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ABSTRACT
Sparsity is an attribute present in a myriad of natural signals and
systems, occurring either inherently or after a suitable projection.
Such signals with lots of zeros possess minimal degrees of freedom
and are thus attractive from an implementation perspective in
wireless networks. While sparsity has appeared for decades in
various mathematical fields, the emergence of compressed sensing
(CS) – the joint sampling and compression paradigm – in 2006
gave rise to plethora of novel communication designs that can
efficiently exploit sparsity. In this monograph, we review several
CS frameworks where sparsity is exploited to improve the quality
of signal reconstruction/detection while reducing the use of radio
and energy resources by decreasing, e.g., the sampling rate, trans-
mission rate, and number of computations. The first part focuses
on several advanced CS signal reconstruction techniques along
with wireless applications. The second part deals with efficient
data gathering and lossy compression techniques in wireless sen-
sor networks. Finally, the third part addresses CS-driven designs
for spectrum sensing and multi-user detection for cognitive and
wireless communications.

Markus Leinonen, Marian Codreanu and Georgios Giannakis (2019), Compressed
Sensing with Applications in Wireless Networks, Foundations and TrendsR© in Signal
Processing: Vol. 13, No. 1-2, pp 1–282. DOI: 10.1561/2000000107.
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1
Introduction

Efficient data acquisition and signal reconstruction methods used for various
purposes in wireless communication systems have been under extensive re-
search and development for a while. One overarching design objective is to
improve the quality of reconstruction, classification, detection etc. while reduc-
ing the use of radio and energy resources by decreasing, e.g., the sampling rate,
transmission rate, and number of computations. Due to proliferation of the
number of deployed wireless devices and the amount of data, implementing
advanced signal processing techniques to achieve such objectives becomes of
particular interest for emerging multi-user communication systems.
One fundamental feature of a desired information signal that can provide
a solution to reach the aforementioned goal is signal sparsity. To this end,
the key tool for exploiting sparsity is the modern theory of compressed sens-
ing/compressive sampling (CS). Accordingly, this monograph reviews several
CS techniques to utilize the sparsity of an underlying signal in data gathering,
signal reconstruction and detection tasks in wireless networks. In Section 1,
we first give a general overview of the different communication frameworks
and applications addressed in the monograph. As a continuation, Section 1
elaborates signal sparsity and discusses how sparsity may be present or be-

2
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Communication Frameworks and Applications 3

come available in the considered frameworks. The main idea of CS is detailed
in Section 1. Finally, the outline of the monograph is given in Section 1.

Communication Frameworks and Applications

Cognitive Radio Communications: It has been recognized that the licensed
radio frequency (RF) spectrum is often severely under-utilized depending
on the time and location of communication, in spite of the evident scarcity
of the spectral resources due to the growing use of wireless devices [105].
Cognitive radios (CRs) aim to mitigate this issue by opportunistically utilizing
the unused licensed spectrum through spectrum sensing and dynamic spectrum
access in multi-user communication systems.
In particular, RF cartography is an instrumental concept for CR tasks [160].
Based on the measurements collected by spatially distributed CR sensors,
RF cartography constructs the maps over the space, time, and frequency,
portraying the RF landscape in which the CR network is deployed. Notable RF
maps that have been proposed include the power spectral density maps, which
acquire the ambient interference power distribution, revealing the crowded
regions that CR transceivers need to avoid [21]; and the channel gain maps,
which capture the channel gains between any two points in space, allowing CR
networks to perform accurate spectrum sensing and aggressive spatial reuse
[161]. By modelling the channel gains as the tomographic accumulations of
an underlying spatial loss field (SLF), the technique captures the attenuation
in the signal strength due to the obstacles in the propagation path.
Multi-User Detection: Multiuser detection (MUD) algorithms play a major
role for mitigating multi-access interference present in code-division multiple
access (CDMA) systems; see e.g., [288] and references therein. These well-
appreciated MUD algorithms simultaneously detect the transmitted symbols of
all active user terminals. Conventional techniques require knowledge of which
terminals are active and exploit no possible user (in)activity. In the design
of practical CDMA systems, one is also interested in saving bandwidth and
power resources. Such savings are possible by reducing the size of the required
spreading gain, which in turn reduces latency and energy consumption. This
may be enabled by a low activity factor (probability of each user being active)
in which case the system can be designed for spreading gains smaller than the
number of candidate users.
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4 Introduction

Sensor Monitoring: In near future, there will be a burgeoning demand for
the deployment of low-power smart sensors, especially to serve the myriad of
diverse internet of things (IoT) applications including environmental, indus-
trial, healthcare, and military monitoring tasks [316, 119, 213]. Accordingly,
wireless sensor networks (WSNs) consisting of battery-powered sensors will
be a key technology in creating the ubiquitous networked world and smart
cities under the IoT framework. IoT opens a new era of intelligent networking,
where collaborative sensors sense their environment with no human interven-
tion, enabling to, e.g., automate an underlying process, improve the system
performance, and reduce the maintenance costs. By 2020, the number of IoT
devices is anticipated to reach hundreds of billions and the IoT market to
become on the order of trillions of dollars, with a major portion on healthcare
applications [119, 213].
In a typical monitoring task, geographically distributed sensors measure a
correlated information source, encode the observations separately, and commu-
nicate the information to a sink for joint reconstruction of the source signals.
As the sensors have limited batteries, which are often non-rechargeable or
irreplaceable, it is crucial to minimize the energy consumption to prolong
the lifespan of a WSN. The main contributors to sensors’ energy consump-
tion are wireless communications [239], and in certain applications, also the
sensing/sampling part [6]. Consequently, it is crucial to minimize the amount
of information (i.e., the number of data packets or bits) that must be com-
municated from each sensor to the sink in order to satisfy given application
requirements. Accordingly, an energy-efficient sensor acquires a small number
of data samples of a physical phenomenon (e.g., temperature, humidity, or
light intensity), and encodes and communicates them at a minimum rate to the
sink to reconstruct the information signal with, e.g., a given fidelity or maxi-
mum allowed delay. This engenders the need for energy-efficient distributed
data gathering techniques that preserve autonomous operation of sensors and
have a simple infrastructure with low battery consumption and computational
complexity.

Signal Sparsity in the Considered Applications

Sparsity is an attribute present in a plethora of natural signals and systems,
occurring either naturally or after projecting them over appropriate bases. A
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Signal Sparsity in the Considered Applications 5

signal is said to be sparse if it has many zero-valued elements or can be repre-
sented by few non-zero coefficients under a proper transformation. Similarly,
a signal is termed compressible, if the energy of transform coefficients is
concentrated in a small set of elements. Focusing on sparse signal structures
is reasonable not only because nature itself is parsimonious but also because
processing and simple models with minimal degrees of freedom are attrac-
tive from an implementation perspective. Whereas sparsity is by default an
attribute defined for a single signal, it can be extended to characterize joint
sparse structures; see, e.g., the regression problems dealing with group sparsity
[314], and joint sparsity models introduced in [19].
Exploitation of sparsity is critical in a wide range of communication tasks.
Regarding the frameworks addressed in this monograph, utilization of sparse
signals has been investigated in the following applications.

• WSNs: Sparse signals are encountered in diverse WSN applications
in, e.g., environmental monitoring [19, 238], source localization [201],
and biomedical sensing [83]. For instance, universal transformations
suitable for revealing the underlying sparsity of many smooth/piecewise
smooth signals include the discrete Fourier, cosine, and wavelet trans-
form (DFT, DCT, DWT), respectively [202, 15, 36, 37]. In particular, the
efficacy of the DWT matrices in sparsifying signals of several natural
phenomena such as temperature, humidity, and light has been especially
reported in, e.g., [197, 37]. Sparsity in the sensed data allows to reduce
the computations of simple sensor devices, and most importantly, to
significantly reduce sensors’ energy consumption for communicating
the data to a fusion center [175, 176, 178]. One particular direction of
great interest is so-called quantized CS [129, 273, 333, 151, 180, 184,
182, 181] – a lossy compression setup where the CS measurements are
converted into finite-rate bit sequences, and the aim is to design efficient
quantization-aware CS reconstruction algorithms and analyze their rate-
distortion performance. Application requirements may demand as low
quantization rate as one bit per measurement sample, referred as 1-bit
CS [152].

• Cellular Networks: Sparsity has been utilized in, e.g., estimation of
wireless multipath channels [71, 275], estimation of parameters of com-
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6 Introduction

munication systems [53, 23, 9, 109], and sparse sphere decoding [277].
As for MUD algorithms, the sparsity arises because the active terminals
are unknown and the activity factor is low in a typical system [322].
Sparsity can be exploited to either relax or judiciously search over sub-
sets of the alphabet of the desired symbol vector so that the resultant
MUD algorithms trade off optimality in detection error performance
with computational complexity. Moreover, source localization based on
the DoA estimation typically involves sparsity in the angular domain
under certain radio propagation features [118, 201, 228].

• CR Applications: Distributed spectrum sensing for CR communica-
tions is a crucial task and has been addressed in, e.g., [20, 10, 212,
261]. In spectrum sensing, the sparsity manifests itself in two forms: 1)
narrow-band nature of transmit power spectral density relative to the
broad range of usable spectrum, and 2) sparsely located active radios in
the operational space [20]. This type of compressive wideband power
spectrum estimation allows to recover an unknown power spectrum of
a wide-sense stationary signal from samples obtained at a sub-Nyquist
rate [10], even if the samples were coarsely quantized sensors’ measure-
ments [212].

Another emergent topic in CR networks is RF cartography. In RF car-
tography, SLF may have a low-rank structure potentially corrupted by
sparse outliers [171]. Such a model is particularly appealing for urban
and indoor propagation scenarios, where regular placement of buildings
and walls renders a scene inherently of low rank, while sparse outliers
can pick up the artifacts that do not conform to the low-rank model. Ear-
lier works on sparsity-leveraging cartography include network anomaly
monitoring in [205].

Applications from other research fields which deal with sparse signals in-
clude variable selection in linear regression models for diabetes [278], image
compression [46], signal decomposition using overcomplete bases [61], and
more.
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The Concept of Compressive Sampling

Sampling Followed by Compression: The key principle underlying the data
sampling methods and analog-to-digital conversion in modern consumer de-
vices is the Nyquist-Shannon sampling theorem – the celebrated result of the
seminal works by Nyquist [227] and Shannon [259]. The theorem states that
if the sampling rate of a signal is at least twice its maximum frequency com-
ponent, the signal can be perfectly reconstructed. This threshold rate is called
the Nyquist rate. In a resource-limited digital sensor, the acquisition of signal
samples is typically followed by data compression which aims to encode the
information with fewer bits. Consequently, a substantial portion of expensively
acquired data is eventually discarded prior to storage or transmission. Fortu-
nately, if a signal has certain additional features, perfect reconstruction may be
possible even below the Nyquist rate. Namely, the inefficiency caused by the
separate sampling and compression may be alleviated by sub-Nyquist sampling
– an unorthodox paradigm violating the conventional sampling notion.
Compressive Sampling: A feature that enables sub-Nyquist sampling is the
sparsity/compressibility of a signal, discussed in Section 1. While sparsity has
been exploited for a while in numerical linear algebra, statistics, and signal
processing, renewed interest emerged in recent years because sparsity plays an
instrumental role in modern compressive sampling/compressed sensing (CS)
theory and applications [43, 87, 44, 146, 46, 38, 94, 17, 49]. CS is a joint
sampling and compression paradigm which enables a sparse/compressible
length-N signal to be accurately reconstructed from its M < N (random)
linear measurements. This engenders the sub-Nyquist sampling interpretation
of CS [217]: instead of sampling at a rate proportional to the signal bandwidth,
the sampling rate in CS is dictated by the signal’s "information content" [218].
The primary asset of CS is its simple and universal encoding since most
computational work load is shifted to the decoder [94]. As a rough comparison,
computational complexity at the encoder for CS scales as MN (at most for a
dense measurement matrix), whereas for a standard compression method like
fast Fourier transform it scales asN logN [112, Appendix C.1]. While for high-
dimensional signalsMN > N logN , the use of sparse measurements matrices
drastically reduces the computational and memory requirements for CS [28].
The other benefits of CS include robustness to measurement/quantization
noise, resiliency to packet losses, security via pseudorandom projections, and
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8 Introduction

the gradual improvement of reconstruction accuracy from increased number of
measurements [94]. All above benefits are especially beneficial for low-power
sensor applications.
A Historical Note: Prior to the CS era launched in 2006, there has already
been lots of research interest to tackle signal processing tasks involving sparse
signals. This becomes also evident in Table 1 of Section 2 where many pop-
ular present-day CS reconstruction algorithms trace back to early 1990’s.
Indeed, in a diversity of engineering applications, one encounters solving
ill-posed/underdetermined inverse problems, i.e., problems where the number
of available measurements is smaller than the dimension of the signal/model to
be estimated. Luckily, in many such practical situations, the encountered mod-
els have structural constraints similar to sparsity, i.e., they can be described by
only a few degrees of freedom relative to their ambient dimension or as linear
combinations of a few basic building blocks.
One cornerstone of the emerging area of CS is the notion of variable selection
(VS) associated with sparse linear regression [278]. VS is a combinatorially
complex task closely related (but not identical) to the well-known model
order selection problem tackled through Akaike’s information [2], Bayesian
information [258], and risk inflation [111] criteria. A typically convex function
of the model fitting error is penalized with the `0-norm of the unknown vector
which equals the number of nonzero entries, and thus accounts for model
complexity (degrees of freedom). To bypass the non-convexity of the `0-norm,
VS and CS approaches replace it with convex penalty terms (e.g., the `1-norm)
that capture sparsity but also lead to computationally efficient solvers. One
another line of work preceding the CS era is the concept "sampling signals
with finite rate of innovation" introduced in [289], which generalizes the
classic sampling theorem of bandlimited signals with sinc kernels. The rate of
innovation is a number that describes a finite number of degrees of freedom
(i.e., sparsity) per unit of time for certain classes of signals.

Outline of the Monograph

This monograph addresses several CS techniques to utilize sparsity of an un-
derlying signal in data gathering, signal reconstruction and detection tasks in
wireless networks. In this monograph, the "sub-Nyquist feature" of CS refers to
measuring an underlying (continuous-time) analog source via dimensionality
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reducing projections, which can be represented by discrete-time measurements
of form (1) (see also Fig. 1). Another line of work is analog-to-digital compres-
sion, where analog signals are encoded into bits via a combined sub-Nyquist
sampling and quantization process [162]. A hardware implementation of a
sub-Nyquist sampling system was presented in [215], and a unified Xampling
framework was introduced in [216].
This monograph is organized as follows. We first introduce fundamentals
of CS and give an overview about common reconstruction techniques of
sparse signals from compressed measurements in Section 2. After that, the
monograph is split into three parts as follows:

• The first part focuses on several advanced CS signal reconstruction
techniques along with wireless applications. Accordingly, Section 3
develops sparsity-aware recursive algorithms for estimating and tracking
sparse and (possibly time-varying) signals. Section 4 devises regularized
total least-squares algorithms under sparsity constraints for a perturbed
CS signal model, along with applying them to directions-of-arrival
estimation.

• The second part deals with efficient data gathering and lossy compres-
sion techniques in wireless sensor networks. Compressed acquisition of
streaming correlated data in WSNs is presented in Section 5. Section 6
and Section 7 consider CS signal acquisition setups under quantization
of measurements. Accordingly, Section 6 devises an efficient quantized
CS algorithm for distributed source coding of correlated sparse sources
in WSNs. Rate-distortion performance of a quantized CS setup is inves-
tigated in Section 7, including both information theoretic analyses and
the design of several types of practical quantized CS algorithms.

• The third part addresses CS-driven designs for spectrum sensing and
multi-user detection for cognitive and wireless communications. Sec-
tion 8 addresses channel gain cartography for CR networks under a
limited number of available measurements. Section 9 proposes efficient
sparsity-utilizing MUD algorithms in CDMA systems.

