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ABSTRACT
This monograph addresses operating characteristics for bi-
nary hypothesis testing in both classical and quantum set-
tings and overcomplete quantum measurements for quantum
binary state discrimination. We specifically explore decision
and measurement operating characteristics defined as the
tradeoff between probability of detection and probability
of false alarm as parameters of the pre-decision operator
and the binary decision rule are varied. In the classical case
we consider in detail the Neyman-Pearson optimality of
the operating characteristics when they are generated using
threshold tests on a scalar score variable rather than thresh-
old tests on the likelihood ratio. In the quantum setting,
informationally overcomplete POVMs are explored to pro-
vide robust quantum binary state discrimination. We focus
on equal trace rank one POVMs which can be specified by
arrangements of points on a sphere that we refer to as an
Etro sphere.

Catherine A. Medlock and Alan V. Oppenheim (2021), “Operating Characteristics
for Classical and Quantum Binary Hypothesis Testing”, Foundations and Trends® in
Signal Processing: Vol. 15, No. 1, pp 1–120. DOI: 10.1561/2000000106.
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Preamble

Our intention while preparing this monograph has been for it to be read-
able and interesting to an audience with a wide range of backgrounds. It
is written to have a strong tutorial review flavor with some perspectives
that hopefully many readers will find to be interesting and somewhat
novel. We anticipate that many parts of the monograph will be familiar
to readers with a strong background in classical signal processing and
other parts to readers with a strong background in quantum mechanics.
And it is our hope that both audiences will find the perspectives on
the shared issues and overlap between the two fields to be interesting.
Some readers may find it helpful in acquiring a broad sense of the
scope of the monograph to start by reading the summary remarks
and further thoughts given in Section 7. It should be noted however,
that the discussion there uses terminology and notation introduced in
earlier sections. In writing a monograph intended for an audience with
diverse backgrounds part of the challenge is that there are many results
referred to in the presentation that will be well-known to readers with
backgrounds in one of the disciplines but less so in the other. And with
some of these results, we anticipate that some of the readers will want to
see or be reminded of a somewhat detailed explanation while others will
be very familiar with it. To accommodate these differences we identify
these as exercises for the reader to be worked out or not as they choose.
The details for verifying those results are contained in the appendix

iv
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Preamble v

denoted as Appendix A. A second appendix denoted as Appendix B
contains the details of a variety of possibly less familiar results that
would be included in a traditional appendix mainly for the purpose of
not interrupting the flow of the main body.
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1
Introduction

Binary decisions guide our everyday lives in situations both critical
and trivial. The choices made by politicians and physicians may have
consequential implications on a global or individual scale. Perhaps
less consequential is whether or not we choose to carry an umbrella
on a cloudy day. Any choice made inherently involves a conscious,
subconscious, or formal tradeoff between benefits and detriments. The
defense of a country, the prolongation of life, the ability to keep dry in
a downpour, may come at the cost of soldiers’ lives, the quality of life
of an individual patient, or the wasted effort of toting an umbrella on a
rain-free day. In some cases our analysis of the compounding factors
may be informal and the worst case outcome fairly inconsequential. But
when the worst case outcome could have severe consequences as, for
example, in a clinical setting or when deciding whether or not to fire
a missile, it is much more desirable to have a structured analysis and
process for arriving at a final decision. This may be a complicated task
for many reasons, including the fact that the assignment of relative
costs to the outcomes of the two possible decisions is often a judgement
call itself. We may also lack a historical dataset that is large enough
to allow for accurate estimation of important quantities such as the a
priori probabilities, discussed further in Section 2.

1
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2 Introduction

In this monograph we focus on a particular set of well-studied met-
rics for framing the problem of binary hypothesis testing, keeping in
mind that there are many alternatives, generalizations, and extensions
of the viewpoints and results expressed here. We specifically consider
the scenario in which one of two possible hypotheses, denoted as H0
or H1, is true. The objective is to make a decision as to which is true
using a sample value of a random variable often referred to as the score
variable, which is comprised of one or more numerical values associated
with the outcome of some measurement or observation. The score vari-
able may be a scalar or a vector and may have been constructed as a
composition of multiple measurements and observations. Traditionally
H0 is referred to as the null hypothesis and H1 as the positive hypoth-
esis, implying that H1 is the hypothesis of significance (the target is
present, the patient has the disease, etc.). In this monograph we use
that convention. For convenience we refer to the entire system used to
distinguish between the null and positive hypotheses as the discrimina-
tion system. The components of the discrimination system are defined
in Section 2. Historically a quantity considered to be of significance
in binary hypothesis testing is the probability of error, denoted as Pe

and defined as the probability of identifying H0 to be true given that
H1 is in fact true or vice versa. Other probabilities that may be of
interest are (i) the probability of detection, denoted by Pd and defined
as the probability of deciding that H1 is true given that it is indeed
true, (ii) the probability of a miss, denoted by Pm and defined as the
probability of deciding that H0 is true given that in fact H1 is true,
and (iii) the probability of false alarm, denoted by Pf and defined as
the probability of deciding that H1 is true given that H0 is in fact true.
Also of importance are the a priori probabilities associated with whether
H0 or H1 is true apart from any measurement or decision. Various of
these probabilities are connected mathematically through the rules of
probability. For example, the probability of error can be expressed as
a combination of the probability of detection, the probability of false
alarm, and the underlying a priori probabilities.

Since in many scenarios the a priori probabilities are difficult or
impossible to assess, it has become common in many contexts to formu-
late the decision making process without explicitly requiring knowledge
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3

of these probabilities. One approach that has become widespread for
accomplishing this is to focus on the tradeoff between Pf and Pd, often
displayed using what is commonly referred to as a receiver operating
characteristic (ROC). ROCs originated in the radar signal detection
community, where they were used to characterize systems that detected
the presence or absence of military targets during World War II [1].
The use of ROCs has become increasingly prevalent in a very broad set
of application areas including biostatistics and machine learning [2]–[8].
In contrast to the problem of radar signal detection for which there
are often good mathematical models for the signals and disturbances,
in other contexts the score variable is typically a finely-tuned combi-
nation of many measurements and is therefore often less amenable to
mathematical analysis and modeling.

