-
netic imaging considered so far are linear, failing to capture fully the
undergoing physical mechanism in some practical cases [164, 26, 42].

Full text available at: http://dx.doi.org/10.1561/2000000103
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Nikolic et al. attempted to link the electromagnetic mechanism and the
sparse-signal model by using the equivalent electromagnetic currents,
and demonstrated that with this model, the sparseness of imaged scene
supports the reconstruction of non-convex shape of 2D PEC targets [123].
However, such methodology is limited to the single-frequency imaging
configuration, since the equivalent currents vary with the operational
frequencies.

Third, it is desirable to discover more realistic and richer low-
dimensional models of the underlying electromagnetic information. By
now, the low-dimensional models utilized in the area of electromagnetic
imaging are nearly simple sparse or compressible models; more realistic
and richer models are not fully investigated.

Fourth, we are in the deluge of massive electromagnetic data coming
from the continuously increasing demands on retrieving very detailed
information of objects nowadays. Therefore, it is crucial to develop
efficient reconstruction algorithms for treating massive measurements
and high-dimensional variables. From the aspect of computational com-
plexity, it is also important to develop algorithmic frameworks trading
off the imaging accuracy with the computational cost.
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