Finally, the monograph is concluded with the summary in Section 10.
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8
Channel Gain Cartography for Cognitive

Radios Leveraging Low Rank and Sparsity

This section focuses on channel gain cartography which aims at inferring the
channel gains between two arbitrary points in space based on the measure-
ments (samples) of the gains collected by a set of radios deployed in the area.
Channel gain maps are useful for various sensing and resource allocation tasks
essential for the operation of cognitive radio (CR) networks. In the considered
framework, the channel gains are modeled as the tomographic accumulations
of an underlying spatial loss field (SLF), which captures the attenuation in
the signal strength due to the obstacles in the propagation path. In order to
estimate the map accurately with a relatively small number of measurements,
the SLF is postulated to have a low-rank structure possibly with sparse devi-
ations. Efficient batch and online algorithms are developed for the resulting
map reconstruction problem. Comprehensive tests with both synthetic and real
datasets corroborate that the algorithms can accurately reveal the structure of
the propagation medium and produce the desired channel gain maps.

Related Works

RF cartography is an instrumental concept for CR tasks [160], motivated
by the under-utilization of the licensed RF spectrum [105]. Based on the

171
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measurements collected by spatially distributed CR sensors, RF cartography
constructs the maps over the space, time, and frequency, portraying the RF
landscape in which the CR network is deployed. Notable RF maps that have
been proposed include the power spectral density (PSD) maps, which acquire
the ambient interference power distribution, revealing the crowded regions
that CR transceivers need to avoid [21]; and the channel gain (CG) maps,
which capture the channel gains between any two points in space, allowing
CR networks to perform accurate spectrum sensing and aggressive spatial
reuse [161].
Prior works on channel gain cartography capitalized on experimentally val-
idated notion of a spatial loss field (SLF) [1], which expresses the shadow
fading over an arbitrary link as the weighted integral of the underlying at-
tenuation that the RF propagation experiences due to the blocking objects
in the path. Linear interpolation techniques such as kriging were employed
to estimate the shadow fading based on spatially correlated measurements,
and the spatio-temporal dynamics were tracked using Kalman filtering ap-
proaches [161, 79]. It is worth noting that SLF reconstruction is tantamount to
the radio tomographic imaging (RTI), useful in a wide range of applications,
from locating survivors in rescue operations to environmental monitoring [297,
298, 141]. The method in [297] captures the variation of the propagation
medium by taking SLF differences at consecutive time slots into consideration.
To cope with multipath fading in a cluttered environment, multiple channel
measurements were utilized to enhance localization accuracy in [155]. How-
ever, the methods in [297, 155] do not reveal static objects in the imaging area.
In contrast, a method to track moving objects using a dynamic SLF model, as
well as identifying the static ones, was reported in [141]. Exploiting the sparse
occupancy of the monitored area by the target objects, sparsity-leveraging
algorithms for constructing obstacle maps were developed [220, 158, 219].
This work adopts a related data model, but mainly focuses on the channel gain
map construction for CR applications.
Although more sophisticated methodologies for channel modeling do ex-
ist [282, 305], the computational cost and requirements on various struc-
tural/geometric prior information may hinder their use in CR applications. On
the other hand, the SLF model has been experimentally validated [1], as well
as in our work through a real tomographic imaging example. The proposed
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approach in this section provides a computationally efficient solution, by cap-
italizing on the inherent structure of measurement data, rather than relying
heavily on the physics of RF propagation.

System Model and Problem Statement

Notation. Bold uppercase (lowercase) letters denote matrices (column vectors).
Calligraphic letters are used for sets; In is the n×n identity matrix. 0n denotes
an n× 1 vector of all zeros, and 0n×n an n× n matrix of all zeros. Operators
(·)T , tr(·), and σi(·) represent the transposition, trace, and the i-th largest
singular value of a matrix, respectively; | · | is used for the cardinality of a set,
and the magnitude of a scalar. R � 0 signifies that R is positive semidefinite.
The `1-norm of X ∈ Rn×n is ||X||1 :=

∑n
i,j=1 |Xij |. The `∞-norm of X ∈

Rn×n is represented by ||X||∞ := max{|Xij | : i, j = 1, . . . , n}. For two
matrices X,Y ∈ Rn×n, the matrix inner product 〈X,Y〉 := tr(XTY). The

Frobenius norm of matrix Y is ||Y||F :=
√

tr(YYT ). The spectral norm
of Y is ||Y|| := max||x||2=1 ||Yx||2, and ||Y||∗ :=

∑
i σi(Y) is the nuclear

norm of Y. For a function h : Rm×n → R, the directional derivative of
h at X ∈ Rm×n along a direction D ∈ Rm×n is denoted as h′(X; D) :=
limt→0+[h(X + tD)− h(X)]/t.
Consider a set of N CRs deployed over a geographical area represented by
a two-dimensional plane A ⊂ R2. Let x(t)

n ∈ A denote the position of CR
n ∈ {1, 2, . . . , N} at time t. By exchanging pilot sequences, the CR nodes
can estimate the channel gains among them. A typical channel gain between
nodes n and n′ can be modeled as the product of pathloss, shadowing, and
small-scale fading. By averaging out the effect of the small-scale fading, the
(averaged) channel gain measurement over a link (n, n′) at time t, denoted by
G(x(t)

n ,x(t)
n′ ), can be represented (in dB) as

G(x(t)
n ,x

(t)
n′ ) = G0 − γ10 log10 ||x(t)

n − x(t)
n′ ||+ s(x(t)

n ,x
(t)
n′ ) (152)

whereG0 is the path gain at unit distance; ||x(t)
n −x(t)

n′ || is the distance between
nodes n and n′; γ is the pathloss exponent; and s(x(t)

n ,x(t)
n′ ) is the attenuation

due to the shadow fading. By subtracting the known pathloss component
in (152), the noisy shadowing measurement

š(x(t)
n ,x

(t)
n′ ) = s(x(t)

n ,x
(t)
n′ ) + ε(x(t)

n ,x
(t)
n′ ) (153)

Full text available at: http://dx.doi.org/10.1561/2000000107



174 CG Cartography for CRs Leveraging Low Rank and Sparsity

is obtained, where ε(x(t)
n ,x(t)

n′ ) denotes the measurement noise. LetM(t) be
the set of links, for which channel gain measurements are made at time t, and
collect those measurements in vector š(t) ∈ R|M(t)|. The goal of channel gain
cartography is to predict the channel gain between arbitrary points x, x′ ∈ A
at time t, based on the known nodal positions {x(t)

n } and the channel gain
measurements collected up to time t, that is, {š(τ)}tτ=1 [161, 79].
In order to achieve this interpolation, the structure of shadow fading experi-
enced by co-located radio links will be leveraged. To this end, a variety of
correlation models for shadow fading have been proposed [1, 139, 137]. In
particular, the models in [161, 1, 298, 141] rely on the so-termed spatial loss
field (SLF), which captures the attenuation due to obstacles in the line-of-sight
propagation.
Let f : A → R denote the SLF, which captures the attenuation at location
x̃ ∈ A, and w(x,x′, x̃) is the weight function modeling the influence of
the SLF at x̃ to the shadowing experienced by link x–x′. Then, s(x,x′) is
expressed as [142]

s(x,x′) =
∫
A
w(x,x′, x̃)f(x̃)dx̃. (154)

The normalized ellipse model is often used for the weight function, with w
taking the form [297]

w(x,x′, x̃) :=


1/
√
d(x,x′), if d(x, x̃) + d(x′, x̃)

< d(x,x′) + δ

0, otherwise

(155)

where d(x,x′) := ‖x − x′‖ is the distance between positions x and x′, and
δ > 0 is a tunable parameter. The value of δ is commonly set to half the
wavelength to assign non-zero weights only within the first Fresnel zone. The
integral in (154) can be approximated by

s(x,x′) '
Nx∑
i=1

Ny∑
j=1

w(x,x′, x̃i,j)f(x̃i,j) (156)

where {x̃i,j}
Nx,Ny
i=1,j=1 are the pre-specified grid points over A. Let matrix F ∈

RNx×Ny denote the SLF, sampled by theNx-by-Ny grid. Similarly, the weight
matrix Wxx′ corresponding to link x–x′ is constructed. The shadow fading
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over link x–x′ in (156) can then be expressed as a linear projection of the SLF
given by

s(x,x′) ' 〈Wxx′ ,F〉 = tr(WT
xx′F). (157)

The goal is to form an estimate F̂(t) of F(t) at time t, based on {x(t)
n } and

{š(τ)}tτ=1. Once F̂(t) is obtained, the shadowing and the overall channel gain
across any link x–x′ at time t can be estimated via (157) and (152) as

ŝ(x(t),x′(t)) = 〈W(t)
xx′ , F̂

(t)〉 (158)

Ĝ(x(t),x′(t)) = G0 − γ10 log10 ||x(t) − x′(t)||+ ŝ(x(t),x′(t)). (159)

The number of unknown F(t) entries is less than NxNy, while the number
of measurements is O(tN2), provided that the SLF remains invariant for
t slots. If the number of entries to be estimated in F(t) is larger than the
number of measurements, the problem is underdetermined and cannot be
solved uniquely. To overcome this and further improve the performance even
in the overdetermined cases, a priori knowledge on the structure of F(t) will
be exploited next to regularize the problem.

Channel Gain Prediction Using Low Rank and Sparsity

Problem Formulation

The low-rank plus sparse structure has been advocated in various problems
in machine learning and signal processing [40, 102, 207]. Low-rank matrices
are effective in capturing slow variation or regular patterns, and sparsity is
instrumental for incorporating robustness against outliers. Inspired by these,
we postulate that F has a low-rank-plus-sparse structure as

F = L + E (160)

where matrix L is low-rank, and E is sparse. This model is particularly attrac-
tive in urban or indoor scenarios where the obstacles often possess regular
patterns, while the sparse term can capture irregularities that do not conform
to the low-rank model.
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Redefine W(t)
nn′ := W(t)

xnxn′ and š(t)
nn′ := š(x(t)

n ,x(t)
n′ ) for brevity.21Toward

estimating F(t) that obeys (160), consider the cost

c(t)(L,E) := 1
2

∑
(n,n′)∈M(t)

(
〈W(t)

nn′ ,L + E〉 − š(t)
nn′

)2
(161)

which fits the shadowing measurements to the model. Then, with T denoting
the total number of time slots taking measurements, we adopt the following
optimization criterion

(P1) min
L,E∈RNx×Ny

T∑
τ=1

βT−τ
[
c(τ)(L,E) + λ||L||∗ + µ||E||1

]
(162)

where β ∈ (0, 1] is the forgetting factor that can be optionally put in to weigh
the recent observations more heavily. The nuclear norm regularization term
promotes a low-rank L, while the `1-norm encourages sparsity in E. Parame-
ters λ and µ are appropriately chosen to control the effect of these regularizers.
Conditions for exact recovery through a related convex formulation in the
absence of measurement noise can be found in [307].
Problem (162) is convex, and can be tackled using existing efficient solvers,
such as the interior-point method. Once the optimal L̂ and Ê are found, the de-
sired F̂ is obtained as F̂ = L̂ + Ê. However, the general-purpose optimization
packages tend to scale poorly as the problem size grows. Specialized algo-
rithms developed for related problems often employ costly SVD operations
iteratively [307]. Furthermore, such an algorithm might not be amenable for
an online implementation. Building on [206] and [245], an efficient solution is
proposed next with reduced complexity.

21Prompted by [155], the benefit of multi-channel diversity for RTI may be incorporated
in the presented framework. Suppose K channels K(t)

nn′ are available to sensors n and n′ at
time t, and let ś(t)

nn′,k denote the noisy measurement including fading over link xn–xn′ at t in

channel k ∈ K(t)
nn′ . Construct a new measurement as s̄(t)

nn′ = φ(ś(t)
nn′,1, ś

(t)
nn′,2, . . . , ś

(t)
nn′,K),

where φ(·) is a channel selection function [155]. By replacing š(t)
nn′ in (161) with s̄(t)

nn′ , the
multiple channel measurements can be incorporated without altering the method. However,
the dynamic channel availability and multi-channel measurements will increase algorithm
complexity. On the other hand, it is not clear whether such a multi-channel approach can be
adopted for estimating any channel gain over multiple frequency bands.
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Efficient Batch Solution

Without loss of generality, consider replacing L with the low-rank product
PQT , where P ∈ RNx×ρ and Q ∈ RNy×ρ, and ρ is a pre-specified overesti-
mate of the rank of L. It is known that (e.g., [245])

||L||∗ = min
P,Q

1
2
(
||P||2F + ||Q||2F

)
subject to L = PQT . (163)

Thus, a natural re-formulation of (162) is (see also [206])

(P2) min
P,Q,E

f(P,Q,E) := (164)

T∑
τ=1

βT−τ
[
c(τ)(PQT ,E) + λ

2
(
||P||2F + ||Q||2F

)
+ µ||E||1

]
.

Instead of seeking the NxNy entries of L, the factorization approach (164)
entails only (Nx +Ny)ρ unknowns, thus reducing complexity and memory
requirements significantly when ρ� min{Nx, Ny}. Furthermore, adoption
of the separable Frobenius norm regularizer in (P2) comes with no loss of
optimality as asserted in the following lemma.
Lemma 3: If {L̂, Ê} minimize (P1) and we choose ρ ≥ rank(L̂), then, (P2)
is equivalent to (P1) at the minimum.
Proof: It is clear that the minimum of (P1) is no larger than that of

min
P,Q,E

T∑
τ=1

βT−τ
[
c(τ)(PQT ,E) + λ||PQT ||∗ + µ||E||1

]
(165)

since the search space is reduced by the re-parametrization L = PQT with
ρ ≤ min{Nx, Ny}. Now (163) implies that the minimum of (165) is no larger
than that of (P2). However, the inequality is tight since the objectives of (P1)

and (P2) are identical for E := Ê, P := ÛΣ̂1/2
, and Q := V̂Σ̂1/2

, where
L̂ = ÛΣ̂V̂T is the SVD. Consequently, (P1) and (P2) have identical costs at
the minimum. �
Although (P1) is a convex optimization problem, (P2) is not. Thus, in general,
one can obtain only a locally optimal solution of (P2), which may not be the
globally optimal solution of (P1). Interestingly, under appropriate conditions,
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global optimality can be guaranteed for the local optima of (P2), as claimed in
the following proposition.
Proposition 7: If {P̄, Q̄, Ē} is a stationary point of (P2), β̄ :=

∑T
τ=1 β

T−τ ,
and ||f̃(P̄Q̄T , Ē)|| ≤ λβ̄ with

f̃(L̂, Ê) :=
T∑
τ=1

βT−τ

 ∑
(n,n′)∈M(τ)

(
〈W(τ)

nn′ , L̂ + Ê〉 − š(τ)
nn′

)
W(τ)

nn′


(166)

then {L̂ := P̄Q̄T , Ê := Ē} is a globally optimal solution to (P1).
Proof: See Appendix G.
A stationary point of (P2) can be obtained through a block coordinate-descent
(BCD) algorithm, where the optimization is performed in a cyclic fashion
over one of {E,P,Q} with the remaining two variables fixed. In fact, since
the term µ||E||1 is separable in the individual entries as well, the cyclic
update can be stretched all the way up to the individual entries of E without
affecting convergence [280]. The proposed solver entails an iterative procedure
comprising three steps per iteration k = 1, 2, . . .
[S1] Update E:

E[k + 1] = arg min
E

T∑
τ=1

βT−τ
[
c(τ)(P[k]QT [k],E) + µ||E||1

]
[S2] Update P:

P[k + 1] = arg min
P

T∑
τ=1

βT−τ
[
c(τ)(PQT [k],E[k + 1]) + λ

2 ||P||
2
F

]
[S3] Update Q:

Q[k + 1] = arg min
Q

T∑
τ=1

βT−τ
[
c(τ)(P[k + 1]QT ,E[k + 1]) + λ

2 ||Q||
2
F

]
.

To update each block variable, the cost in (P2) is minimized while fixing the
other block variables to their up-to-date iterates.
To detail the update rules, let W(t) ∈ RNxNy×|M(t)| be a matrix with columns
equal to vec

(
W(t)

nn′

)
for (n, n′) ∈ M(t), where vec(·) produces a column

vector by stacking the columns of a matrix one below the other (unvec(·)
denotes the reverse process). Define W := [

√
βT−1W(1)

. . .
√
β0W(T )], š := [

√
βT−1š(1)T . . .