More generally, the term operating characteristic is used in this
monograph to refer to any characterization, such as a curve, table, or
graph, of the tradeoff between Pf and Pd as one or more parameters of
the discrimination system is varied. When displaying operating charac-
teristics we will choose to utilize a two-dimensional graph of Pf versus
Pd. Consequently the parameter or parameters being varied are not
immediately visible or explicit. This is especially important in Sections
2.5.4 and 2.5.5 when we consider multiple operating characteristics that
were generated using variations of distinct parameters but have identical
graphs of Pf versus Pd. We take the viewpoint that an operating char-
acteristic itself is essentially a trajectory in a higher-dimensional space
with coordinates corresponding to all of the parameters being varied
in addition to Pf and Pd. A graph of Pf versus Pd is the projection
of this trajectory onto the Pf -Pd plane. Distinct trajectories including
those with different numbers of variable parameters may correspond to
the same Pf -Pd projection. For the majority of our discussion we will
be concerned only with the characteristics of the Pf -Pd projection of a
given operating characteristic. Thus, for the sake brevity we will only
explicitly distinguish between an operating characteristic and its Pf -Pd

projection when absolutely necessary, as in Sections 2.5.4 and 2.5.5.
Sections 2 and 3 of this monograph address operating characteristics

associated with binary hypothesis testing in the classical setting and the
setting of quantum mechanics, respectively. By “classical” we mean in
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4 Introduction

particular that the measurement or observation processes that lead to a
realized value of the score variable are not constrained by the postulates
of quantum mechanics. The principles of classical binary hypothesis
testing are very well-understood and as outlined above, ROCs are widely
used in many classical settings. The principles of quantum binary state
discrimination are also well-formulated. As we discuss in Section 3, a
typical formulation of the quantum binary state discrimination problem
consists of a quantum mechanical system that has been prepared in
one of two quantum states by two distinct laboratory procedures or
physical environments, each corresponding to one of the two hypotheses
H0 or H1. The objective is to decide which procedure was used based
on the outcome of a measurement on the system. An elegant solution
to the problem of determining the measurement strategy that achieves
minimum probability of error was derived by Helstrom [9].

Just as in the classical setting, the above formulation of the quantum
binary hypothesis testing problem naturally involves a tradeoff between
Pf and Pd and therefore it also involves the notion of an operating char-
acteristic. But operating characteristics of any kind are significantly less
prevalent in the quantum binary hypothesis testing literature. Perhaps
one of the principal reasons for this is that although there are many
similarities between the classical and quantum scenarios, there are also
some fundamental differences that stem from the underlying differences
between the postulates of classical versus quantum physics. Of particu-
lar importance and as described in Section 3 are the stipulations made
by the postulates of quantum mechanics about the state of a quantum
system and about the concept of quantum measurement. Of particular
importance is the relationship between a specific quantum measurement
and a set of Hermitian operators that form a positive operator-valued
measure (POVM).

The theme of Sections 4 through 6 is how quantum measurements
that employ redundant, or overcomplete, representations of the state
of the system being measured can be used, at least in some cases, to
increase the robustness of binary discrimination strategies. We start in
Section 4 by describing our viewpoint on some of the basic concepts of
frame theory, with the main objective of introducing the mathematical
machinery and notation necessary to apply the concepts to quantum
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measurement. We then describe how these concepts can be applied to an
operator space consisting of all Hermitian operators on another Hilbert
space. The relevant operator space V in quantum mechanics contains
all density operators and POVM elements. This leads to a discussion in
Section 5 regarding informationally complete (IC) quantum measure-
ments, which are measurements that map every quantum state to a
unique probability distribution over the possible measurement outcomes
[10]–[22]. IC quantum measurements that are strictly overcomplete are
sometimes referred to as informationally overcomplete (IOC) quantum
measurements [19]. While the benefits of using IOC measurements have
been investigated in the context of quantum state estimation [19], [20],
less attention has been given to their utility in quantum binary state
discrimination. We review a fundamental result stating that every IC
or IOC POVM is a frame for V. IOC POVMs with a larger number
M of elements correspond to frame representations of V that are more
overcomplete.

A crucial concept in our discussion of the operator space V is a
specific direct-sum decomposition of V into two orthogonal subspaces
U and U⊥. All density operators have a constant component in U⊥

and can be distinguished from each other by their components in U .
For the density operator of a qubitthe component in U corresponds
to its Bloch vector. We define a counterpart to the Bloch ball and
corresponding Bloch sphere in relation to the class of POVMs that
we refer to as equal trace rank one (Etro) POVMs. An Etro POVM
corresponding to a qubit measurement can be fully specified by M

points on what we refer to as an Etro sphere of radius
√

2/M . This is
exactly analogous to how a pure state qubit density operator can be
specified by a single point on the Bloch sphere. POVMs constructed
using Platonic solids are Etro POVMs in our terminology and are used
often in the literature. We provide evidence through simulation that
when POVMs constructed from Platonic solids are used for qubit binary
state discrimination, there is a tradeoff in probability of error between
the number L of identically-prepared quantum mechanical systems and
the number M of POVM elements. POVMs constructed from Platonic
solids have been of particular interest in the quantum state estimation
community because they are all either IC or IOC, and because they
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6 Introduction

all provide straightforward state reconstruction formulas. Since we are
interested in state discrimination rather than estimation, we do not
require the state to be reconstructed. Consequently in Section 6 we
also performed an exploratory investigation into IC and IOC POVMs
constructed using other arrangements of points on an Etro sphere. In
particular the problem we consider is that of distinguishing between
two pure state qubit density operators. It is assumed that the angle
between their Bloch vectors is known but that the overall alignment
of the Bloch vectors relative to the Bloch sphere is not. Equivalently,
it is assumed that the two Bloch vectors are known and the relative
rotational orientation of the Bloch and Etro spheres is unknown. We
compare the performance of a variety of POVMs using their minimum
and maximum probabilities of error over all possible orientations, as
well as the difference between the two. Intuitively it is expected that
higher values of M and distributions of points on an Etro sphere that
are maximally spread in some sense would lead to POVMs that are less
sensitive to changes in the relative orientation of the Bloch and Etro
spheres. Indeed, this is what we observed for values of M between 4
and 12 and for distributions of points that were maximally spread with
respect to numerous established criteria.
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A
Optional Appendices

Since this monograph was intended for an audience with a diverse set of
backgrounds, the purpose of the derivations contained in the following
Appendices A.1 to A.10 is to provide some level of detail surrounding
concepts and results that are likely familiar to some readers but perhaps
not to others. Many of the derivations can also be found in some form in
many classical signal processing, linear algebra, or quantum mechanics
textbooks and review monographs. The title of each section contains a
reference to the section in the main body of the monograph where the
concept was first mentioned.

A.1 Optimal Neyman-Pearson Decision Regions

The following reasoning was adapted from [25]. Assume that the decision
region D has been chosen to be Neyman-Pearson optimal. Then by
definition it is impossible to modify it in such a way that Pd is increased
while Pf stays the same. Mathematically we can think of modification
of the decision region as taking two small portions of the real axis,
one that lies in D and is denoted as the interval [s, s + ds] and one
that lies outside of D and is denoted as the interval [s′, s′ + ds′], and
interchanging their decision region assignments. In other words, we

91
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92 Optional Appendices

remove the interval [s, s+ ds] from D and add the interval [s′, s′ + ds′].
The resulting changes in Pf and Pd are

∆Pf = f0(s′) ds′ − f0(s) ds (A.1a)

∆Pd = f1(s′) ds′ − f1(s) ds. (A.1b)

If we assume that the value of Pf stays the same (∆Pf = 0), then since
the original decision region was Neyman-Pearson optimal we know by
definition that the value of Pd must have stayed the same or decreased
(∆Pd ≤ 0). Applying these conditions to Equations (A.1) and combining
them together leads to the requirement that

f1(s′) ds′

f0(s′) ds′ ≥ f1(s) ds
f0(s) ds. (A.2)

After cancelling the factors of ds and ds′, the right-hand side of the
inequality is equal to the likelihood ratio at the point S = s, which lay
in the original, Neyman-Pearson optimal decision region D. Similarly,
the left-hand side is the likelihood ratio as the point S = s′, which lay
outside of this region. Since the intervals [s, s + ds] and [s′, s′ + ds′]
were arbitrary so long as they lay inside or outside of D, respectively,
Equation (A.2) says that for the Neyman-Pearson optimal decision
region D, the likelihood ratio for values of the score variable lying inside
D is always greater than or equal to the likelihood ratio for values
lying outside D. In other words, the Neyman-Pearson optimal decision
regions represent a threshold test on the likelihood ratio.