√
β0š(T )T ]T , and e := vec(E). Then,

one can write
∑T
τ=1 β

T−τ c(τ)(PQT ,E) = ‖WT vec(PQT + E)− š‖22. Let
el denote the l-th entry of e, and e−l represent the replica of e without its
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l-th entry. Similarly, let ωTl denote the l-th row of the matrix W , and W−l
denote the matrix W with its l-th row removed. The soft-thresholding function
soft_th(·;µ) is defined as

soft_th(x;µ) := sgn(x) max{0, |x| − µ}. (167)

Minimization in [S1] proceeds sequentially over the individual entries of e.
At iteration k, each entry is updated via

el[k + 1] = arg min
el

1
2 ||elωl −

ˇ̌s||22 + µβ̄|el|, l = 1, . . . , NxNy (168)

where ˇ̌sl[k] := š−WT vec(P[k]QT [k])−WT
−le−l. The closed-form solution

for el is obtained as

el[k + 1] = soft_th(ωTl ˇ̌sl[k];µβ̄)
||ωl||22

. (169)

Matrices P and Q are similarly updated over their rows through [S2] and
[S3]. Let pi be the i-th row of P, transposed to a column vector; i.e., P :=
[p1,p2, . . . ,pNx ]T . Define W̃(t)

i ∈ R|M(t)|×Ny to be the matrix whose rows
are the i-th rows of {W(t)

nn′}(n,n′)∈M(t) denoted as w̃(t)T
nn′,i, and s̃(t)

i ∈ R|M(t)|

a vector with entries equal to

s̃
(t)
nn′,i := š

(t)
nn′ − 〈W

(t)
nn′ ,E[k + 1]〉 −

Nx∑
j 6=i

w̃(t)T
nn′,jQ[k]pj (170)

for (n, n′) ∈ M(t). Define also W̃ i := [
√
βT−1W̃(1)T

i . . .
√
β0W̃(T )T

i ]T

and s̃i := [
√
βT−1s̃(1)T

i . . .
√
β0s̃(T )T

i ]T . Then, pi is updated by solving a
ridge-regression problem as

pi[k + 1] = arg min
pi

[
1
2 ||W̃ iQ[k]pi − s̃i||22 + λβ̄

2 ||pi||
2
2

]

whose solution is given in closed form by

pi[k + 1] =
[
QT [k]W̃T

i W̃ iQ[k] + λβ̄Iρ
]−1

QT [k]W̃T
i s̃i (171)

which involves matrix inversion of dimension only ρ-by-ρ. Likewise, let
qi denote the i-th row of Q, transposed to a column vector; i.e., Q :=
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[q1, . . . ,qNy ]T . Define also W̆ i := [
√
βT−1W̆(1)T

i . . .
√
β0W̆(T )T

i ]T and

s̆i := [
√
βT−1s̆(1)T

i . . .
√
β0s̆(T )T

i ]T , where W̆(t)
i ∈ R|M(t)|×Nx is the matrix

whose rows are the transpositions of the i-th columns of {W(t)
nn′}(n,n′)∈M(t),

denoted as w̆(t)
nn′,i, and s̆(t)

i ∈ R|M(t)| has entries

s̆
(t)
nn′,i := š

(t)
nn′ − 〈W

(t)
nn′ ,E[k + 1]〉 −

Ny∑
j 6=i

w̆(t)T
nn′,jP[k + 1]qj (172)

for (n, n′) ∈M(t). The update for qi is then given by solving another ridge
regression problem to obtain

qi[k + 1] = arg min
qi

[
1
2 ||W̆ iP[k + 1]qi − s̆i||22 + λβ̄

2 ||qi||
2
2

]
whose solution is given also in closed form by

qi[k + 1] =
[
PT [k + 1]W̆T

i W̆ iP[k + 1] + λβ̄Iρ
]−1

PT [k + 1]W̆T
i s̆i
(173)

which again involves matrix inversion of dimension ρ-by-ρ. The overall algo-
rithm is tabulated in Table 5.
Although the proposed batch algorithm exhibits low computational and mem-
ory requirements, it is not suitable for online processing, since (164) must
be re-solved every time a new set of measurements arrive, incurring major
computational burden. Thus, the development of an online recursive algorithm
is well motivated.

Online Algorithm

Stochastic Approximation Approach

In practice, it is often the case that a new set of data becomes available
sequentially in time. Then, it is desirable to have an algorithm that can process
the newly acquired data incrementally and refine the previous estimates, rather
than re-computing the batch solution, which may incur prohibitively growing
computational burden. Furthermore, when the channel is time-varying due to,
e.g., mobile obstacles, online algorithms can readily track such variations.
Stochastic approximation (SA) is an appealing strategy for deriving online
algorithms [267, 169]. Moreover, techniques involving minimizing majorized
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Table 5: Batch solver of (P2)

1: Initialize E[1] := 0Nx×Ny , P[1] and Q[1] at random.
2: For k = 1, 2, . . .

[S1] Update E:
3: Set e = vec(E[k])
4: For l = 1, 2, . . . , NxNy

5: Set ˇ̌sl[k] := š−WT vec(P[k]QT [k])−WT
−le−l

6: el[k + 1] = soft_th(ωTl ˇ̌sl[k];µβ̄)/||ωl||22
7: Next l
8: Set E[k + 1] = unvec(e[k + 1])

[S2] Update P:
9: For i = 1, 2, . . . , Nx

10: Set W̃ i and s̃i
11: pi[k + 1] =

[
QT [k]W̃T

i W̃ iQ[k] + λβ̄Iρ
]−1

(QT [k]W̃T
i s̃i)

12: Next i
13: P[k + 1] = [p1[k + 1],p2[k + 1], . . . ,pNx [k + 1]]T

[S3] Update Q:
14: For i = 1, 2, . . . , Ny

15: Set W̆ i and s̆i
16: qi[k + 1] =

[
PT [k + 1]W̆T

i W̆ iP[k + 1] + λβ̄Iρ
]−1

×(PT [k + 1]W̆T
i s̆i)

17: Next i
18: Q[k + 1] = [q1[k + 1],q2[k + 1], . . . ,qNy [k + 1]]T

19: Next k

surrogate functions were developed to handle nonconvex cost functions in
online settings [206, 208, 199, 242]. An online algorithm to solve a dictio-
nary learning problem was proposed in [199]. A stochastic gradient descent
algorithm was derived for subspace tracking and anomaly detection in [206].
Next, an online algorithm for the CPCP problem is developed. The proposed
approach employs quadratic surrogate functions with diagonal weighting to
capture disparate curvatures in the directions of different block variables.
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For simplicity, let the number of measurements per time slot t be constant
M := |M(t)| for all t. Define X := (P,Q,E) ∈ X ⊂ X ′ := R(Nx×ρ) ×
R(Ny×ρ) × R(Nx×Ny), where X is a compact convex set, and X ′ a bounded
open set, and ξ(t) := [{š(t)

m }Mm=1, {W
(t)
m }Mm=1] ∈ Ξ , where Ξ is assumed to

be bounded. Define with slight abuse of notation

g1(X, ξ(t)) = g1(P,Q,E, ξ(t))

:= 1
2

M∑
m=1

(
〈W(t)

m ,PQT + E〉 − š(t)
m

)2
(174)

g2(X) = g2(P,Q,E) := λ

2
(
||P||2F + ||Q||2F

)
+ µ||E||1. (175)

A quadratic surrogate function for g1(X, ξ(t)) is then constructed as

ǧ1(X,X(t−1), ξ(t)) := g1(X(t−1), ξ(t))

+ 〈P−P(t−1),∇Pg1(X(t−1), ξ(t))〉+ η
(t)
P
2 ‖P−P(t−1)‖2F

+ 〈Q−Q(t−1),∇Qg1(X(t−1), ξ(t))〉+
η

(t)
Q
2 ‖Q−Q(t−1)‖2F

+ 〈E−E(t−1),∇Eg1(X(t−1), ξ(t))〉+ η
(t)
E
2 ‖E−E(t−1)‖2F (176)

where η(t)
P , η(t)

Q , and η(t)
E are positive constants, and with ˜̃f (t)

m (P,Q,E) :=
〈W(t)

m ,PQT + E〉 − š(t)
m it can be readily verified that

∇Pg1(X(t−1), ξ(t)) =
M∑
m=1

˜̃f (t)
m (P(t−1),Q(t−1),E(t−1))W(t)

m Q(t−1) (177)

∇Qg1(X(t−1), ξ(t)) =
M∑
m=1

˜̃f (t)
m (P(t−1),Q(t−1),E(t−1))W(t)

m

TP(t−1)

(178)

∇Eg1(X(t−1), ξ(t)) =
M∑
m=1

˜̃f (t)
m (P(t−1),Q(t−1),E(t−1))W(t)

m . (179)

Let us focus on the case without the forgetting factor, i.e., β = 1. A convergent
SA algorithm for (P2) is obtained by considering the following surrogate
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problem

(P3) min
X

1
t

t∑
τ=1

[
ǧ1(X,X(τ−1), ξ(τ)) + g2(X)

]
. (180)

In fact, solving (P3) yields a stochastic gradient descent (SGD) algorithm. In
particular, since variables P, Q, and E can be separately optimized in (P3),
the proposed algorithm updates the variables in parallel in each time slot t as

P(t) = arg min
P

t∑
τ=1

[
〈P−P(τ−1),∇Pg1(X(τ−1), ξ(τ))〉

+ η
(τ)
P
2 ||P−P(τ−1)||2F + λ

2 ||P||
2
F

]
(181)

Q(t) = arg min
Q

t∑
τ=1

[
〈Q−Q(τ−1),∇Qg1(X(τ−1), ξ(τ))〉

+
η

(τ)
Q
2 ||Q−Q(τ−1)||2F + λ

2 ||Q||
2
F

]
(182)

E(t) = arg min
E

t∑
τ=1

[
〈E−E(τ−1),∇Eg1(X(τ−1), ξ(τ))〉

+ η
(τ)
E
2 ||E−E(τ−1)||2F + µ||E||1

]
. (183)

By checking the first-order optimality conditions, and defining η̄
(t)
P :=∑t

τ=1 η
(τ)
P and η̄(t)

Q :=
∑t
τ=1 η

(τ)
Q , the update rules for P and Q are obtained

as

P(t) = 1
η̄

(t)
P + λt

t∑
τ=1

[
η

(τ)
P P(τ−1) −∇Pg1(X(τ−1), ξ(τ))

]
(184)

Q(t) = 1
η̄

(t)
Q + λt

t∑
τ=1

[
η

(τ)
Q Q(τ−1) −∇Qg1(X(τ−1), ξ(τ))

]
(185)

which can be written in recursive forms as

P(t) = P(t−1) − 1
η̄

(t)
P + λt

(
∇Pg1(X(t−1), ξ(t)) + λP(t−1)

)
(186)

Q(t) = Q(t−1) − 1
η̄

(t)
Q + λt

(
∇Qg1(X(t−1), ξ(t)) + λQ(t−1)

)
. (187)
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Table 6: Online SGD solver of (P2)

1: Initialize E(0) := 0Nx×Ny , P(0) and Q(0) at random.
2: For t = 1, 2, . . .
3: Set LP =

∑M
m=1

∥∥∥W(t)
m Q(t−1)

∥∥∥2

F
,

LQ =
∑M
m=1

∥∥∥W(t)T
m P(t−1)

∥∥∥2

F
,

LE =
∑M
m=1

∥∥∥W(t)
m

∥∥∥2

F
, and Lmin = min{LP, LQ, LE}.

4: Set η(t)
P ≥

L2
P

Lmin
, η

(t)
Q ≥

L2
Q

Lmin
, and η(t)

E ≥
L2

E
Lmin

.

5: Set η̄(t)
P =

∑t
τ=1 η

(τ)
P , η̄(t)

Q =
∑t
τ=1 η

(τ)
Q , and η̄(t)

E =
∑t
τ=1 η

(τ)
E .

6: P(t) = P(t−1) − 1
η̄

(t)
P +λt

(
∇Pg1(X(t−1), ξ(t)) + λP(t−1)

)
7: Q(t) = Q(t−1) − 1

η̄
(t)
Q +λt

(
∇Qg1(X(t−1), ξ(t)) + λQ(t−1)

)
8: Z(t) = 1

η̄
(t)
E

[
η

(t)
E E(t−1) + η̄

(t−1)
E Z(t−1) −∇Eg1(X(t−1), ξ(t))

]
9: E(t) = soft_th(Z(t);µt/η̄(t)

E )
10: Next t

Due to the non-smoothness of ||E||1, the update for E proceeds in two steps.
First, an auxiliary variable Z(t) is introduced, which is computed as

Z(t) = 1
η̄

(t)
E

[
t∑

k=1
η

(k)
E E(k−1) −∇Eg1(X(k−1), ξ(k))

]
. (188)

Again defining η̄(t)
E :=

∑t
τ=1 η

(τ)
E , matrix Z(t) can be obtained recursively as

Z(t) = 1
η̄

(t)
E

[
η

(t)
E E(t−1) + η̄

(t−1)
E Z(t−1) −∇Eg1(X(t−1), ξ(t))

]
. (189)

Then, E(t) is updated as

E(t) = soft_th(Z(t);µt/η̄(t)
E ). (190)

The overall online algorithm is listed in Table 6.
Remark 1 (Computational complexity). In the batch algorithm of Table 5,
the complexity orders for computing the updates for each of pi and qi are
O(NyMT ) and O(NxMT ), respectively, due to the computation of W̃T s̃i
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and W̆T
i s̆i. Thus, the complexity orders for updating P and Q per iteration

k are both O(NxNyMT ). The update of el incurs complexity O(MT ) for
computing ωTl ˇ̌sl. Thus, the complexity order for updating E per iteration
k is O(NxNyMT ). Accordingly, the overall per-iteration complexity of the
batch algorithm becomes O(NxNyMT ). On the other hand, the complexity
of the online algorithm in Table 6 is dominated by the gradient computations,
which require O(ρNxNyM). Since ρ is smaller than Nx and Ny, and the
per-iteration complexity does not grow with T , the online algorithm has a
much more affordable complexity than its batch counterpart, and it is scalable
for large network scenarios.

Convergence

The iterates {X(t)}∞t=1 generated from the algorithm in Table 6 converge to a
stationary point of (P2), as asserted in the following proposition. First define

Ct(X) := 1
t

t∑
τ=1

[
g1(X, ξ(τ)) + g2(X)

]
(191)

Čt(X) := 1
t

t∑
τ=1

[
ǧ1(X,X(τ−1), ξ(τ)) + g2(X)

]
(192)

C(X) := Eξ [g1(X, ξ) + g2(X)] . (193)

Note that Ct(X) is essentially identical to the cost of (P2). Furthermore, the
minimizer of Ct(X) approaches that of C(X) when t→∞, provided ξ obeys
the law of large numbers, which is clearly the case when e.g., {ξ(t)} is i.i.d.
Assume that ∇Pg1(·,Q,E, ξ), ∇Q(P, ·,E, ξ) and ∇E(P,Q, ·, ξ) are Lip-
schitz with respect to P, Q, and E, respectively, with constants LP, LQ,
and LE, respectively (which will be shown in Appendix H). Furthermore, let
ᾱ

(t)
i := (

∑t
τ=1(η(τ)

i + λ))−1 for i ∈ {P,Q}, and ᾱ(t)
E := (η̄(t)

E )−1 denote
step sizes.
Proposition 8: If (a1) {ξ(t)}∞t=1 is an independent and identically distributed
(i.i.d) random sequence; (a2) {X(t)}∞t=1 are in a compact set X ; (a3) Ξ is
bounded; (a4) For i ∈ {P,Q,E}, η̄i(t) ≥ ct ∀t for some c ≥ 0; and (a5)
c′ ≥ η

(t)
i ≥ L2

i /Lmin ∀t for some c′ > 0 and Lmin := min{LP, LQ, LE},
then the iterates {X(t)}∞t=1 generated by the algorithm in Table 6 converge to
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the set of stationary points of (P2) with β = 1, i.e.,

lim
t→∞

inf
X̄∈X̄

‖X(t) − X̄‖F = 0 a.s. (194)

where X̄ is the set of stationary points of C(X).
Proof: See Appendix H.