A.2 Orthonormality of the {|wk⟩} (Section 4.1)

We wish to show that no generality is lost by assuming that the basis
vectors {|wk⟩ , 1 ≤ k ≤ M} for W are orthonormal with respect to the
⟨·|·⟩ inner product. Assume that they are not and let {|ek⟩} be a basis
for W that is orthonormal with respect to the ⟨·|·⟩ inner product. Thus

⟨ej |ek⟩ = δjk, 1 ≤ j, k ≤ M, (A.3)

where δjk takes the value 1 if j = k and 0 otherwise. Now we define
a function f(·, ·) that takes two vectors in W as input and outputs a
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complex number. It is defined to satisfy the following properties,

f(a uj + b uk, uℓ) = a∗ f(uj , uℓ) + b∗ f(uk, uℓ) (A.4a)

f(uj , a uk + b uℓ) = a f(uj , uk) + b f(uj , uℓ) (A.4b)

f(uj , uk) = f(uk, uj)∗ (A.4c)

f(wj , wk) = δjk, 1 ≤ j, k ≤ M. (A.4d)

In Equations (A.4), |uj⟩, |uk⟩, and |uℓ⟩ are arbitrary vectors in W, a
and b are arbitrary complex numbers, and the superscript ∗ indicates
complex conjugation. Equations (A.4) imply that the function f(·, ·) is
also positive definite. That is, if |u⟩ = ∑

k ck |wk⟩ is an arbitrary nonzero
vector in W, then f(u, u) > 0 since

|u⟩ =
M∑

k=1
ck |wk⟩ ̸= 0 ∈ W (arbitrary nonzero vector in W)

(A.5a)

f(u, u) =

 M∑
j=1

cj |wj⟩ ,
M∑

k=1
ck |wk⟩

 (A.5b)

=
M∑

j,k=1
c∗

jckf(wj , wk) by conjugate bilinearity (A.5c)

=
M∑

j=1
|cj |2 since f(wj , wk) = δjk (A.5d)

> 0 since |u⟩ ̸= 0. (A.5e)

Thus f(·, ·) is a valid inner product function on W and {|wk⟩} is
orthonormal with respect to this inner product. We will now show
that there is an invertible linear operator L on W such that

f(L |u1⟩ , L |u2⟩) = ⟨u1|u2⟩ (A.6)

for all |u1⟩ , |u2⟩ ∈ W. This implies that all calculations can be made
with the f(·, ·) inner product, and then the inverse of L can be used
to “translate” the answers back to the ⟨·|·⟩ inner product. Note that
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because the {|wk⟩} form a basis for W, to satisfy Equation (A.6) it is
sufficient to have a linear operator L such that

f(L |wj⟩ , L |wℓ⟩) = ⟨wj |wℓ⟩ , 1 ≤ j, ℓ ≤ M. (A.7)

Equation (A.6) follows from Equation (A.7) by the properties of the
inner product functions f(·, ·) and ⟨·|·⟩. To find an appropriate linear
operator L, let |wj⟩ and |wℓ⟩ be any two of the {|wk⟩} (possibly with
j = ℓ) and write them in terms of the {|ek⟩},

|wj⟩ =
M∑

k=1
ak |ek⟩ , |wℓ⟩ =

M∑
k=1

ck |ek⟩ . (A.8)

Substituting into the left- and right-hand sides of Equation (A.6) and
simplifying, we find

f(L |wj⟩ , L |wℓ⟩) = f

(
M∑

k=1
akL |ek⟩ ,

M∑
m=1

dmL |em⟩
)

=
M∑

k,m=1
a∗

k dm f(L |ek⟩ , L |em⟩) (A.9a)

⟨wj |wℓ⟩ =
〈

M∑
k=1

ak |ek⟩
∣∣∣∣∣

M∑
m=1

dm |em⟩
〉

=
M∑

k=1
a∗

kdk (A.9b)

For the two to be equal, it is sufficient to have (L |ek⟩ , L |em⟩) = δkm

for all 1 ≤ k,m ≤ M . One operator that satisfies this condition is the
linear operator L that is also defined to satisfy

L |ek⟩ = |wk⟩ , 1 ≤ k ≤ M. (A.10)

This operator is clearly invertible, and using it to further simplify the
left-hand side of Equation (A.7) leads to

(L |ek⟩ , L |em⟩) =
M∑

k,m=1
a∗

k dm f(wk, wm) =
M∑

k=1
a∗

kdk, (A.11)

so Equation (A.7) is satisfied.
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A.3 Expressions for a Synthesis Map (Section 4.2)

To see why F0 can sometimes be written in the form F0 = ∑
k |fk⟩ ⟨gk|

where the {|gk⟩} are different from the {|wk⟩}, note that instead of
defining F0 using Equation (4.5) we could equivalently define it according
to the relation

F |wk⟩ = |fk⟩ , 1 ≤ k ≤ M. (A.12)
Equation (4.5) then follows by linearity. For Equation (A.12) to be true
the {|gj⟩} must satisfy the relation

M∑
j=1

|fj⟩ ⟨gj |wk⟩ = |fk⟩ , 1 ≤ k ≤ M. (A.13)

We can then expand the {|fj⟩} and {|gj⟩} as linear combinations of the
{|wj⟩} to arrive at a system of linear equations in which the unknowns
are the basis coefficients of the {|gj⟩}. Depending on the frame, the
equations may or may not have multiple solutions.

Another way to look at it is to note that if the {|fk⟩} are linearly
dependent, then there is a linear combination of them that is equal to
zero. Let {bk} be a set of coefficients such that

M∑
k=1

bk |fk⟩ = 0. (A.14)

Then to satisfy Equation (A.13) it is sufficient to have

⟨gj |wk⟩ = δjk bk, 1 ≤ j, k ≤ M, (A.15)

where δjk = 1 if j = k and 0 otherwise. This is again a system of linear
equations that may or may not have more than one solution depending
on the frame.

A.4 The Adjoint of a Linear Transformation (Sections 4.2 and 4.3)

Assume that {|fk⟩} is a given frame for V and that A0 and F0 are its
analysis and synthesis maps, respectively. The adjoint of F0, denoted
by F †

0 , is defined as the linear operator on W that satisfies

⟨u1|F0u2⟩ = ⟨F †
0u1|u2⟩ for all |u1⟩ , |u2⟩ ∈ W. (A.16)
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We wish to show that F †
0 = A0. Substituting Equation (4.6) into the

left-hand side of Equation (A.16) and using the linearity of the inner
product, we find

⟨u1|F0u2⟩ =
M∑

k=1
⟨u1|fk⟩ ⟨wk|u2⟩ . (A.17)

On the other hand, since ⟨x|y⟩ = ⟨y|x⟩∗ for any two vectors |x⟩ , |y⟩ ∈ W ,
we have ⟨F †

0u1|u2⟩ = ⟨u2|F †
0u1⟩

∗. Substituting back into Equation (A.16)
leads to

⟨u2|F †
0u1⟩ =

(
M∑

k=1
⟨u1|fk⟩ ⟨wk|u2⟩

)∗

(A.18a)

=
M∑

k=1
⟨u2|wk⟩ ⟨fk|u1⟩ (A.18b)

= ⟨u2|
(

M∑
k=1

|wk⟩ ⟨fk|
)

|u1⟩ , (A.18c)

and since this must be true for all |u1⟩ , |u2⟩ ∈ W, we must have

F †
0 =

M∑
k=1

|wk⟩ ⟨fk| = A0. (A.19)

Next let R be an arbitrary subspace of W and consider the orthog-
onal projection operator PR from W onto R. We wish to show that
P†

R = PR, i.e.,

⟨u1|PRu2⟩ = ⟨P†
Ru1|u2⟩ for all |u1⟩ , |u2⟩ ∈ W. (A.20)

Equation (A.20) follows directly from decomposing |u1⟩ and |u2⟩ into
their components in R and R⊥.

The notion of the adjoint of a linear transformation applies much
more broadly beyond linear transformations acting on finite-dimensional
Hilbert spaces (see, for example, [36]). We consider one extension be-
low to linear transformations whose input and output vector spaces
may be different, although we still assume that both spaces are finite-
dimensional for simplicity. We will continue to use the superscript †
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to denote the adjoint. Consider two finite-dimensional Hilbert spaces
W1, W2 and two linear transformations T : W1 7→ W2, R : W2 7→ W1
satisfying R = T †. We assume for simplicity that W1 and W2 have
the same inner product denoted by ⟨·|·⟩, although this is solely for
notational clarity. By definition we have

⟨u2|Tu1⟩ = ⟨Ru2|u1⟩ for all |u1⟩ ∈ W1, |u2⟩ ∈ W2. (A.21)

As stated in Section 4.2, taking the complex conjugate of both sides of
Equation (A.21) implies that T = R†. It is well-known that T can always
be written as a sum of rank-one operators of the form |u2⟩ ⟨u1| where
|u1⟩ ∈ W1 and |u2⟩ ∈ W2. As an example, one possibility for expressing
A in this form would be to use its singular value decomposition. It is
straightforward to show using a derivation exactly analogous to the one
given above that T † is the same sum of rank-one operators but with
each term of the form |u2⟩ ⟨u1| replaced by |u1⟩ ⟨u2|.

We will now show that N(R) = R(T )⊥. It will follow by symmetry
that N(T ) = R(R)⊥. Given an arbitrary vector |u2⟩ ∈ N(R), |u2⟩ must
also be an element of R(T )⊥. To see why this is true, let |y⟩ be an
arbitrary vector in R(T ). By definition there is some |u1⟩ ∈ W1 such
that |y⟩ = T |u1⟩. Then |u2⟩ is orthogonal to |y⟩,

⟨y|u2⟩ = ⟨Tu1|u2⟩ = ⟨u1|Ru2⟩ = 0. (A.22)

Since |y⟩ was arbitrary, this implies that N(R) is contained in R(T )⊥.
On the other hand, let |u2⟩ ∈ W2 be an arbitrary element of R(T )⊥. By
definition it must satisfy ⟨y|u2⟩ = 0 for all |y⟩ ∈ R(T ), i.e., ⟨Tu1|u2⟩ = 0
for all |u1⟩ ∈ W1. Then R |u2⟩ must equal 0,

⟨Tu1|u2⟩ = 0 for all |u1⟩ ∈ W1 (A.23a)

⟨u1|Ru2⟩ = 0 for all |u1⟩ ∈ W1 (A.23b)

R |u2⟩ = 0. (A.23c)

This implies that R(T )⊥ is contained in N(R), and because the reverse
is also true it must be that the two are identical.
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A.5 The Canonical Dual Frame (Sections 4.3 and 4.6)

Let |v⟩ be an arbitrary vector in V and let {|fk⟩} be a frame for V . We
wish to find the dual frame {|f̃k⟩} of {|fk⟩} that minimizes the squared
norm of the coefficient vector Ã0 |v⟩ = ∑

k ⟨f̃k|v⟩ |wk⟩. It is sufficient to
solve for the analysis map Ã0 of the optimal dual frame. Denoting the
synthesis map of {|fk⟩} by F0, the problem can be formulated as

minimize
Ã0 : V → W

||Ã0 |v⟩ ||2 (A.24a)

subject to F0Ã0 |v⟩ = |v⟩ (A.24b)

The optimal coefficient vector must satisfy Ã0 |v⟩ ∈ R(A0). To see why
this is true, note that Ã0 |v⟩ can always be written as the sum of a
component in R(A0) and a component in R(A0)⊥ = N(F0),

Ã0 |v⟩ = |w1⟩ + |w2⟩ (A.25)

where |w1⟩ ∈ R(A0) and |w2⟩ ∈ N(F0). We have ||Ã0 |v⟩ ||2 = ||w1||2 +
||w2||2 and F0Ã0 |v⟩ = F0 |w1⟩. Assume that Equation (A.25) holds for
a given dual frame. If |w2⟩ were nonzero, then we could always find a
different dual frame with analysis map Â0 satisfying Â0 |v⟩ = |w1⟩. Equa-
tion (A.24b) would still be satisfied (F0Â0 |v⟩ = F0 |w1⟩ = |v⟩) and the
new coefficient vector would have smaller squared norm (||Â0 |v⟩ ||2 ≤
||Ã0 |v⟩ ||2). Next note that since |v⟩ was assumed to be arbitrary, Equa-
tion (A.24b) implies that dimR(Ã0) ≥ N . Since dimR(A0) = N accord-
ing to Section 4.2, the requirements that Ã0 |v⟩ ∈ R(A0) for arbitrary
|v⟩ ∈ V and dimR(Ã0) ≥ N together imply that the optimal analysis
map satisfies R(Ã0) = R(A0). Therefore, by definition of R(A0) we
must have Ã0 |v⟩ = A0 |x⟩ for some |x⟩ ∈ V. Substituting into Equa-
tion (A.24b), we find that F0Ã0 |v⟩ = F0A0 |x⟩. It is straightforward
to show that the operator (F0A0), often referred to as the frame op-
erator of {|fk⟩}, is always invertible. Thus, |x⟩ = (F0A0)−1 |v⟩ and so
Ã0 |v⟩ = A0 |x⟩ = A0(F0A0)−1 |v⟩. Again using the fact that |v⟩ was
assumed to be arbitrary, this implies that Ã0 = A0(F0A0)−1, which is
exactly equal to the analysis map of the canonical dual frame.