Numerical Tests

Performance of the presented batch and online algorithms is assessed through
numerical tests using both synthetic and real datasets. A few existing meth-
ods are also tested for comparison. The ridge-regularized least-squares (LS)
scheme estimates the SLF as vec(F̂) = (WWT + ωC−1

f )−1W š, where Cf
is the spatial covariance matrix of the SLF, and ω is a regularization parame-
ter [297, 155, 142]. The total variation (TV)-regularized LS scheme in [236]
is also tested, which solves minf ‖š−WT f‖22 + ω

(∑Nx−1
i=1

∑Ny
j=1 |fi+1,j −

fi,j |+
∑Nx
i=1

∑Ny−1
j=1 |fi,j+1 − fi,j |

)
where f := vec(F) and fi,j corresponds

to the (i, j)-th element of F. Finally, the LASSO estimator is obtained by
solving (P1) with λ = 0.

Test with Synthetic Data

Random tomographic measurements were taken by sensors deployed uni-
formly over A := [0.5, 40.5] × [0.5, 40.5], from which the SLF with
Nx = Ny = 40 was reconstructed. Per-time slot, 10 measurements were
taken, corrupted by zero-mean white Gaussian noise with variance σ2 = 0.1.
The regularization parameters were set to λ = 0.05 and µ = 0.01 through
cross-validation by minimizing the normalized error ‖F̂ − F0‖F /‖F0‖F ,
where F0 is the ground-truth SLF depicted in Fig. 36. Other parameters were
set to ρ = 13, β = 1, and δ = 0.06; while Cf = INxNy and ω = 0.13 were
used for the ridge-regularized LS.
To validate the batch algorithm in Table 5, two cases were tested. In the first
case, the measurements were generated for T = 130 time slots using N = 52
sensors, while in the second case, T = 260 and N = 73 were used. As
a comparison, the accelerated proximal gradient (APG) algorithm was also
derived for (P1) [187]. Note that the APG requires the costly SVD operation
of an Nx-by-Ny matrix per iteration, while only the inversion of a ρ-by-ρ
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Figure 36: True SLF.

matrix is necessary in the proposed BCD algorithm. Fig. 37 shows the SLFs
reconstructed by APG and BCD algorithms for the two cases. Apparently,
the reconstructed SLFs capture well the features of the ground-truth SLF in
Fig. 36. Note that (P2) is underdetermined when T = 130 since the total
number of unknowns in (P2) is 2, 640 while the total number of measurements
is only 1, 300. This verifies that the channel gain maps can be accurately
interpolated with a small number of measurements by leveraging the attributes
of the low rank and sparsity. Fig. 38a shows the convergence of the BCD and
APG algorithms. The cost of (P2) from the BCD algorithm converges to that
of (P1) from APG after k = 550 iterations, showing that the performance of
solving (P1) directly is achievable by the proposed algorithm solving (P2)
instead. This can also be corroborated from the reconstructed SLFs in Fig. 37
as well.
Table 7 lists the reconstruction error when T = 130 and the per-iteration
complexity of the batch algorithms. It is seen that the proposed method out-
performs benchmark algorithms in terms of the reconstruction error. Note
that the ridge-regularized LS has a one-shot (non-iterative) complexity of
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(a) BCD (T = 130, N = 52)
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(b) APG (T = 130, N = 52)

 

 

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40 −150

−100

−50

0

(c) BCD (T = 260, N = 73)
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(d) APG (T = 260, N = 73)

Figure 37: SLFs reconstructed by the batch algorithms.

O((NxNy)3), but its reconstruction capability is worse than the proposed
algorithm as the true SLF is not smooth.
To test robustness of the proposed algorithm against imprecise CR location
estimates, the reconstruction error versus the maximum sensor location error
is depicted in Fig. 38b. To reconstruct F matrix, W was computed via a
set of erroneous sensor locations x̌(t)

n obtained by adding uniformly random
perturbations to true locations x(t)

n . It is seen that the SLF could be accurately
reconstructed when the location error was small.
The numerical tests for the online algorithm were carried out with the same
parameter setting as the batch experiments with N = 317. Fig. 38c depicts the
evolution of the average cost in (191) for two sets of values for (η̄(t)

P , η̄
(t)
Q , η̄

(t)
E ).
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Figure 38: SLF reconstruction using the batch and online algorithms. (a) Cost versus iterations
(batch). (b) Reconstruction error versus CR location error (batch). (c) Average cost over time
slots (online).
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Table 7: Reconstruction error at T = 130 and computational complexity per iteration.

Algorithm Proposed
(BCD)

Ridge-
regularized
LS

Total variation
(ADMM)

LASSO

‖F0 − F̂‖F /‖F0‖F 0.1064 0.1796 0.1196 0.1828
Complexity per
iteration

O(NxNyMT ) N/A O((NxNy)3 +
(NxNy)2MT )

O(NxNyMT )

The green dotted curve corresponds to using η̄(t)
P = η̄

(t)
Q = η̄

(t)
E = 300, while

the blue solid curve is for η̄(t)
P = η̄

(t)
Q = 300, and η̄(t)

E = 10. It can be seen that
the uniform step sizes for all variables result in convergence rate that is slower
than that with the disparate step sizes. Fig. 39 shows the SLFs reconstructed
via the online algorithm at t = 1, 000 and t = 5, 000 using the two choices of
step sizes. It can be seen that for a given time slot t, flexibly choosing the step
sizes yields much more accurate reconstruction. As far as reconstruction error,
the online algorithm with disparate step sizes yields 6.3× 10−2 at t = 5, 000,
while its batch counterpart has 2.4 × 10−2. Although slightly less accurate
SLF is obtained by the online algorithm, it comes with greater computational
efficiency.
To assess the tracking ability of the online algorithm, the slow channel variation
was simulated. The measurements were generated using the SLF in Fig. 36
with three additional objects slowly moving in the rate of unit pixel width per
70 time slots. Fig. 40 depicts instances of the true and reconstructed SLFs at
t = 2, 400 and t = 3, 200, respectively, obtained by the online algorithm. The
moving objects are marked by the red circles. It is seen that the reconstructed
SLFs correctly capture the moving objects, while the stationary objects are
estimated more clearly as t increases.

Test with Real Data

To validate the performance of the proposed framework for SLF and channel
gain map estimation in realistic scenarios, real received signal strength (RSS)
measurements were also processed. The data were collected by a set ofN = 20
sensors deployed in the perimeter of a square-shaped testbed as shown in
Fig. 41, where the crosses indicate the sensor positions. Data collection was
performed in two steps [142]. First, free-space measurements were taken to
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(d) t = 5, 000

Figure 39: SLFs reconstructed by the online algorithm. (a) and (b) correspond to using
η̄

(t)
P = η̄

(t)
Q = 300 and η̄(t)

E = 10. (c) and (d) use η̄(t)
P = η̄

(t)
Q = η̄

(t)
E = 300.

obtain estimates of the path gain G0 and the pathloss exponent γ via least-
squares. The estimated γ was approximately 2, and G0 was found to be 75.
Then, tomographic measurements were formed with the artificial structure
shown in Fig. 41. For the both measurements, 100 measurements were taken
per time slot, in the 2.425 GHz frequency band, across 24 time slots. The
shadowing measurements were obtained by subtracting the estimated pathloss
from the RSS measurements.
The SLFs of size Nx = Ny = 61 were reconstructed by the proposed batch
algorithm. The regularization parameters were set to λ = 4.5 and µ = 3.44,
which were determined by cross-validation. The parameter δ in (155) was set
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(d) t = 3, 200

Figure 40: (a) and (b) are true SLFs; (c) and (d) show reconstructed SLFs at different time
slots.

to 0.2 feet to capture the non-zero weights within the first Fresnel zone, and
ρ = 10 and β = 1 were used.
For comparison, the ridge-regularized LS estimator was also tested. To con-
struct Cf , the exponential decay model in [1] was used, which models the

covariance between points x and x′ as Cf (x,x′) = σ2
se
− ‖x−x′‖2

κ , where σ2
s

and κ > 0 are model parameters. In our tests, σ2
s = κ = 1, and ω = 79.9

were used.
The SLF, shadow fading map, and channel gain map reconstructed by the
proposed BCD algorithm are depicted in Fig. 42. The shadow fading and
channel gain maps portray the gains in dB between any point in the map and the
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Figure 41: Configuration of the testbed.

fixed CR location at (10.2, 7.2) (marked by the cross). Fig. 43 shows the results
from the ridge-regularized LS estimation. It can be seen from Fig. 42(a) and
Fig. 43(b) that the proposed low-rank plus sparse model produces a somewhat
sharper SLF image than the ridge-regularized LS approach. Although the
latter yields a smooth SLF image, it produces more artifacts near the isolated
block and the boundary of the SLF. Such artifacts may lead to less accurate
shadowing and channel gain maps. For instance, Fig. 42(b) and Fig. 43(b) both
show that the shadow fading is stronger as more building material is crossed in
the communication path. However, somewhat strong attenuations are observed
near the cinder block location and the interior of the oriented strand board
(OSB) wall only in Fig. 43(b), which seems anomalous.
The online algorithm was also tested with the real data. Parameters η̄(t)

P =
η̄

(t)
Q = 620 and η̄(t)

E = 200 were selected, and 6 × 105 measurements were
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Figure 42: Reconstructions by the proposed batch algorithm.
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Figure 43: Reconstructions by the ridge-regularized LS.
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Figure 44: Reconstructions by the proposed online algorithm.
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Figure 45: NMSE of channel gain prediction by (a) the batch; and (b) online algorithms.

uniformly drawn from the original dataset with replacement to demonstrate the
asymptotic performance. Fig. 44 depicts the reconstructed SLF, shadow fading
and channel gain maps obtained from the online algorithm. It can be seen
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that the SLF shown in Fig. 44a is close to that depicted in Fig. 42a. Similar
observations can be made for the shadow fading and channel gain maps as
well. Thus, the online algorithm is a viable alternative to the batch algorithm
with reduced computational complexity, and affordable memory requirement.
Channel gain estimation performance of the proposed algorithms was assessed
via 5-fold cross-validation. Let ǧtest and ĝtest denote RSS measurement vectors
in the test set and its estimate, respectively. Prediction performance is mea-
sured by the normalized mean-square error (NMSE) ‖ǧtest − ĝtest‖2/‖ǧtest‖2.
Fig. 45a displays the NMSE of batch algorithms with 480 test samples versus
the number of training samples. It is shown that the proposed algorithm out-
performs competing alternatives, particularly when a small number of training
samples are available, validating the usefulness of the proposed model. The
online algorithm was also tested with 2.85 × 105 measurements uniformly
drawn from 1, 920 training samples with replacement. Fig. 45b depicts the
evolution of the NMSE measured on 480 test samples at every t. It is observed
that the online algorithm attains the batch performance as t increases.

Conclusions

A low-rank plus sparse matrix model was proposed for channel gain cartog-
raphy, which is instrumental for various CR spectrum sensing and resource
allocation tasks. The channel gains were modeled as the sum of the distance-
based pathloss and the tomographic accumulation of shadowing due to the
underlying SLF. The SLF was postulated to have a low-rank structure cor-
rupted by sparse outliers. Efficient batch and online algorithms were developed
by leveraging a bifactor-based characterization of the matrix nuclear norm.
The algorithms enjoy low computational complexity and a reduced memory
requirement, without sacrificing the optimality, with provable convergence
properties. Tests with both synthetic and real measurement datasets corrobo-
rated the claims and showed that the algorithms could accurately reveal the
structure of the propagation medium.
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Exploiting Sparse User Activity in Multiuser

Detection

This section focuses on efficient sparsity-utilizing multiuser detectors in code-
division multiple access (CDMA) systems. Relying on the fact that the number
of active users in CDMA systems is often much lower than the spreading
gain, the presented approach fruitfully exploits this a priori information to
improve performance of multiuser detectors. A low-activity factor manifests
itself in a sparse symbol vector with entries drawn from a finite alphabet that is
augmented by the zero symbol to capture user inactivity. The non-equiprobable
symbols of the augmented alphabet motivate a sparsity-exploiting maximum
a posteriori probability (S-MAP) criterion, which is shown to yield a cost
comprising the `2 least-squares error penalized by the p-th norm of the wanted
symbol vector (p = 0, 1, 2). Related optimization problems appear in variable
selection (shrinkage) schemes developed for linear regression, as well as
in the emerging field of CS. The contribution of this work to such sparse
CDMA systems is a gamut of sparsity-exploiting multiuser detectors trading
off performance for complexity requirements. From the vantage point of CS
and the Lasso spectrum of applications, the contribution amounts to sparsity-
exploiting algorithms when the entries of the wanted signal vector adhere to
finite-alphabet constraints.

199
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Related Works

Multiuser detection (MUD) algorithms play a major role for mitigating multi-
access interference present in CDMA systems; see e.g., [288] and references
therein. These well-appreciated MUD algorithms simultaneously detect the
transmitted symbols of all active user terminals. However, they require knowl-
edge of which terminals are active, and exploit no possible user (in)activity.
In this work, MUD algorithms are developed when the active terminals are
unknown and the activity factor (probability of each user being active) is low
– a typical scenario in tactical or commercial CDMA systems deployed. The
inactivity per user can be naturally incorporated by augmenting the underlying
alphabet with an extra zero constellation point. Low activity thus implies a
sparse symbol vector to be detected. With non-equiprobable symbols in the
augmented alphabet, the optimal sparsity-embracing MUD naturally suggests
a maximum a posteriori (MAP) criterion for detection. Sparse sphere decod-
ing has been considered in, e.g., [277]. Sparsity has been used for estimating
parameters of communication systems in, e.g., [53, 23, 9, 109], but not for
multiuser detection.

Modeling and Problem Statement

Consider the uplink of a CDMA system with K user terminals and spreading
gain N . Assume first that N ≥ K. The under-determined case (N < K) will
also be addressed later on in Section 9. Suppose the system has a relatively
low activity factor, which analytically means that each terminal is active with
probability (w.p.) pa < 1/2 per symbol, and the events “active” are indepen-
dent across symbols and across users. The case of correlated (in)activity of
users across symbols will be dealt with in Section 9. Let bk ∈ A denote the
symbol, drawn from a finite alphabet by the k-th user, when active; otherwise,
bk = 0. Incorporating possible (in)activity per user is equivalent to having bk
take values from an augmented alphabet Aa := A

⋃
{0}.

The access point (AP) receives the superimposed modulated (quasi-) syn-
chronous signature waveforms through (possibly frequency-selective) fading
channels in the presence of additive white Gaussian noise (AWGN); and
projects on the orthonormal space spanned by the aggregate waveforms to
obtain the received chip samples collected in the N × 1 vector y. With the
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K × 1 vector b containing the symbols of all (active and inactive) users, the
canonical input-output relationship is, see e.g., [288, Sec. 2.9]

y = Hb + w (195)

where H is an N × K matrix capturing transmit-receive filters, spreading
sequences, channel impulse responses, and timing offsets; and the N × 1
vector w is the AWGN. Without loss of generality (w.l.o.g.), w can be scaled
to have unit variance. Note that (195) holds for quasi-synchronous systems
too, where relative user asynchronism is bounded to a few chips per symbol,
provided that: either i) user transmissions include guard bands to eliminate
inter-symbol interference (ISI); or ii) the received vector y collects only the
chips of each user that belong to the part of the common symbol interval under
consideration.
The low activity factor implies that b is a sparse vector. However, the AP is
neither aware of the positions nor the number of zero entries in b. In order to
perform multiuser detection (MUD) needed to determine the optimal b̂, the
AP must account for the augmented alphabet Aa, i.e., consider all the possible
candidate vectors b ∈ AKa . This way, the MUD also determines the k-th user’s
activity captured by the extra constellation point bk = 0. Supposing that the
AP has the channel matrix H available (e.g., via training), the goal of this
paper is to detect the optimal b̂ given the received vector y by exploiting the
sparsity of active users.
To motivate this sparsity-exploiting MUD setup in the CDMA context, con-
sider a set of terminals wishing to link with a common AP. Suppose that the
AP acquires the full matrix H (with all terminals active) during a training
phase. Those channels may include either non-dispersive or multipath fading,
and are assumed invariant during the coherence time, which is typically larger
compared to the symbol period. Each terminal accesses the channel randomly,
and the AP receives the superposition of signals from the active terminals only.
The AP is interested in determining both the active terminals and the symbols
transmitted.
Another scenario where H is known and sparsity-exploiting MUD is well
motivated, entails an unmanned aerial vehicle (UAV) collecting information
from a ground wireless sensor network (WSN) placed over a grid, as depicted
in Fig. 46. As the UAV flies over the grid of sensors, it collects the signals from
a random subset of them. If the channel fading is predominantly affected by
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Figure 46: Wireless sensors access a UAV.

path loss, the UAV can acquire H based on the relative AP-to-sensor distances.
Again, the UAV faces the problem of determining both identities of active
sensors, and the symbols each active sensor transmits.
With this problem setup in mind, we will develop different MUD strategies,
which account for the low activity factor. First, we will look at the maximum a
posteriori probability (MAP) optimum MUD that exploits the sparsity present.

Sparsity-Exploiting MAP Detector

The goal is to detect b in (195), given a prescribed activity factor, the received
vector y, and the matrix H. Recall though that the low activity factor leads
to a sparse b, i.e., each entry bk is more likely to take the value 0 from the
alphabet. Because entries {bk}Kk=1 are non-equiprobable, the optimal detector
in the sense of minimizing the detection error rate is the MAP one.
Aiming at a sparsity-aware MAP criterion, consider first the prior probability
for b. For simplicity in exposition, suppose for now that each terminal trans-
mits binary symbols when active, i.e., A = {±1}. (It will become clear later
on that all sparsity-cognizant MUD schemes are applicable to finite alpha-
bets of general constellations, not necessarily binary.) If bk takes values from
{−1, 0, 1}, with corresponding probabilities {pa/2, 1− pa, pa/2}, and since
each entry bk is independent from bk′ for k 6= k′, the prior probability for b
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can be expressed as

Pr(b) =
K∏
k=1

Pr(bk) = (1− pa)K−‖b‖0(pa/2)‖b‖0 (196)

where ‖b‖0 denotes the `0 (pseudo) norm that is by definition equal to the
number of non-zero entries in the vector b. Upon taking logarithms, (196)
yields

ln Pr(b) = −λ‖b‖0 +K ln(1− pa) (197)

where
λ := ln 1− pa

pa/2
. (198)

Since low activity factor means pa < 1/2, it follows readily from (198) that
λ > 0. With the prior distribution of b in (197), the sparsity-aware MAP
(S-MAP) detector is

b̂MAP =arg max
b∈AKa

Pr(b|y)=arg min
b∈AKa

−ln p(y|b)−ln Pr(b)

= arg min
b∈AKa

1
2‖y−Hb‖22 + λ‖b‖0 (199)

where the last equality follows from (197) and the Gaussianity of w. Hence,
the S-MAP detection task amounts to finding the vector in the constraint set
AKa , which minimizes the cost in (199).
Two remarks are now in order.
Remark 4: (General constellations). Beyond binary alphabets, it is easy to
see why the S-MAP detector in (199) applies to more general constellations,
including pulse amplitude modulation (PAM), phase-shift keying (PSK), and
quadrature amplitude modulation (QAM). Specifically, for general M -ary
constellations withM ≥ 2 it suffices to adjust accordingly the prior probability
as a function of ‖b‖0 in (196). This will render the S-MAP MUD in (199)
applicable to generalM -ary constellations, provided that λ in (198) is replaced
by λ := ln 1−pa

pa/M
.

Remark 5: (Scale λ as a function of pa). The definition in (198) reveals the
explicit relationship of λ with the activity factor pa. Different from CS and VS
approaches, where λ is a tuning parameter often chosen with cross-validation
techniques as a function of the data size N and K, here it is directly coupled
with the user activity factor pa. Such a coupling carries over even when users
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have distinct activity factors. Specifically, if the user k is active w.p. pa,k,
then the term λ‖b‖0 := λ

∑K
k=1 |bk| in (199) should change to

∑K
k=1 λk|bk|,

where λk is defined as in (198) with pa,k substituting pa. This user-specific
regularization will be used in Section 9 to adaptively estimate user activity
factors on-the-fly, and thus enable sparsity-aware MUD which accounts for
correlated user (in)activity across the time slots.
With the variable bk only taking values from {±1, 0}, it holds for p ≥ 1 that

‖b‖0 =
K∑
k=1
|bk|p = ‖b‖pp, ∀ b ∈ AKa . (200)

Hence, the S-MAP detector (199) for binary transmissions is equivalent to

b̂MAP = arg min
b∈AKa

1
2‖y−Hb‖22 + λ‖b‖pp , ∀ p ≥ 1. (201)

Notice that the equivalence between (199) and (201) is based on the norm
equivalence in (200), which holds only for constant modulus constellations.
Although the cost in (201) will turn out to be of interest on its own, it is not an
S-MAP detector for non-constant modulus constellations.
Interestingly, since low-activity factor implies a positive λ, the problem (201)
entails a convex cost function, compared to the non-convex one in (199). In
lieu of the finite-alphabet constraint, the criterion of (201) consists of the
least-squares (LS) cost regularized by the `p norm, which in the context of
linear regression has been adopted to mitigate data overfitting. In contrast, the
LS estimator only considers the goodness-of-fit, and thus tends to overfit the
data. Shrinking the LS estimator, by penalizing its size through the `p norm,
typically outperforms LS in practice. For example, the Lasso adopts the `1
norm through which it effects sparsity[278]. In the MUD context for CDMA
systems with low-activity factor, the vector b has a sparse structure, which
motivates well this regularizing strategy. What is distinct and interesting here
is that this penalty-augmented LS approach under finite-alphabet constraints
emerges naturally as the logarithm of the prior in the S-MAP detector.
However, the finite-alphabet constraint renders the solution of (201) com-
binatorially complex. For general H and y, the solution of (201) requires
exhaustive search over all the 3K feasible points, with the complexity grow-
ing exponentially in the problem dimension K. Likewise, for general M -ary
alphabets the complexity incurred by (199) is O((M + 1)K). On the other
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hand, many (sub-) optimal alternatives are available in the MUD literature; see
e.g., [288, Ch. 5-7]. Similarly here, we will develop different (sub-) optimal
algorithms to trade off complexity for probability of error performance in
sparsity-exploiting MUD alternatives.
Since the exponential complexity of MUD stems from the finite-alphabet
constraint, one reduced-complexity approach is to solve the unconstrained
convex problem, and then quantize the resultant soft decision to the nearest
point in the alphabet. This approach includes the sub-optimal linear MUD
algorithms (decorrelating and minimum mean-square error (MMSE) detec-
tors). Another approach is to search over (possibly a subset of) the alphabet
lattice directly as in the decision-directed detectors or the sphere decoders
[97]. Likewise, it is possible to devise (sub-) optimal algorithms for solving
the S-MAP MUD problem (201) along these two categories. First, we will
present the sparsity-exploiting MUD algorithms by relaxing the finite-alphabet
constraint.

Relaxed S-MAP Detectors

In addition to offering an S-MAP detector for constant modulus constellations,
the cost in (201) is convex. Thus, by relaxing the combinatorial constraint, the
optimization problem (201) can be solved efficiently by capitalizing on con-
vexity. As mentioned earlier, this problem is similar to the penalty-augmented
LS criterion that is used for VS in linear regression, where the choice of p is
important for controlling the shrinking effect, that is the degree of sparsity
in the solution. Next, we will develop detectors for two choices of p, and
compare them in terms of complexity and performance.

Linear Ridge MUD

The choice p = 2 is a popular one in statistics, well-known as Ridge regression.
Its popularity is mainly due to the fact that it can regularize the LS solution
while retaining its closed-form expression as a linear function of the data y. A
relaxed detection algorithm for S-MAP MUD can be developed accordingly
with p = 2, what we term Ridge detector (RD). Ignoring the finite-alphabet
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constraint, the optimal solution of (201) for p = 2 takes a linear form

bRD = arg min
b

1
2‖y−Hb‖22 + λ‖b‖22

= (HTH + 2λI)−1HTy. (202)

In addition to its simplicity, and different from LS, the existence of the inverse
in (202) is ensured even for ill-posed or under-determined problems; i.e., when
H is rank deficient or fat (N < K). Notice that bRD takes a form similar to
the linear MMSE multiuser detector, with the parameter λ replacing the noise
variance, and connecting the activity factor with the degree of regularization
applied to the matrix HTH.
Upon quantizing each entry of the soft decision bRD with the operator

Qθ(x) := sign(x)11(|x| ≥ θ) (203)

where θ > 0, sign(x) = 1(−1) with x > (<)0, and 11 denoting the indicator
function, the hard RD is

b̂RD = Qθ(bRD) = Qθ
(
(HTH + 2λI)−1HTy

)
. (204)

Because the detector in (202) is linear, it is possible to express linearly its soft
output bRD with respect to (w.r.t.) the input symbol vector b. Based on this
relationship, one can subsequently derive the symbol error rate (SER) of the
hard detected symbols in b̂RD as a function of the quantization threshold θ.
These steps will be followed next to obtain the performance of the RD.

Performance Analysis

Letting b̌ denote the vector transmitted, and substituting y = Hb̌ + w into
(202) yields

bRD = (HTH + 2λI)−1HT (Hb̌ + w) = Gb̌ + w′ (205)

where G := I − 2λ(HTH + 2λI)−1, and the colored noise w′ :=
(HTH + 2λI)−1HTw is zero-mean Gaussian with covariance matrix Σw′ :=
E{w′(w′)T } = (HTH + 2λI)−2HTH.
It follows readily from (205) that the k-th entry of bRD satisfies

bRD
k = Gkk b̌k +

∑
`6=k

Gk`b̌` + w′k (206)
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where Gk` and w′k are the (k, `)-th and k-th entries of G and w′, respec-
tively. The last two terms in the right-hand side of (206) capture the multiuser
interference-plus-noise effect, which has variance

σ2
k = var

∑
`6=k

Gk`b̌` + w′k

 =
∑
`6=k

G2
k`pa + Σw′,kk (207)

where Σw′,kk denotes the (k, k)-th entry of Σw′ .
With the interference-plus-noise term being approximately Gaussian dis-
tributed, deciphering b̌k from (206) amounts to detecting a ternary determin-
istic signal in the presence of zero-mean, Gaussian noise of known variance.
Hence, the symbol error rate (SER) for the k-th entry using the quantization
rule in (204) entry-wise can be analytically obtained as

PRD
e,k = 2(1− pa)Q

(
θ

σk

)
+ paQ

(
Gkk − θ
σk

)
(208)

where Q(µ) := (1/
√

2π)
∫∞
µ exp(−ν2/2)dν denotes the Gaussian tail func-

tion.
The SER in (208) is a convex function of the threshold θ. Thus, taking the
first-order derivative w.r.t. θ and setting it equal to zero yields the optimal
threshold for the k-th entry as

θ̂k = Gkk
2 + σ2

k

Gkk
λ . (209)

The corresponding minimum SER becomes [cf. (208) and (209)]

P̂RD
e,k =2(1− pa)Q

(
Gkk
2σk

+ λσk
Gkk

)
+paQ

(
Gkk
2σk
− λσk
Gkk

)
. (210)

As the CDMA system signal-to-noise ratio (SNR) goes to infinity, asymp-
totically we have G → I and Σw′ → 0, so the optimal threshold in (209)
approaches 0.5. The numerical tests in Section 9 will also confirm that se-
lecting θk = 0.5 approaches the minimum SER P̂RD

e,k over the range of SNR
values encountered in most practical settings.
The clear advantage of RD-MUD is its simplicity as a linear detector. However,
using the `2 norm for regularization, the RD-MUD inherently introduces a
Gaussian prior for the unconstrained symbol vector and is thus not affecting
sparsity in bRD; see also [278]. This renders the performance of RD dependent
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on the quantization threshold θ – a fact also corroborated by the simulations
in Section 9. These considerations motivate the ensuing development of an
alternative relaxed S-MAP algorithm, which accounts for the sparsity present
in b.

Lasso-Based MUD

Another popular regression method is the Lasso one, which regularizes the
LS cost with the `1 norm. In the Bayesian formulation, regularization with
the `1 norm corresponds to adopting a Laplacian prior for b [278]. The nice
feature of Lasso-based regression is that it ensures sparsity in the resultant
estimates. The degree of sparsity depends on the value of λ, which is selected
here using the a priori information available on the activity factor [cf. (198)].
The optimal solution of (201) for p = 1 without the finite-alphabet constraint
yields the Lasso detector (LD) as

bLD = arg min
b

1
2‖y−Hb‖22 + λ‖b‖1. (211)

While a closed-form solution is impossible for general H, the minimization
in (211) is a quadratic programming (QP) problem that can be readily accom-
plished using available QP solvers, such as SeDuMi [271]. Upon slicing the
solution in (211), we obtain the detection result as

b̂LD = Qθ(bLD). (212)

The larger λ is, the more sparse bLD becomes [cf. (198)]. This is intuitively
reasonable, because λ is inversely proportional to the activity factor pa. Since
the Lasso approach (211) yields sparse estimates systematically, and can
be obtained via QP solvers in polynomial time, LD is a competitive MUD
alternative. Lack of a closed-form solution prevents analytical evaluation of
the SER, which will be tested using simulations in Section IV.
Remark 6: So far, we assumed A = {±1} to ensure equivalence of the `p-
norm regularized S-MAP detector (201) with the more general one in (199).
However, the sub-optimal algorithms of this section ignore the finite-alphabet
constraint, and just rely on the convexity of the cost function in (201) to offer
MUD schemes that can be implemented efficiently, either in linear closed-form
or through quadratic programming. In fact, starting from (201) and forgoing
its equivalence with (199), the RD and LD relaxations of (201) apply also
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for general M -ary alphabets for any M > 2. Of course, the quantization
thresholds required for slicing the soft symbol estimates in order to obtain
hard symbol estimates must be modified in accordance with the corresponding
constellation. For non-constant modulus transmissions, the cost in (201) favors
low-energy (close to the origin) constellation points, but this effect is mitigated
by the judicious selection of the quantization thresholds.
Note that forgoing the equivalence of (201) with (199) is less of an issue for
RD and LD because the major limitation of these simple relaxation-based
algorithms is their sub-optimality, which emerges because they do not account
for the finite-alphabet symbol constraints. Next, MUD algorithms are devel-
oped to minimize the S-MAP cost while adhering to the constraint in (199)
explicitly.

S-MAP Detectors with Lattice Search

User symbols in this section are drawn from an M -ary PAM alphabet
A = {±1,±3, . . . ,±(M − 1)}, with M even. Consider also reformu-
lating the S-MAP problem in (199) using the QR decomposition of the
matrix H (assumed here to be square or tall with full column rank) as
H = QR, where R is a K × K upper triangular matrix, and Q is an
N ×K unitary matrix. Substituting this QR decomposition into (199), and
left multiplying with the unitary Q inside the LS cost, the S-MAP detec-

tor becomes: b̂MAP = arg minb∈Aka
1
2

∥∥∥QTy−QT (QR)b
∥∥∥2

2
+ λ‖b‖0 =

arg minb∈AKa
1
2‖y

′ −Rb‖22 + λ‖b‖0, where y′ := QTy; or, after using the
definitions of the norms,

b̂MAP = arg min
b∈AKa

K∑
k=1

1
2

(
y′k −

K∑
`=k

Rk`b`

)2

+ λ|bk|0

 . (213)

Although the optimal solution of (213) still incurs exponential complexity, the
upper triangular form of R enables decomposition of (213) into sub-problems
involving only scalar variables. As it will be seen later in Section 9, the S-MAP
problem accepts a neat closed-form solution in the scalar case (K = 1). This
is instrumental for the development of efficient (near-) optimal algorithms
searching over the finite-alphabet induced lattice. One such sub-optimal MUD
algorithm is described next.
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Algorithm 16 (DDD): Input y′, R, λ, and M even. Output b̂DDD.

1: for k = K,K − 1, . . . , 1 do
2: (Back substitution) Compute the unconstrained LS solution bLS

k :=
(y′k −

∑K
`=k+1Rk`b̂

DDD
` )/Rkk.

3: (Quantize to A) Set b̂DDD
k := bbLS

k e.
4: (Compare with 0) If 2bLS

k bbLS
k e − bbLS

k e2 − 2λ/R2
kk ≤ 0, then set

b̂DDD
k := 0.