Next we wish to show that of all dual frames, the canonical dual
frame minimizes the expected reconstruction error E as defined in
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Equation (4.33). Note that the derivation given below does not assume
that the analysis frame is an ENTF. The problem can be formulated as

minimize
F̃0 : W → V

E

[
||F̃0 |we⟩ ||2

]
(A.26a)

subject to F̃0A0 |v⟩ = |v⟩ for all |v⟩ ∈ V (A.26b)

where the minimization is performed over all linear operators F̃0 from
W to V. Equation (A.26b), which in effect specifies that F̃0 must be
the synthesis operator of a frame that is dual to the analysis frame,
amounts to the requirement that F̃0 is a left-inverse of A0. A left-inverse
is guaranteed to exist because as stated in Section 4.2, A0 has rank N .

Let F̃0 be an arbitrary left-inverse of A0 and assume that {|wk⟩ , 1 ≤
k ≤ M} is an orthonormal basis for W . Further assume that the {|wk⟩}
can be partitioned into an orthonormal {|wk⟩ , 1 ≤ k ≤ N} for R(A0)
and an orthonormal {|wk⟩ , N + 1 ≤ k ≤ M} for R(A0)⊥. To fully
specify the operator F̃0, it is both necessary and sufficient to specify
its action on each of the {|wk⟩}. Its action on R(A0) must be chosen to
satisfy Equation (A.26b) while its action on R(A0)⊥ can be chosen to
minimize E

[
||F̃0 |we⟩ ||2

]
.

We first consider its action on R(A0). For each {|wk⟩ , 1 ≤ k ≤ N},
there is a unique vector |vk⟩ ∈ V satisfying A0 |vk⟩ = |wk⟩. Equation
(A.26b) implies that F̃0 |wk⟩ = |vk⟩ for all 1 ≤ k ≤ N . The action of
F̃0 on R(A0)⊥ can now be chosen to minimize ||F̃0 |we⟩ ||2. Note that
any error vector |wk⟩ ∈ W can be written uniquely as the sum of a
component |w1⟩ ∈ R(A0) and a component |w2⟩ ∈ R(A0)⊥,

|we⟩ = |w1⟩ + |w2⟩ =
N∑

k=1
ck |wk⟩ +

M∑
k=N+1

ck |wk⟩ , (A.27)

where {ck} are the coefficients of |we⟩ in the {|wk⟩} basis. Since the
{ck} are related to the {ek} by an orthogonal transformation in W,
they also have zero mean, variance σ2, and are pairwise uncorrelated.
The expected value of ||F̃0 |we⟩ ||2 is

E

[
||F̃0 |we⟩ ||2

]
= E

[
||F̃0 |w1⟩ + F̃0 |w2⟩ ||2

]
. (A.28a)
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As we will show below, the expected value is minimized when F̃0 |w2⟩ is
set to zero for all possible values of w⃗2. The vector F̃0 |we⟩ is equal to

F̃0 |we⟩ =
N∑

k=1
ck F̃0 |wk⟩ +

M∑
k=N+1

ck F̃0 |wk⟩ (A.29a)

=
N∑

k=1
ck |vk⟩ +

M∑
k=N+1

ck F̃0 |wk⟩ . (A.29b)

Its squared norm is equal to ⟨F̃0 |we⟩ |F̃0 |we⟩⟩, and since the {ck} are
pairwise uncorrelated all cross terms are equal to zero. Thus,

E

[
||F̃0 |we⟩ ||2

]
= E

 N∑
k=1

c2
k ||vk||2 +

M∑
k=N+1

c2
k ||F̃0 |wk⟩ ||2

 (A.30a)

=
N∑

k=1
E[c2

k] ||vk||2 +
M∑

k=N+1
E[c2

k] ||F̃0 |wk⟩ ||2 (A.30b)

= σ2
N∑

k=1
||vk||2 + σ2

M∑
k=N+1

||F̃0 |we⟩ ||2. (A.30c)

Since the value of the first sum is fixed and since all terms in both
sums must be non-negative, the minimal value is obtained when the
second sum is equal to zero, which happens when F̃0 |wk⟩ = 0 for all
N + 1 ≤ k ≤ M . Thus, the optimal left-inverse F̃0 inverts A0 over its
range and acts as the zero operator on R(A0)⊥. The unique left-inverse
with these properties is the Moore-Penrose pseudoinverse of A0 (see,
for example, Section 1 of [39]). Explicitly, the pseudoinverse is equal to

A∗
0 = (A†

0A0)−1A†
0 = (F0A0)−1F0, (A.31)

and this corresponds exactly to the synthesis operator of the canonical
dual frame [39].

A.6 Naimark’s Theorem (Section 4.4.2)

Let {|fk⟩} be an arbitrary frame for V and assume that there exists
and orthonormal basis {|wk⟩} for W that satisfies PV |wk⟩ = |fk⟩ for
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1 ≤ k ≤ M . As explained in Section 4.4.3, an arbitrary vector |v⟩ ∈ V
can always be written as

|v⟩ =
M∑

k=1
⟨wk|v⟩ |wk⟩ =

M∑
k=1

bk |wk⟩ , (A.32)

where we have defined bk = ⟨wk|v⟩. Since the {|wk⟩} are an orthonormal
basis for W , the squared norm of |v⟩ is equal to the sum of the squared
magnitudes of the {bk}, ||v||2 = ∑

k |bk|2. On the other hand and as
also explained in Section 4.4.3, since the {|wk⟩} satisfy the property
PV |wk⟩ = |fk⟩ for 1 ≤ k ≤ M , we also have

bk = ⟨wk|v⟩ = ⟨fk|v⟩ , 1 ≤ k ≤ M. (A.33)

Thus,
M∑

k=1
| ⟨fk|v⟩ |2 =

M∑
k=1

|bk|2 = ||v||2 for all |v⟩ ∈ V, (A.34)

which means by definition that {|fk⟩} is a Parseval frame.

A.7 An Oversampling Frame in Classical Signal Processing (Section
4.6.2)

It is common in many classical signal processing scenarios to sample a
bandlimited continuous-time (CT) signal at an integer multiple of its
Nyquist rate. This tactic is sometimes referred to as oversampling [25].
In Appendix A.7 we verify explicitly that a particular set of shifted
sinc functions forms an ENTF for a space of bandlimited CT signals.
Assume that V is the set of all finite-energy CT signals bandlimited
to (−ΩN ,ΩN ) and let T = π/(rΩN ) for an arbitrary positive integer r.
We wish to show that {fk(t)}, where

fk(t) = sin(ΩN (t− kT ))
π(t− kT ) , k an integer, (A.35)
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is an ENTF for V with frame bound C = 1/T and ||fk|| = (rT )−1/2.
By definition, this means that

∞∑
k=−∞

|⟨fk(t), v(t)⟩|2 = ||v(t)||2
T

for all v(t) ∈ V (A.36a)

||fk(t)|| = 1√
r T

for all k. (A.36b)

Note that we are assuming the following standard inner product on V ,

⟨v1(t), v2(t)⟩ =
∫ ∞

−∞
dt v1(t) v2(t) for all v1(t), v2(t) ∈ V. (A.37)

To verify that {fk(t)} satisfies Equation (A.36a), consider fk(t) for a
specific value of k and an arbitrary element v(t) ∈ V with CT Fourier
transform (CTFT) V (jΩ). Since v(t) is an element of V, V (jΩ) is only
nonzero for |Ω| ≤ ΩN . We will first show that the inner product of fk(t)
with v(t) is equal to v(t) sampled at time t = kT , i.e., ⟨fk(t), v(t)⟩ =
v(kT ). Then we will use Parseval’s theorem to show that

∞∑
k=−∞

|⟨fk(t), v(t)⟩|2 =
∞∑

k=−∞
|v(kT )|2 = ||v(t)||2

T
. (A.38)

Let y(t) be the convolution of fk(t) with v(t),

y(t) =
∫ ∞

−∞
dτ v(τ) fk(t− τ). (A.39)

It is well-known that the CTFT of y(t) is Y (jΩ) = Fk(jΩ)V (jΩ) where
Fk(jΩ) is the CTFT of fk(t), defined by

Fk(jΩ) =

e−j Ω kT if |Ω| ≤ ΩN ,

0 else.
(A.40)

Since fk(t) = fk(−t), the inner product of fk(t) with v(t) is equal to
y(t) evaluated at t = 0,

⟨fk(t), v(t)⟩ =
∫ ∞

−∞
dt fk(t) v(t) =

∫ ∞

−∞
dt fk(−t) v(t) = y(0). (A.41)
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Using the definition of the inverse CTFT, we may express y(0) as

y(0) =
[ 1

2π

∫ ∞

−∞
dΩY (jΩ) ejΩt

]
t=0

= 1
2π

∫ ∞

−∞
dΩY (jΩ) (A.42a)

= 1
2π

∫ ∞

−∞
dΩFk(jΩ)V (jΩ). (A.42b)

And now substituting Equation (A.40) into Equation (A.42) yields

⟨fk(t), v(t)⟩ = 1
2π

∫ ∞

−∞
dΩV (jΩ) e−j Ω kT = v(kT ), (A.43)

where we have again used the definition of the inverse CTFT. Next
we use Parseval’s theorem to show that ∑k |v(kT )|2 = ||v(t)||2/T . The
discrete time Fourier transform of the sequence {v(kT )}, denoted by
V̂ (ejω), is 2π-periodic and is related to V (jΩ) via

V̂ (ejω) = 1
T
V

(
j
ω

T

)
, −π < ω ≤ π. (A.44)

Parseval’s theorem for discrete time sequences states that
∞∑

k=−∞
|v(kT )|2 = 1

2π

∫ π

−π
dω

∣∣∣V̂ (ejω)
∣∣∣2 . (A.45)

Substituting Equation (A.44) into Equation (A.45) and changing the
variable of integration to Ω = ω/T , we find

∞∑
k=−∞

|v(kT )|2 = 1
2π

∫ π

−π
dω

1
T 2

∣∣∣∣V (j ωT
)∣∣∣∣2 = 1

2π

∫ π/T

−π/T
dΩ 1

T
|V (jΩ)|2

(A.46a)

= 1
2π T

∫ ∞

−∞
dΩ |V (jΩ)|2 (A.46b)

Note that in going from Equation (A.46a) to (A.46b), we have used the
fact that π/T = rΩN and the fact that by assumption, V (jΩ) is only
nonzero for |Ω| ≤ ΩN . Finally, Parseval’s theorem for CT signals states
that

1
2π

∫ ∞

−∞
dΩ |V (jΩ)|2 =

∫ ∞

−∞
dt |v(t)|2 = ||v(t)||2 for all v(t) ∈ V.

(A.47)
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In summary, we have
∞∑

k=−∞
|⟨fk(t), v(t)⟩|2 =

∞∑
k=−∞

|v(kT )|2 = ||v(t)||2
T

. (A.48)

Since Equation (A.48) is true for any v(t) ∈ V , {fk(t)} is a tight frame
for V with frame bound C = 1/T .

To verify Equation (A.36b), we use Parseval’s theorem for CT signals
to show that ||fk(t)||2 is identical for all values of k,

||fk(t)||2 =
∫ ∞

−∞
dt |fk(t)|2 = 1

2π

∫ ∞

−∞
dΩ |Fk(jΩ)|2 (A.49a)

= 1
2π

∫ ΩN

−ΩN

dΩ |e−jΩkT |2 = ΩN

π
. (A.49b)

Since ΩN = π/(r T ), we have

||fk(t)|| = 1√
rT

for all k. (A.50)

A.8 Change of Basis in W (Section 4.6.2)

Consider |e⟩ = ∑
k ∆k |wk⟩ where the {∆k} each have zero mean and

variance σ2 and are pairwise uncorrelated, as specified in Equation
(4.31). Let {|uk⟩} be any orthonormal basis of W. We wish to show
that the components of |e⟩ with respect to {|uk⟩}, which we denote by
{∆′

k}, have these same properties. We start by expanding each of the
{|wk⟩} as a linear combination of the {|uk⟩},

|wk⟩ =
M∑

ℓ=1
ckℓ |uk⟩ , 1 ≤ k ≤ M. (A.51)

Since the {|wk⟩} are orthonormal, the {ckℓ} satisfy
M∑

ℓ=1
cjℓ ckℓ = δjk, 1 ≤ j, k ≤ M, (A.52)

where δjk takes the value 1 if j = k and 0 otherwise. Equation (A.52)
implies that the {ckℓ} also satisfy

M∑
k=1

ckℓ ckm = δℓm, 1 ≤ ℓ,m ≤ M. (A.53)
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To see why this is true, consider the M ×M matrix D whose kth row
and ℓth column contains the element ckℓ for 1 ≤ k, ℓ ≤ M . Equation
(A.52) states that the columns of D are orthonormal with respect to
the standard inner product (often referred to as the dot product) on
CM , the canonical M -dimensional complex coordinate space. A square
matrix whose columns are orthonormal also has the property that its
rows are orthonormal, which is exactly the meaning of Equation (A.53).