5: end for

Sparsity-Exploiting Decision-Directed MUD

Close look at (213) reveals that once the estimates {b̂`}K`=k+1 are available, the
optimal b̂k can be obtained by minimizing the cost corresponding to the k-th
summand of (213). This leads to the per-symbol optimal decision-directed
detector (DDD), which following related schemes in different contexts, could
be also called successive interference cancellation or decision-feedback de-
coding, see e.g., [123, Sec. 9.4] and [288, Ch. 7]. The main difference here is
that b is sparse.
The DDD algorithm relies on back substitution to decompose the overall
S-MAP cost into K sub-costs each dependent on a single scalar variable
and accepting a closed-form solution. Specifically, supposing the symbols
{b̂DDD
` }K`=k+1 have been already detected, the DDD algorithm detects the k-th

symbol as

b̂DDD
k = arg min

bk∈Aa

1
2

y′k − K∑
`=k+1

Rk`b̂
DDD
` −Rkkbk

2

+ λ|bk|0 . (214)

This minimization problem entails only one scalar variable taking one of
(M + 1) possible points in Aa. Thus, the minimum is found after comparing
the costs corresponding to these (M + 1) values. Appendix I proves that this
optimal solution can be found in closed form as

b̂DDD
k = bbLS

k e11
(
2bLS
k bbLS

k e − bbLS
k e2 − 2λ/R2

kk > 0
)

(215)

where bLS
k := (y′k −

∑K
`=k+1Rk`b̂

DDD
` )/Rkk, and b·e quantizes to the nearest

point in A. The simple implementation steps are tabulated as Algorithm 16.
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When R is diagonal, Algorithm 1 yields the optimal S-MAP detection result;
i.e., b̂MAP = b̂DDD for this case. However, since the DDD detects symbols
sequentially, it is prone to error propagation, especially at low SNR values.
The error propagation can be mitigated by preprocessing and ordering methods
[288, Ch. 7]. Also similar to all related detectors that rely on back substitution,
error performance of the sparse DDD will be analyzed assuming there is no
error propagation. For the special case of M = 2, Appendix J shows that
under this assumption, the SER for (215) becomes

PDDD
e,k = 2(1− pa)Q

( |Rkk|
2 + λ

|Rkk|

)
+ paQ

( |Rkk|
2 − λ

|Rkk|

)
. (216)

For a general M -ary constellation, it is also possible to approximate the SER
using the union bound.
Because it accounts for the finite-alphabet constraint, sparse DDD outperforms
the relaxed detectors of the previous section – a fact that will be confirmed
also by simulations. However, the error propagation emerging at medium-low
SNR degrades the sparse DDD performance when compared to the optimal
but computationally complex S-MAP detector. As a compromise, a branch-
and-bound type of MUD algorithm is developed next, to attain (near-) optimal
performance by exploiting the finite-alphabet and sparsity constraints, at the
price of increased complexity compared to DDD.

Sparsity-Exploiting Sphere Decoding-based MUD

Sphere decoding (SD) algorithms have been widely used for maximum-
likelihood (ML) demodulation of multiuser and/or multiple-input multiple-
output (MIMO) transmissions. Given a PAM or QAM alphabet, SD yields
(near-) ML performance at polynomial average complexity; see e.g., [123, Sec.
5.2]. However, different from the ML-optimal SD that minimizes an LS cost,
the S-MAP problem (213) entails also a regularization term to account for
sparsity in b. Although the resultant algorithm will be termed sparse sphere
decoder (SSD), it searches in fact within an “`0-norm regularized sphere,”
which is not a sphere but a hyper-solid.
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The goal is to find the unknown K × 1 vector b ∈ AKa , which minimizes the
distance metric [cf. (213)]

DK
1 (b) :=

K∑
k=1

1
2

(
y′k −

K∑
`=k

Rk`b`

)2

+ λ|bk|0

 . (217)

For a large enough threshold τ , candidate vectors (and thus the minimizer of
DK

1 too) satisfy22

DK
1 (b) < τ (218)

that specifies a hyper-solid inside which the wanted minimizer must lie. Define
now [cf. (215)]

ρk :=

y′k − K∑
`=k+1

Rk`b`

/Rkk, k = K,K − 1 · · · 1 (219)

where ρK := y′K/RKK . Note that ρk depends on {b`}K`=k+1.
Using (219), the hyper-solid in (218) can be expressed as

DK
1 (b) =

K∑
k=1

{
R2
kk

2 (ρk − bk)2 + λ|bk|0

}
< τ (220)

or, in a more compact form as DK
1 (b) =

∑K
k=1 dk(bk) < τ , where dk(bk) :=

(R2
kk/2) (ρk − bk)2 + λ|bk|0. In addition to the overall metric DK

1 assessing
a candidate vector b ∈ AKa , as well as the per entry metric dk for each
candidate symbol bk ∈ Aa, it will be useful to define the accumulated metric
DK
k :=

∑K
`=k d`(b`) corresponding to the K − k+ 1 candidate symbols from

entry K down to entry k.
Per entry k, which subsequently will be referred to as level k, eq. (220) implies
a set of inequalities:

Level k : dk(bk) < τ −DK
k+1 , for k = K,K − 1 . . . 1, (221)

with DK
K+1 := 0. SSD relies on the Schnorr-Euchner (SE) enumeration, see

e.g., [80], properly adapted here to account for the `0-norm regularization.
SE capitalizes on the inequalities (221) to search efficiently over all possible

22At initialization, τ is set equal to∞ so that (218) is always satisfied.
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vectors b with entries belonging to Aa. Any candidate b ∈ AKa obeying the
K inequalities in (221) for a given τ , will be termed admissible. Threshold τ
is reduced after each admissible b is identified, as will be detailed soon. The
SE-based SSD amounts to a depth-first tree search, which seeks and checks
candidate vectors starting from entry (level) K and working downwards to
entry 1 per candidate vector.
At levelK, SE search chooses bK = bρKe11(2ρKbρKe−bρKe2−2λ/R2

KK >

0), which we know from (215) is the constellation point yielding the smallest
dK . If this choice of bK does not satisfy the inequality (221) with k = K,
no other constellation point will satisfy it either, and the minimizer of DK

1
in (217) must lie outside23 the hyper-solid postulated by (218). If this choice
of bK satisfies (221), SE proceeds to level K − 1 in which (219) is used first
with k = K − 1 to find ρK−1 that depends on the chosen bK from level
K; subsequently, bK−1 is selected as bK−1 = bρK−1e11(2ρK−1bρK−1e −
bρK−1e2− 2λ/R2

K−1,K−1 > 0). If this choice of bK−1 does not satisfy (221)
with k = K − 1, then we move back to level K, and select bK equal to the
constellation point yielding the second smallest dK , and so on; otherwise, we
proceed to level K − 2. Continuing this procedure down to level 1, yields
the first candidate vector b̂, which is deemed admissible since it has entries
belonging to Aa and also satisfying (218). This candidate is stored, and the
threshold is updated to τ := DK

1 (b̂).
Then, the search proceeds looking for a better candidate. Now at level 1, we
move up to level 2 and choose b2 equal to the constellation point yielding the
second smallest cost d2. If this b2 satisfies (221) at level 2 with the current τ ,
we move down to level 1 to update the value of b1 (note that b2 has just been
updated and {b`}K`=3 are equal to the corresponding entries in b̂). If (221) at
level 2 is not satisfied with the current τ , we move up to level 3 to update the
value of b3, and so on.
Finally, when it fails to find any other admissible candidate satisfying (221),
the search stops, and the latest admissible candidate b̂ is the optimal b̂MAP

solution sought. With τ = ∞, the first found admissible candidate b̂ is the
b̂DDD solution of Section V-A.
Before summarizing the SSD steps, it is prudent to elaborate on the ordered
enumeration of the constellation points per level, which in fact constitutes

23This will never happen with τ =∞ in (218).
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the main difference of SSD relative to SD. In lieu of the 0 constellation
point and the `0 norm, SE in SD enumerates the PAM symbols per level k
in the order of increasing cost as: {bk, bk + 2∆k, bk − 2∆k, bk + 4∆k, bk −
4∆k, · · · }

⋂
A, with bk := bρke and ∆k := sign(ρk−bk). (With bρke yielding

the smallest dk, if ∆k = 1, then bρke+ 2 yields the second smallest dk and
bρke − 2 the third; and the other way around, if ∆k = −1.) SD effects
such an ordered enumeration by alternately updating bk = bk + 2∆k and
∆k = −∆k − sign(∆k), [80]. To demonstrate how SSD further accounts
for the `0-norm regularization and the augmented alphabet of S-MAP which
includes 0, let b(i)k ∈ Aa denote the symbol for level k incurring the i-th
smallest (i = 1, 2, . . . ,M + 1) cost dk. If b(i)k ∈ A, then b(i+1)

k will be either
0 or b(i)k + 2∆k. If dk(0) < dk(b

(i)
k + 2∆k), then the next symbol in the

ordered enumeration should be b(i+1)
k = 0, and an auxiliary variable b(c)k is

used to cache the subsequent symbol in the order as b(i+2)
k = b

(i)
k + 2∆k.

With b(i+1)
k = 0, the auxiliary variable allows the wanted b(i+2)

k at the next
enumeration step to be retrieved from b

(c)
k .

Similar to SD, the ordered enumeration pursued by SSD per level implies a
corresponding order in considering all b ∈ AKa , which leads to a repetition-
free and exhaustive search of all admissible candidate vectors. At the same
time, the hyper-solid postulated by (218) shrinks as τ decreases, until no
other admissible vector can be found. This guarantees that the SSD outputs
the vector with the smallest DK

1 , and thus the optimal solution to (213). The
SSD algorithm can be summarized in the following six steps 1–6 tabulated as
Algorithm 17.
Remark 7: SSD inherits all the attractive features of SD [80]. Specifically,
during the search one basically needs to store DK

k per level k. Its in place
update for each bk candidate implies that SSD memory requirements are only
linear in K. In addition, the computational efficiency of SSD (relative to that
of ML which is O((M + 1)K)) stems from four factors: (i) the DDD solution
provides an admissible initialization reducing the search space at the outset;
(ii) the recursive search enabled by the QR decomposition gives rise to the
causally dependent inequalities (221), which restrict admissible candidate
entries to choices that even decrease over successive depth-first passes of the
search; (iii) ordering per level increases the likelihood of finding “near-optimal
admissible” candidates early, which means quick and sizeable shrinkage of
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Algorithm 17 (SSD): Input τ =∞, y′, R, λ, andM even. Output the solution
b̂MAP := b̂SSD to (213).

1: (Initialization) Set k := K, DK
k+1 := 0.

2: Compute ρk as in (219), set bk := bρke, b
(c)
k := 0, ∆k := sign(ρk − bk).

If 2ρkbk − b2k − 2λ/R2
kk < 0, then
// symbol 0 yields smaller dk than bρke

Set b(c)k := bk, and bk := 0.
End if and go to Step 3.

3: If dk(bk) := (R2
kk/2)(ρk − bk)2 + λ|bk|0 ≥ τ −DK

k+1, then
go to Step 4. // outside hyper-solid in (218)

Else if |bk| > M − 1, then
go to Step 6. // inside hyper-solid in (218),

but outside Aa

Else if k > 1, then
computeDK

k := DK
k+1 +dk(bk); set k := k−1, and go to Step 2.

// go the next level (deeper in the tree)
Else go to Step 5. // k = 1, at the tree’s bottom

End if
4: If k = K, then terminate

Else set k := k + 1, go to Step 6.
End if

5: (An admissible b is found)
Set τ := DK

2 + d1(b1), b̂SSD := b, and k := k + 1; then go to Step 6.
6: (Enumeration at level k proceeds to the candidate symbol next in the

order)
If bk = 0, then

Retrieve the next (based on cost dk ordering) symbol bk := b
(c)
k ,

and set b(c)k := FLAG.
Else set bk := bk + 2∆k, and ∆k := −∆k − sign(∆k).

If b(c)k 6= FLAG and 2ρkbk − b2k − 2λ/R2
kk < 0, then

// 0 yields smaller dk than bk

Set b(c)k := bk, and bk := 0.
End if

End if and go to Step 3.
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the hyper-solid, and thus fast convergence to the S-MAP optimal solution; and
(iv) metrics involved in the search can be efficiently reused since children of
the same level in the tree share the already computed accumulated metric of
the “partial path” from this level to the root.
Compared to other sub-optimal detection schemes presented in previous sec-
tions, the SSD algorithm can return the S-MAP optimal solution possibly at
exponential complexity, unless one stops the search at the affordable complex-
ity – case in which the solution is only ensured to be near-optimal. Fortunately,
at medium-high SNR, both SD and SSD return the optimal solution at aver-
age complexity which is polynomial (typically cubic). Moreover, SSD can
be generalized to provide symbol-by-symbol soft output with approximate a
posteriori probabilities, as is the case with the SD; see e.g., [123, Chapter 5].

Generalizations of S-MAP Detectors

Up to now, four sparsity-exploiting MUD algorithms have been developed
to solve the integer program associated with the linear model in (195). The
present section will present interesting generalizations to account for correlated
user (in)activity across symbols, and under-determined CDMA systems.

Exploiting User (In)Activity Across Symbols

Sparsity-aware detectors for the linear model in (195) were so far developed
on a symbol-by-symbol basis, which does not account for the fact that user
(in)activity typically persists across multiple symbols. To this end, user activity
across time can for instance be thought of as a Markov chain with two states
(active-inactive). Once a user terminal starts transmitting to the AP, it becomes
more likely to stay active for the next symbol slot too; and likewise, inactive
once it stops transmitting. In this model, the state transition probability from
either one state to the other is relatively much smaller than that of staying un-
changed, and this manifests itself to the said dependence of user (in)activities
across time.
Admittedly, MUD schemes accounting for this dependence must process the
aggregation of data vectors y obeying (195) across slots. With Ns denoting
the number of slots, the number of unknowns (KNs) can grow prohibitively
with Ns. One approach to cope with this “curse of dimensionality” is via
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dynamic programming, which can take advantage of the fact that correlation is
only present between two consecutive slots; see e.g., [288, Sec. 4.2]. However,
for M -ary alphabets, the resultant sequential detector requires evaluating per
symbol slot the path weights of all (M + 1)K possible symbol vectors. This
high computational burden is impractical for real-time implementations.
The proposed alternative to bypass this challenge stems from the observation
that for a given slot t the influence of all previous slots {t′}t−1

t′=0 on the S-MAP
detection rule is reflected only in the prior probability of each user being active
at time t; i.e., user k’s current (and time-varying) activity factor pa,k(t). The
natural means to capture this influence online is to track each user’s activity
factor using the recursive LS (RLS) estimator [254, Ch. 12], based on activity
factors from previous slots; that is,

p̂a,k(t)=arg min
p

t−1∑
t′=0

βt,t
′

k (p− |b̂k(t′)|0)2, t = 1, . . . (222)

where b̂k(t′) denotes user k’s detected symbol at time t′, and the so-called
“forgetting-factor” βt,t

′

k describes the effective memory (data windowing). A
popular choice is the exponentially decaying window, for which βt,t

′

k := βt−t
′

k

for some 0 � βk < 1. Accordingly, (222) can expressed in closed form,
recursively as

p̂a,k(t)= 1− βk
βk

(
t−1∑
t′=0

βt−t
′

k |b̂k(t′)|0

)
/(1− βtk)

= βk − βtk
1− βtk

p̂a,k(t− 1)+ 1− βk
1− βtk

|b̂k(t− 1)|0, t = 1, . . . (223)

where the last equality comes from back substitution of p̂a,k(t−1). The choice
of βk critically depends on the (in)activity correlation between consecutive
slots. In the extreme case where user (in)activities across slots are independent,
the infinite-memory window (βk = 1) is optimal, and (223) reduces to the
simple online time-averaging estimate p̂a,k(t) = 1

t

∑t−1
t′=0 |b̂k(t′)|0.

Adapting the user activity factors allows one to weigh entries of `0-norm
regularization which in turn affects the prior probability in the S-MAP detector
(199) through the coefficient λk(t) corresponding to p̂a,k(t) (cf. Remark 5).
Note that when the correlation across time is strong, it is possible that p̂a,k(t)
can approach 1, case in which λk(t) is not guaranteed to stay positive. This will
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cause problems to the relaxed S-MAP detectors of Section 9, as those schemes
rely on the convexity of the cost function in (201). However, the DDD and
SSD algorithms will remain operational, because they rely on enumeration per
symbol (in DDD) or per group of symbols within a sphere (in SSD). Note also
that with λ < 0 the regularization term in the minimization of (213) is non-
positive; hence, λ < 0 encourages searching over the non-zero constellation
points (and thus discourages sparsity), whereas λ > 0 promotes sparsity.

Under-Determined CDMA Systems

Minimal-size spreading sequences, even smaller than the number of users,
is well motivated for bandwidth and power savings. Without finite-alphabet
constraints on the wanted vector, results available in the CS literature guarantee
recovery of sparse signals from a few observations; see e.g., [46, 49] and
references therein. Specifically, [46] shows that if the vector of interest is
sparse (or compressible) over a known basis, then it is possible to reconstruct
it with very high accuracy from a small number of random linear projections
at least in the ideal noise-free case. For non-ideal observations corrupted
with unknown noise of bounded perturbation, [49] provides an upper bound
on the reconstruction error, which is proportional to the noise variance for a
sufficiently sparse signal. However, CS theory pertains to sparse analog-valued
signals. Moreover, the noise considered in a practical communication system
is typically Gaussian, or generally drawn from a distribution having possibly
unbounded support. Therefore, existing results from the CS literature do not
carry over to the present context.
Nevertheless, it is still interesting to consider extensions of all the (sub-
)optimal sparsity-exploiting MUD algorithms to an under-determined CDMA
system with N < K, where the observation matrix H becomes fat. Consider
first the two types of relaxed S-MAP detectors. The RD-MUD in (204) clearly
works when N < K, since the 2λI term inside the inversion renders the over-
all matrix full rank. However, since the RD is a linear detector, it is expected
to lose identifiability in the under-determined case, similar to the MMSE
detectors for the sparsity-agnostic MUD schemes. Similarly, the LD problem
(211) is also solvable for a fat H matrix, as the Lasso problem in CS. However,
neither of them accounts for the augmented finite-alphabet constraint present
in the original S-MAP problem (201).
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The S-MAP detectors with lattice search are challenging to implement when
N < K. The main obstacle is the QR decomposition of the fat matrix H,
which yields the upper triangular matrix R of the same dimension N ×K.
Instead of a single unknown symbol, now the sparse DDD must optimize
over the last (N − K + 1) symbols in b. However, apart from exhaustive
search there is no low-complexity method to solve the aforementioned problem
involving (N −K + 1) variables, because sub-optimal alternatives introduce
severe error propagation.
The same problem appears also with the SSD. To tackle the under-determined
case, the generalized SD in [80] fixes the last (N − K) symbols of b and
relies on the standard SSD to detect the remaining K symbols that minimize
a cost similar to the one in (217). Repeating this search for every choice of
the last (N −K) symbols, yields eventually the overall optimum vector. The
complexity of the latter is exponential in (N − K), regardless of the SNR.
Recently, an alternative SD approach to avoid this exponential complexity
has been developed for the under-determined case [75]. This algorithm takes
advantage of the fact that for constant-modulus constellations the usual LS
cost can be modified without affecting optimality, by adding the `2-norm bTb
constant for every vector in the alphabet. This extra term allows one to obtain
an equivalent full-rank system on which the standard SD algorithm can be
applied. This efficient method can be readily extended to handle non-constant
modulus constellations.
Interestingly, for our S-MAP detectors in (201) with lattice search of binary
transmitted symbols, the norm term needed for regularization comes naturally
from the Bernoulli prior. Specifically, with p = 2 the reformulated S-MAP
detectors in (201) can be equivalently written as

b̂MAP = arg min
b∈AKa

1
2[bT (HTH + 2λI)b− 2yTHb]

= arg min
b∈AKa

1
2‖ỹ

′ − R̃b‖22 (224)

where R̃ is the full rank K ×K upper triangular matrix such that R̃T R̃ =
HTH+2λI, and ỹ′ := R̃−THTy. Utilizing the metric of (224), the back sub-
stitution of DDD and the lattice point search of SSD can be implemented easily.
Hence, these S-MAP detectors can be readily extended to under-determined
systems. In this way, all the (sub-)optimal S-MAP detectors are applicable
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with less observations than unknowns in a CDMA system with low activity
factor, but their SER performance will certainly be affected. In Section 9,
we will provide simulated performance comparisons of the different opti-
mal and sub-optimal S-MAP algorithms proposed, for a variable number of
observations.

Group Lassoing Block Activity

The last generalization considered pertains to user (in)activity in a (quasi-
)synchronous block fashion, where during a block of Ns symbol slots, user
k remains (in)active independently from other users and across blocks. Con-
catenate the K user symbols across Ns time slots in the K × Ns matrix
B := [b(1) . . .b(Ns)], where b(t) collects the symbols of all K users at
slot t, and likewise for the receive-data matrix Y as well as the noise ma-
trix W, both of size N × Ns. With these definitions, the counterpart of
(195) for this block model is Y = HB + W. Letting the Ns × 1 vector
b̆k := [bk(1), . . . , bk(Ns)]T collect the Ns symbols of user k, it is useful
to consider it drawn from an augmented (due to possible inactivity) block
alphabet Aa,Ns := ANs

⋃
{0Ns}. Assuming again binary transmissions, the

S-MAP block detector will now yield

B̂MAP = arg min
b̆k∈Aa,Ns

1
2‖Y−HB‖2F +

K∑
k=1

λb√
Ns
‖b̆k‖0

= arg min
b̆k∈Aa,Ns

1
2‖Y−HB‖2F +

K∑
k=1

λb‖b̆k‖2 (225)

where λb := 1√
Ns

ln
(

1−pa
pa/2Ns

)
.

Similar to (201), the convex reformulation of the cost in (225) will lead to
what is referred to in statistics as Group Lasso [315], which effects group
sparsity on a block of symbols (b̆k in our case). This Group-Lasso based
formulation is particularly handy for under-determined CDMA systems. In
fact, the unconstrained version of (225) can be solved first to unveil the
nonzero rows (i.e., the support) of B, with improved reliability asNs increases.
Subsequently, standard sparsity-agnostic MUD schemes can be run on the
estimated set of active users. Note that such a two-step approach works in the
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Figure 47: SER vs. average SNR (in dB) for RD-MUD with N = 32 and K = 20 and
different quantization threshold θ’s.

under-determined case, and also reduces number of symbols to be detected
per time slot.

Simulations

We simulate a CDMA system with K = 20 users, each with activity factor
pa = 0.3. Random sequences with length N = 32 are used for spreading. We
consider non-dispersive independent Rayleigh fading channels between AP
and users, where the channel gain gk of the k-th user is Rayleigh distributed
with variance E[g2

k] = σ2. Thus, the average system SNR is set to be σ2 since
the AWGN w has unit variance.
Test Case 1 (Quantization thresholds for RD). First, we test the RD scheme
with different quantization thresholds θ in (203). The optimum threshold
for the k-th symbol is obtained as in (209) per channel realization H. The
resulting SER is compared for four choices of θ: 0.5, 0.35, 0.65, and θ̂k. The
theoretical minimum SER P̂RD

e,k in (210) using the optimum θ is also added
for comparison. Fig. 47 shows that the SER curve with θ = 0.5 comes very
close to the one of the optimal θ̂k, and thus constitutes a near-optimal choice
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in practice. Moreover, those two curves also coincide with the analytical
SER formulation corresponding to P̂RD

e,k , thus corroborating the closed-form
expression in (210).
Test Case 2 (S-MAP MUD algorithms). Next, the RD, LD, DDD, and SSD
MUD algorithms are all tested for both BPSK and 4-PAM constellations, and
their SER performance is compared. For LD, the quadratic program in (211)
is solved using the general-purpose SeDuMi toolbox [271]. The quantization
rule chooses the nearest point in Aa for both RD and LD. For comparison, we
also include the ordinary LS detector, which corresponds to the RD solution
in (204) with λ = 0.
Fig. 48(a) shows that the LS detector exhibits the worst performance. This is
intuitive since it neither exploits the finite alphabet nor the sparsity present in
b. The SSD exhibits the best performance at the price of highest complexity.
The LD outperforms the RD algorithm, as predicted. It is interesting to observe
that even at low SNR region the DDD algorithm is surprisingly competitive,
especially in view of its low complexity that grows only linearly in the number
of symbols K. The diversity orders for those detectors are basically the same.
This is reasonable since independent Rayleigh fading channels between AP
and users were simulated here. The corresponding curves for 4-PAM depicted
in Fig. 48(b) follow the same trend. However, compared to Fig. 48(a), the
RD algorithm degrades noticeably as its SER approaches the LS one. This
is because choices of quantization thresholds become more influential as the
constellation size increases. As expected, the LD exhibits resilience to this
influence. The DDD and SSD algorithms have almost identical performance
in high-SNR region.
Test Case 3 ((In)activity across symbols). In this case, the user (in)activity is
correlated across time slots. We model this random (in)activity process as a
two-state (active-inactive) stationary Markov chain. The state transition matrix
is P = [a (1− a); b (1− b)], where a is uniformly distributed over [0.8 0.85],
and b over [0.05 0.1], for each user. For this model, the expected number of
successive active slots is 1/(1− a), and 1/b for the inactive ones. Also, the
limiting probability for the “active” state becomes b/(1−a+ b), taking values
from the interval [0.2 0.4]. Note that the activity factor over time is still quite
low. We use the RLS approach to estimate p̂a,k(t) as in (223) using β = 0.5,
and test both the DDD and SSD algorithms in solving the resultant S-MAP
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Figure 48: SER vs. average SNR (in dB) of sparsity-exploiting MUD algorithms with N = 32
and K = 20 for (a) BPSK, and (b) 4-PAM alphabets.

detection problem. The empirical SER is plotted in Fig. 49 across time for
different SNR values. Clearly, the proposed scheme is effective in tracking
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Figure 49: SER vs. time t of sparsity-exploiting MUD algorithms with RLS estimation of the
activity factors.

the evolving time-correlated activity. For the same SNR value, it yields SER
performance similar to the independent case in Fig. 48(a).
Test Case 4 (Under-determined CDMA systems). We also test the S-MAP
MUD algorithms for under-determined systems, by varying N from 32 to 16
and 8. The results are depicted in Fig. 50. Since the RD is a simple linear
detector, it is expected that once N < K, it will lose identifiability, and
exhibits a considerably flat SER curve. At the same time, DDD still enjoys
almost full diversity with a moderate choice of N = 16. Being the optimum
detector, the SSD collects the full diversity even if N = 8; however, the other
two kinds of detectors exhibit flat SER curves, as expected.
The Group Lasso scheme for recovering block activity is also included for
the under-determined case. Fig. 51 illustrates the activity recovery error rate
for different values of N and Ns. The number of observations N affects the
diversity order, while the block size Ns influences the recovery accuracy.
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Figure 50: SER vs. average SNR (in dB) of sparsity-exploiting MUD algorithms with N =
32, 16, or 8 and K = 20.

Conclusions

The MUD problem of sparse symbol vectors emerging with CDMA systems
having low-activity factor was considered. Viewing user inactivity as aug-
menting the underlying alphabet, the a priori available sparsity information
was exploited in the optimal S-MAP detector. The exponential complexity
associated with the S-MAP detector was reduced by resorting to (sub-) optimal
algorithms. Relaxed S-MAP detectors (RD and LD) come with low complex-
ity but sacrifice optimality, because they ignore the finite-alphabet constraint.
The second kind of detectors (DDD and SSD), searches over a subset of the
alphabet and exhibits improved performance at increased complexity. The
performance was analyzed for the RD and DDD algorithms, and closed-form
expressions were derived for the corresponding symbol error rates.
S-MAP detectors were further generalized to deal with correlated user
(in)activity across symbols by recursively estimating each user’s activity factor
online; and also with under-determined (a.k.a. over-saturated CDMA) settings
emerging when the spreading gain is smaller than the potential number of
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N=16,N
s
=20

N=16,N
s
=10

N=16,N
s
=1

N=8,N
s
=20

N=8,N
s
=10

N=8,N
s
=1

Figure 51: Error rate for block activity vs. average SNR (in dB) of Group Lasso algorithm
with N = 16, 8 and Ns = 20, 10, 1.

users. Coping with the latter becomes possible through regularization with the
`0 norm prior, or, with the Group Lasso-based recovery of the active user set.
The numerical tests corroborated our analytical findings and quantified the
relative performance of the developed sparsity-exploiting MUD algorithms.
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10
Summary

As it was manifested, sparsity is present – either originally or after projecting
the signal onto an appropriate basis – in a plethora of natural signals and
practical communication systems. Accordingly, this monograph reviewed vari-
ous CS frameworks where the signal sparsity is used as the key attribute to
ameliorate the signal reconstruction/detection performance while conserving
the radio and energy resources by reducing the sampling rate, transmission
rate, and computational load. In the first part, advanced CS techniques based
on least-squares and Lasso were presented for sparsity-aware recursive real-
time estimation and signal reconstruction in a perturbed sensing setup. The
second part was dedicated to CS based environmental monitoring and lossy
compression techniques in wireless sensor networks. The third part addressed
spectrum sensing in cognitive radio communications and multi-user detection
in wireless networks. The numerical experiments of each framework demon-
strated that exploiting an inherent sparsity of the underlying signal provides
significant system performance gains. Thus, the principles of the presented
sparse signal processing techniques are worth taking into consideration when
striving for high performance in an application involving signal sparsity.
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A
Proof of Proposition 4

Define the vector χk := x̂OCD
N for N = kP , that is, the one containing the

iterates at the end of the kth cycle when each variable has been updated k
times. The proof that χk converges to xo as k → ∞ will proceed in five
stages. In the first one, Algorithm 1 is put in the form of a noisy vector-matrix
difference equation. The second and third stages prove that the corresponding
discrete-time dynamical system is exponentially stable, and that the sequence
{χk}∞k=1 is bounded. In the fourth stage, convergence to a limit point χ∞ is
proved. The proof concludes by showing that χ∞ = xo.

Dynamical System

Let R̄k denote the matrix with entries R̄k(p, q) := RkP+p(p, q)/(kP + p),
and r̄k the vector with entries r̄k(p) := rkP+p(p)/(kP + p). Conditions (r1)
and (r2) guarantee that R̄k

−→
k→∞ R∞ and r̄k −→

k→∞ r∞ w.p. 1. Consider the
decomposition R̄k = D̄k + L̄k + Ūk where D̄k is diagonal, and L̄k (Ūk) is
strictly lower (upper) triangular. Observe that L̄k 6= ŪT

k .
Dividing the cost function of the problem in (17) by kP + p yields

χk+1(p)=arg min
χ

[1
2

(
RkP+p(p, p)
kP + p

)
χ2−

(
rkP+p,p
kP + p

)
χ+
(

λ

kP + p

)
|χ|
]
.

(226)
The solution of this scalar minimization problem can be obtained in two steps.
First, solve the differentiable linear-quadratic part of (226) using the auxiliary
vector zk+1 to obtain

zk+1(p) = arg min
z

[
1
2

(
RkP+p(p, p)
kP + p

)
z2 −

(
rkP+p(p)
kP + p

−

∑
q<p

RkP+p(p, q)
kP + p

χk+1(q)−
∑
q>p

RkP+p(p, q)
kP + p

χk(q)
)
z

]
(227)
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Dynamical System 231

where rkP+p,p was expanded according to its definition in (21) and divided in
two sums: the one already updated in the cycle k + 1 (q < p), and the second
one updated in the kth cycle (q > p). The second step to solve (226) is to pass
zk+1(p) through the soft-threshold operator

χk+1(p) = sgn (zk+1(p))
[
|zk+1(p)| − λkP+p

kP + p

]
+
. (228)

Using the decomposition of R̄k, (227) can be rewritten as

zk+1(p) = arg min
z

1
2D̄k(p, p) z2 −r̄k(p)−∑

q<p

L̄k(p, q)χk+1(q)−
∑
q>p

Ūk(p, q)χk(q)

 z
whose solution is obtained (after equating the derivative to zero) as

D̄k(p, p) zk+1(p) = r̄k(p)−
∑
q<p

L̄k(p, q)χk+1(q)−
∑
q>p

Ūk(p, q)χk(q).