Substituting Equation (A.51) into the expression for |e⟩ and rear-
ranging, we find

|e⟩ =
M∑

k=1
∆k

(
M∑

ℓ=1
ckℓ |uk⟩

)
=

M∑
ℓ=1

(
M∑

k=1
∆k ckℓ

)
|uk⟩ . (A.54)

The components {∆′
k} can thus be expressed as ∆′

k = ∑
ℓ ∆k ckℓ for

1 ≤ k ≤ M . We may now derive the desired result using the linearity of
expectation and the properties of the {∆k},

E[∆′
k] =

M∑
k=1

E[∆k] ckℓ = 0 (A.55a)

E[∆′
j ∆′

k] =
M∑

j,k=1
E[∆j∆k] cjℓ ckℓ (A.55b)

=

σ
2∑M

k=1 c
2
kℓ if j = k

0 if j ̸= k
(A.55c)

=

σ
2 if j = k

0 if j ̸= k
.. (A.55d)

Note that in Equation (A.55d) we have used Equation (A.53). Thus,
we have shown that the {∆′

k} have zero mean and variance σ2 and are
pairwise uncorrelcated.

The fact that the {∆′
k} are uncorrelated can also be interpreted in

terms of the matrix D. This viewpoint is the one most commonly used
when considering a general decorrelation transformation of a vector-
valued random variable. Consider the vector-valued random variable
∆⃗ whose kth component is the random variable ∆k for 1 ≤ k ≤ M .
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Similarly, let ∆⃗′ be the vector-valued random variable with components
{∆′

k}. Since ∆′
k = ∑

ℓ ∆k ckℓ for 1 ≤ k ≤ M , we have ∆⃗′ = D ∆⃗. Since
the components of ∆⃗′ clearly have zero mean, the covariance matrix of
∆⃗′ can be expressed as

E[∆⃗′(∆⃗′)T ] = DE[∆⃗ ∆⃗T ]DT . (A.56)

The {∆k} satisfy E[∆j∆k] = σ2δjk by assumption, implying that
E[∆⃗∆⃗T ] = σ2IM where IM is the M ×M identity matrix. Thus, Equa-
tion (A.56) can be simplified to

E[∆⃗′(∆⃗′)T ] = σ2D IM DT = σ2DDT = σ2IM , (A.57)

where in the last line we have used that fact that DDT = IM because
the rows of D are orthonormal. The component in the jth row and
kth column of the matrix E[∆⃗′(∆⃗′)T ] is E[∆′

j∆′
k], and Equation (A.56)

states that it is equal to σ2 if j = k and 0 otherwise, as expected.

A.9 Generalized Operator Frames (Section 4.5.2)

The definition of a special class of IC POVMs referred to as tight IC
POVMs relies on the notion of a generalized operator frame with respect
to (w.r.t.) a given measure, as introduced in [11]. Given a measure α(·)
that maps each 1 ≤ k ≤ M to a non-negative number α(k) ≥ 0, a set of
operators {|Fk⟩⟩} in V is a generalized operator frame for V w.r.t. α(·)
if

C ||V ||2 ≤
M∑

k=1
α(k) |⟨⟨Fk|V ⟩⟩|2 ≤ D ||V ||2 for all |V ⟩⟩ ∈ V, (A.58)

for some 0 < C ≤ D < ∞.

Example A.1. Equation (4.26) is a special case of Equation (A.58) in
which α(·) is the counting measure, defined by

α(k) = 1, 1 ≤ k ≤ M. (A.59)

Thus, a set of operators satisfying Equation (4.26) is a frame for V w.r.t.
the counting measure.
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Example A.2. The trace measure [11] is defined by

α(k) = Tr(Fk), 1 ≤ k ≤ M. (A.60)

Note that Equation (A.60) only represents a valid measure when
Tr(Fk) ≥ 0 for all values of k. One instance in which this is true
is when the {|Fk⟩⟩} are the elements of a POVM. Substituting Equation
(A.60) into Equation (A.58) leads to

C ||V ||2 ≤
M∑

k=1
Tr(Fk) |⟨⟨Fk|V ⟩⟩|2 ≤ D ||V ||2 for all |V ⟩⟩ ∈ V (A.61)

for some 0 < C ≤ D < ∞. A set of operators {|Fk⟩⟩} in V satisfying
Equation (A.61) is a frame for V w.r.t. the trace measure. A tight frame
for V w.r.t. the trace measure is one for which the upper and lower
bounds in Equation (A.61) can both be set to the same value. Note that
in finite dimensions, if {|Fk⟩⟩} is a frame for V w.r.t. the trace measure,
then {

√
| Tr(Fk)| |Fk⟩⟩} is a frame for V w.r.t. the counting measure.

A.10 Distribution of Relative Frequencies (Section 5.3)

While the following derivation is motivated by the quantum state esti-
mation problem considered in Section 5.3, the concepts and conclusions
rely only on the laws of probability and not on the postulates of quan-
tum mechanics. Therefore we state the results without any reference
to density operators or quantum measurement. Let X be a discrete
random variable that takes values in the set {1, . . . ,M} with probability
mass function (PMF) {p(1), . . . , p(M)}, i.e.,

X = k with probability p(k), 1 ≤ k ≤ M. (A.62)

Assume that {xi, 1 ≤ i ≤ L} is a set of L independent realizations of
X and consider the set of relative frequencies {p̂(k) = ℓk/L}, where
ℓk is the number of realizations {xi} that are equal to k. Defining
dk = p̂(k) − p(k) for 1 ≤ k ≤ M , the goal is to evaluate the expected
values E[dk] and E[djdk] for all 1 ≤ j, k ≤ M .

We first address the case where j = k. Let k be a fixed integer
between 1 and M . To compute E[dk], note that the value of ℓk is
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binomially distributed with parameters p(k) and L [ref]. Its expected
value is E[ℓk] = Lp(k) and its variance is var(ℓk) = Lp(k) (1 − p(k)).
Using linearity of expectation we find that, unsurprisingly, the expected
value of dk is equal to zero,

E[dk] = E

[
p(k) − ℓk

L

]
= p(k) − Lp(k)

L
= 0. (A.63)

The variance of dk is

var(dk) = var
(
p(k) − ℓk

L

)
= var(ℓk)

L2 = p(k) (1 − p(k))
L

. (A.64)

Furthermore, since E[dk] = 0 we have E[d2
k] = var(dk).

Now let j and k be fixed integers between 1 and M with j ̸= k.
To compute E[dj dk], note that the joint distribution of {ℓ1, . . . , ℓM } is
given by a multinomial distribution with parameters L and {p1, . . . , pM }
[ref]. It can be shown using the properties of the multinomial distribution
that

E[ℓjℓk] = Lp(j) p(k) (L− 1). (A.65)

Using linearity of expectation and the fact that E[ℓj ] = Lp(j) and
E[ℓk] = Lp(k), we find that the value of E[djdk] is

E[djdk] = E

[(
ℓj
L

− p(j)
)(

ℓk
L

− p(k)
)]

(A.66a)

= E[ℓjℓk]
L2 − p(j) p(k) = −p(j) p(k)

L
. (A.66b)
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B.1 Generation of Pf -Pd Projection of LRT ROC from Suboptimal
SVT ROC

An explanation of the procedure is shown in Figure B.1. The graphs
in Figure B.1a show P SVT

f , P SVT
d , and the derivative dP SVT

d /dP SVT
f

as functions of the score variable. According to Equation (2.31) the
derivative is equal to the likelihood ratio function. Note that these graphs
are caricatures used only for visualization, since the procedure does
not require explicit knowledge of any of the aforementioned quantities
as functions of the score variable. A fixed LRT threshold value η0 ≥ 0
identifies multiple disjoint regions of s for which f1(s)/f0(s) ≥ η0,
highlighted in green for η0 = 1 in the figure. Together these regions
comprise DLRT(η0). Each individual region j covers an interval [aj , bj ]
with aj < bj and corresponds to the segment in the Pf -Pd projection
of the SVT ROC with endpoints (hf (bj), hd(bj)) and (hf (aj), hd(aj)).
The integrals of f0(·) and f1(·) over the region, shown in Figure B.1b,

109
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can be expressed as∫ bj

aj

ds f0(s) = (1 − F0(aj)) − (1 − F0(bj)) = hf (aj) − hf (bj) (B.1a)

∫ bj

aj

ds f1(s) = (1 − F1(aj)) − (1 − F1(bj)) = hd(aj) − hd(bj) (B.1b)

which are simply the changes in P SVT
f and P SVT

d between the endpoints
of the segment. Summing these changes over all regions corresponds
to summing the integrals of f0(·) and f1(·) over each disjoint portion
of DLRT(η). The resulting Pf -Pd projection of the LRT ROC made by
varying η0 over its entire range is illustrated in Figure B.1c.

B.2 QMOCs Generated using Standard Measurements are Ellipses

We show that any QMOC generated according to the method described
in Example 3.3 of Section 3.6, in which two-outcome quantum measure-
ments with associated standard POVMs are used to distinguish between
arbitrary qubit density matrices ρ0 and ρ1 with d = 2, is an ellipse.
More specifically, it is a rotated ellipse in the Pf -Pd plane centered at
the point (1/2, 1/2). The derivation also applies to the case where ρ0
and ρ1 represent two pure states with d > 2, as long as the standard
POVMs used to generate the QMOC have the following properties: The
first two elements of the POVM, E1 and E2, should be analogous to
those defined by Equation (3.19), but with the additional requirement
that |v1⟩ and |v2⟩ should lie in the plane defined by the two pure states.
The other measurement elements must therefore project onto subspaces
of the orthogonal complement of that plane. Again the final decision is
H1 if the measurement outcome associated with E2 occurs and H0 if the
measurement outcome associated with E2 occurs. The other possible
outcomes have zero probability of occurring and can be associated with
either final decision. Essentially, this reduces the problem to that of
distinguishing between two pure states with d = 2.
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Figure B.1: (a) Probability of false alarm, probability of detection, and derivative
of SVT ROC as functions of the score variable. The highlighted regions represent
regions where the derivative of the curve is greater than or equal to η0 = 1. (b)
Integrals of the conditional PDFs over the LRT decision region DLRT(η0) for η0 = 1.
(c) Pf -Pd projections of non-concave SVT ROC and LRT ROC generated using the
procedure given in the text.
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The coordinates of the QMOC in terms of the angle θ are

Pf = Tr(E1ρ0) = a0 cos2
(
θ

2

)
+ a1 sin2

(
θ

2

)
(B.2a)

Pd = Tr(E1ρ1) = b0 cos2
(
θ − α

2

)
+ b1 sin2

(
θ − α

2

)
. (B.2b)

Assuming for the moment that this is the parametric equation of a
rotated ellipse centered at (1/2, 1/2), we can center the ellipse at the ori-
gin and use trigonometric identities to derive equations for the centered
coordinates,

Pf − 1
2 = a0 − a1

2 cos θ (B.3a)

Pf − 1
2 = b0 − b1

2 cos(θ − α). (B.3b)

For ease of notation we now make the substitutions

x = Pf − 1
2 , y = Pd − 1

2 , a = a0 − a1
2 , b = b0 − b1

2 , (B.4)

and introduce the functions fx(·) and fy(·), so that the centered coordi-
nates become

x = fx(θ) = a cos θ (B.5a)

y = fy(θ) = b cos(θ − α). (B.5b)

(Note that the x and y above should not be confused with the {|xi⟩} and
{|yi⟩} in Equations (3.11).) The objective now is to show that x = fx(θ)
and y = fy(θ) represent a rotated ellipse centered at the origin. That is,
the objective is to show that they can be written in the form

x = gx(t) = q cosβ cos t− r sin β sin t (B.6a)

y = gy(t) = q sin β cos t+ r cosβ sin t (B.6b)

for some angle of rotation β from the horizontal, semi-major axis q,
semi-minor axis r, and parameter t (which will prove inconsequential
for our purposes). The functions gx(·) and gy(·) have been introduced
for convenience. We can solve for the parameters q, r, β in terms of the
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known values of a, b, α by using Equations (B.5) and (B.6) to find the
points on each ellipse with maximum x- and y-values and then setting
their coordinates equal to one another. Taking the derivative of fx(θ) and
setting it to zero, we find that the point with maximum x-value occurs
at θx = 0 and has coordinates (fx(0), fy(0)) = (a, b). The point with
maximum y-value occurs at θy = α and has coordinates (fx(α), fy(α)) =
(a cosα, b). Similarly, the point on the ellipse described by Equations
(B.6) with maximum x-value occurs at tx = tan−1(−(r/q) tan β) and
has coordinates

gx(tx) =
√
q2 cos2 β + r2 sin2 β (B.7a)

gy(tx) = q2 − r2√
q2/ sin2 β + r2/ cos2 β

. (B.7b)

The point with maximum y-value occurs at ty = tan−1(r/(q tan β)) and
has coordinates

gx(ty) = q2 − r2√
q2/ cos2 β + r2/ sin2 β

(B.8a)

gy(ty) =
√
q2 sin2 β + r2 cos2 β. (B.8b)

Setting fx(0) = gx(tx), fy(0) = gy(tx), fx(α) = gx(ty), and fy(α) =
gy(ty) and solving for q, r, and β in terms of a, b, and α yields

β = 1
2 tan−1

(2ab cosα
a2 − b2

)
(B.9a)

q =
[

1
2

(
a2 + b2 + a2 − b2

cos(2β)

)]1/2

(B.9b)

r =
[

1
2

(
a2 + b2 − a2 − b2

cos(2β)

)]1/2

. (B.9c)

It can be verified through straightforward algebra that when β, q,
and r are given by Equations (B.9), the coordinates x = fx(θ), y =
fy(θ) in Equation (B.5) satisfy the equation that defines an ellipse:
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Ax2 +Bxy + Cy2 +D = 0 with B2 − 4AC < 0, where

A = q2 sin2 β + r2 cos2 β (B.10a)

B = 2(q2 − r2) sin β cosβ (B.10b)

C = q2 cos2 β + r2 sin2 β (B.10c)

D = −q2r2. (B.10d)

This verifies our initial assumption that x = fx(θ) and y = fy(θ) are
the coordinates of an ellipse that is centered at the origin, rotated by an
angle β from the horizontal, and has semi-major axis q and semi-minor
axis r. The original QMOC is the same ellipse centered at the point
(1/2, 1/2).
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