(229)
Concatenating the latter with p = 1, . . . , P yields the matrix-vector difference
equation

D̄kzk+1 = r̄k − L̄kχk+1 − Ūkχk. (230)

The soft-thresholding operation in (228) can be accounted for by defining the
error vector εk := χk+1 − zk+1 in which case (230) can be re-written as

D̄k(χk+1 − εk) = r̄k − L̄kχk+1 − Ūkχk. (231)

Assuming that there exists a k? such that D̄k+L̄k is invertible for each k > k?,
(231) can be written as

χk+1 = Ḡkχk + (D̄k + L̄k)−1r̄k + (D̄k + L̄k)−1D̄kεk (232)

with Ḡk := (D̄k + L̄k)−1Ūk. The key point to be used subsequently is that
(228) guarantees that the entries of εk are bounded by a vanishing sequence.
Specifically, it holds that

|εk(p)| ≤
λkP+p
kP + p

, for p = 1, . . . , P (233)

since the input-output variables of the soft-threshold operator χ = sgn(z)[|z|−
λ]+ obey |χ− z| ≤ λ.
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Exponential Stability

Let Ḡ(l : k) :=
∏k
i=l Ḡi in (232) denote the product of the transition matrices

Ḡk. The goal of this stage is to prove that ||Ḡ(l : k)|| ≤ cρk−l+1, with ρ < 1.
The convergence of R̄k to R∞ implies convergence of Ḡk to G∞ := −(D∞+
L∞)−1U∞, where D∞, L∞ and U∞ are the diagonal, lower triangular, and
upper triangular parts of R∞, respectively. Since R∞ is positive definite,
the spectral radius of G∞ is strictly less than one, i.e., %(G∞) < 1 [127,
p. 512]. Furthermore, for every δ > 0 there exists a c(δ) constant w.r.t. k,
such that ||Gk

∞|| < c(δ)[%(G∞) + δ]k [127, p. 336]. Then, by selecting
δ = (1− %(G∞))/2, and defining ρ∞ := (1 + %(G∞))/2, it holds that

||Gk
∞|| < cρk∞, with ρ∞ < 1. (234)

Upon defining G̃k := Ḡk −G∞, the following recursion is obtained

Ḡ(1 : k) = ḠkḠ(1 : k − 1)
= G∞Ḡ(1 : k − 1) + G̃kḠ(1 : k − 1)

= Gk
∞ +

k∑
i=1

Gk−i
∞ G̃iḠ(1 : i− 1), Ḡ(1 : 0) := I.

Using (234), the latter can be bounded as

||Ḡ(1 : k)|| ≤ cρk∞ + c
k∑
i=1

ρk−i∞ ||G̃i||||Ḡ(1 : i− 1)||

which after multiplying both sides by ρ−k∞ yields

ρ−k∞ ||Ḡ(1 : k)|| ≤ c+
k∑
i=1

cρ−1
∞ ||G̃i||||Ḡ(1 : i− 1)||ρ−(i−1)

∞ (235)

and allows one to apply the discrete Bellman-Gronwall lemma (see e.g., [269,
p. 315]).

Lemma 5 (Bellman-Gronwall). If c, ξk, hk ≥ 0 ∀k satisfy the recursive
inequality

ξk ≤ c+
k∑
i=1

hi−1ξi−1 (236)
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then ξk obeys the non-recursive inequality

ξk ≤ c
k∏
i=1

(1 + hi−1). (237)

For ξk = ρ−k∞ ||Ḡ(1 : k)|| and hk = cρ−1
∞ ||G̃k+1||, (235) takes the form of

(236), so that (237) holds and (after multiplying both sides by ρk∞) results in

||Ḡ(1 : k)|| ≤ ρk∞c
k∏
i=1

(
1 + cρ−1

∞ ||G̃i||
)

= c
k∏
i=1

(
ρ∞ + c||G̃i||

)
. (238)

Raising both sides of (238) to the power of 1/k and applying the geometric-
arithmetic mean inequality, it follows that

||Ḡ(1 : k)||1/k ≤ c1/k 1
k

k∑
i=1

(
ρ∞ + c||G̃i||

)
which is readily rewritten as

||Ḡ(1 : k)|| ≤ c
(
ρ∞ + c

1
k

k∑
i=1
||G̃i||

)k
.

Since Ḡk
−→
k→∞ G∞ and ||G̃k|| −→k→∞ 0 w.p. 1, for every δ > 0 there exists

an integer k0 such that if k ≥ k0, then 1
k

∑k
i=1 ||G̃i|| ≤ δ w.p 1. Thus, if δ

is selected as (1 − ρ∞)/(2c), and ρ as (1 + ρ∞)/2, the following bound is
obtained

||Ḡ(1 : k)|| ≤ cρk, ρ < 1, k ≥ k0, w.p. 1.

It is clear, by inspection, that the proof so far carries over even if the product
of transition matrices starts at l > 1; that is

||Ḡ(l : k)|| ≤ cρk−l+1, ρ < 1, k ≥ k0, w.p. 1. (239)

Certainly, c, ρ, and k0 do not depend on l. However, k0 does depend on the
realization of the random sequence Ḡk, and its existence and finiteness are
guaranteed w.p. 1.
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Boundedness

Define vk := (D̄k + L̄k)−1(r̄k + D̄kεk), and rewrite (232) as

χk+1 = Ḡkχk + vk.

Using back substitution, χk+1 can then be expressed as

χk+1 = Ḡ(k0 : k)χk0 +
k−k0∑
i=1

Ḡ(k − i+ 1 : k)vk−i + vk.

Since D̄k, L̄k, r̄k, and εk converge, the random sequence vk converges too
w.p. 1; hence, it can be stochastically bounded by a random variable v; that is,
||vk|| < v, ∀k, w.p. 1. This, combined with the exponential stability ensured
by (239), guarantees that the realizations of the random sequence χk are
(stochastically) bounded; thus

||χk+1|| ≤ cρ−k+k0−1||χk0 ||+
k−k0∑
i=1

cρ−iv + v

≤ c||χk0 ||+ cv

( 1
1− ρ + 1

)
, w.p. 1. (240)

Convergence

Define the error D̃k := D̄k −D∞, and similarly L̃k := L̄k − L∞, Ũk :=
Ūk − U∞, and r̃k := r̄k − r∞. Using these new variables, (231) can be
rewritten in error form as

(D∞ + D̃k)(χk+1 − εk)=(r∞ + r̃k)− (L∞ + L̃k)χk+1 − (U∞ + Ũk)χk
(241)

and, after regrouping terms, as

χk+1 = −(D∞ + L∞)−1U∞χk + (D∞ + L∞)−1

×
(
r∞ + r̃k − (D̃k + L̃k)χk+1 + (D∞ + D̃k)εk − Ũkχk

)
.

(242)

Equation (242) describes an exponentially stable linear time-invariant sys-
tem with transition matrix −(D∞ + L∞)−1U∞, and input uk := (D∞ +
L∞)−1[r∞ + r̃k − (D̃k + L̃k)χk+1 + (D∞ + D̃k)εk − Ũkχk]. The input
can be divided into its limiting point u∞ := (D∞ + L∞)−1r∞, and the error
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ũk := (D∞ + L∞)−1[r̃k − (D̃k + L̃k)χk+1 + (D∞ + D̃k)εk − Ũkχk]. As
k →∞, the vector ũk goes to zero almost surely because the sequence χk is
bounded, and the error r̃k, D̃k, L̃k and Ũk as well as εk, all go to zero w.p. 1.
With this notation and recalling the definition G∞ := −(D∞ + L∞)−1U∞,
(242) is rewritten as

χk+1 = G∞χk + u∞ + ũk

and back-substituting again the new expression for χk+1 yields

χk+1 = Gk
∞χ1 +

k∑
i=1

Gk−i
∞ u∞ +

k∑
i=1

Gk−i
∞ ũi. (243)

Convergence of this recursion will be established by showing that the first and
third terms in the right-hand side vanish as k →∞, while the surviving one
corresponds to a stable geometric series. Given that ∃ c > 0, ρ∞ < 1 such
that ∀n ||Gn

∞|| ≤ cρn∞, convergence of the first term to zero follows readily
from (234). The third term represents the limiting output value of a multiple
input-multiple output stable linear time-invariant system with vanishing input;
that is limi→∞ ũi = 0. As ∀k ||Gk

∞|| ≤ cρk∞, (234) implies that it is possible
to bound the sum under consideration as∥∥∥∥∥

k∑
i=1

Gk−i
∞ ũi

∥∥∥∥∥ ≤ c
k∑
i=1

ρk−i∞ ||ũi|| . (244)

Since limi→∞ ũi = 0, it holds by the definition of the limit that for any
ε > 0 ∃N ∈ N so that ||ũi|| ≤ ε, ∀ i ≥ N . Using the latter along with (244),
it follows that for k ≥ N∥∥∥∥∥

k∑
i=1

Gk−i
∞ ũi

∥∥∥∥∥ ≤ c
N−1∑
i=1

ρk−i∞ ||ũi||+ cε
k∑

i=N
ρk−i∞

= cρk−N∞

N−1∑
i=1

ρN−i∞ ||ũi||+ cε
k∑

i=N
ρk−i∞ . (245)

Because
∑N−1
i=1 ρN−i∞ ||ũi|| does not depend on k, the limit of the first summand

in (245) goes to zero; hence,

lim
k→∞

∥∥∥∥∥
k∑
i=1

Gk−i
∞ ũi

∥∥∥∥∥ ≤ cε/(1− ρ∞) .
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The last inequality holds ∀ε > 0; thus,

lim
k→∞

∥∥∥∥∥
k∑
i=1

Gk−i
∞ ũi

∥∥∥∥∥ = 0

which establishes convergence to zero of the third sum in the right-hand side
of (243).

Limit Point

Once convergence is established, it is possible to take the limit as k →∞ in
(241) to obtain

D∞(χ∞ − ε∞) = r∞ − L∞χ∞ −U∞χ∞, w.p. 1. (246)

Recalling that ||ε∞|| ≤ limN→∞
λN
N = 0, (246) reduces to

(D∞ + L∞ + U∞)χ∞ = r∞, w.p. 1 (247)

and since D∞ + L∞ + U∞ = R∞, it holds that

χ∞ = (R∞)−1r∞ = xo, w.p. 1 (248)

which concludes the proof.
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B
Construction of Matrix Ψ′ in (76)

The matrix Ψ′ in (76) can be expressed as

Ψ′ = Ψ′T ⊗ΨS
(a)= (I′TΨT)⊗ΨS
(b)= (I′TΨT)⊗ (INΨS)
(c)= (I′T ⊗ IN )(ΨT ⊗ΨS)
(d)= (I′T ⊗ IN )Ψ
(e)= [ψ1 · · · ψN(W−1)]T

(249)

where (a) follows from defining a binary sparse matrix
I′T , [IW−1 0(W−1)×1] ∈ B(W−1)×W that performs a row selection
of ΨT as Ψ′T = I′TΨT; (b) follows because ΨS = INΨS; (c) fol-
lows from AB⊗CD = (A⊗C)(B⊗D); (d) follows from (69);
(e) follows from performing a row selection of Ψ via a binary
sparse matrix I′T ⊗ IN = [IN(W−1) 0N(W−1)×N ] ∈ BN(W−1)×NW as
(I′T ⊗ IN )Ψ = [ψ1 · · · ψN(W−1)]T, which is the desired result.
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C
MMSE Orthogonality Principle for (125)

In order to show the equality E
[
‖Xs − Zs + Zs − X̂s‖22

]
=

E
[
‖Xs − Zs‖22

]
+ E

[
‖Zs − X̂s‖22

]
in step (a) of (125), we show that

the associated cross-term E
[
(Xs − Zs)T(Zs − X̂s)

]
is zero. This term can be

written as

E
[
(Xs − Zs)T(Zs − X̂s)

]
= E

[
ZT
s(Xs − Zs)

]
− E

[
X̂T
s(Xs − Zs)

]
. (250)

By the law of total expectation, the first term of (250) can be written as

E
[
ZT
s(Xs − Zs)

]
= E

{
E
[
ZT
s(Xs − Zs)|Ys

]}
= E

{
ZT
s(E[Xs|Ys]− Zs)

}
(a)= E

{
ZT
s(Zs − Zs)

}
= 0

(251)

where (a) follows from (123). Similarly, the second term of (250) can be
written as

E
[
X̂T
s(Xs − Zs)

]
= E

(
E
{
E
[
X̂T
s(Xs − Zs)|Xs,Ys

]∣∣Ys

})
= E

(
E
{
E
[
X̂s|Xs,Ys

]T(Xs − Zs)
∣∣Ys

})
(a)= E

(
E
{
E
[
X̂s|Ys

]T(Xs − Zs)
∣∣Ys

})
= E

(
E
[
X̂s|Ys

]T(E{Xs|Ys
}
− Zs

))
(b)= E

(
E
[
X̂s|Ys

]T(Zs − Zs
))

= 0

(252)

where (a) follows because Xs → Ys → X̂s forms a Markov chain, and (b)
follows from (123). By (251) and (252), E

[
(Xs − Zs)T(Zs − X̂s)

]
= 0.
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D
MMSE Estimation Error in (126)

The average MMSE estimation error in (125) can be expressed as

DZ|bs = N−1E
[
‖Xs − Zs‖22

]
(a)= N−1E

[
‖Xs − Zs‖22

]
= N−1Tr

{
E
[
(Xs − Zs)(Xs − Zs)T

]}
= N−1Tr

{
E
[
XsXT

s −XsZT
s − ZsXT

s + ZsZT
s

]}
= N−1Tr

{
ΣXs −ΣXsZs −ΣT

XsZs + ΣZs

}
(253)

where (a) follows from removing the zero parts of Xs and Zs (see (121) and
(124)), and the cross-covariance matrix ΣXsZs ∈ RK×K is

ΣXsZs = E[Xs(FsYs)T] = ΣXsYsFT
s = ΣXsYsΣ−1

Ys
ΣT

XsYs

= ΣZs .
(254)

Substituting (254) into (253) results in DZ|bs = N−1Tr
(
ΣXs −ΣZs

)
.
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E
The Proof of Theorem 1

Using the equivalence Rrem
X|bs(Ds) = Rdir

Z|bs(D
′
s) of Proposition 6, and

D′s = Ds −DZ|bs ≥ 0 in (129), the conditional remote RDF in (119) can
be recast as

Rrem
X|B(D) = min∑(NK)

s=1 p(bs)[D′s+DZ|bs ]=D
D′s≥0, s=1,...,(NK)

∑(NK)
s=1 p(bs)Rdir

Z|bs(D
′
s) (255)

with optimization variables D′s, s = 1, . . . ,
(N
K

)
. Let D′s,k ≥ 0,

k = 1, . . . ,K, s = 1, . . . ,
(N
K

)
, be auxiliary variables for (255). Insert-

ing the new variables with constraint
∑
k=1D

′
s,k = D′s, and substituting

DZ|B =
∑(NK)
s=1 p(bs)DZ|bs in (133) and the expression of Rdir

Z|bs(D
′
s) in

(131), Rrem
X|B(D) in (255) can be equivalently expressed as

Rrem
X|B(D) = min∑(NK)

s=1 p(bs)D′s=D−DZ|B∑K

k=1 D
′
s,k=D′s, s=1,...,(NK)

D′s≥0, s=1,...,(NK)
D′s,k≥0, k=1,...,K, s=1,...,(NK)

N−1∑(NK)
s=1 p(bs)

∑K
k=1 max

{
0, 1

2log λs,k
D′s,k

}

(256)
with optimization variables D′s, and D′s,k, k = 1, . . . ,K, s = 1, . . . ,

(N
K

)
. Fi-

nally, eliminating the variables D′s, s = 1, . . . ,
(N
K

)
, by substituting the second

set of equality constraints into the first one yields the expression for Rrem
X|B(D)

in (134).

Remark E.1. A valid distortion is D ≥ DZ|B ≥ 0 because the distortion
criterion must be non-negative.

Remark E.2. For all distortion criteria D ≥ 1
N

∑(NK)
s=1 p(bs)Tr

(
ΣXs

)
,

Rrem
X|B(D) = 0; if the encoder sends no information (i.e., R = 0),
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then the decoder can set X̂ = 0N , resulting in an admissible dis-
tortion because E

[
d(X, X̂)

]
= 1

NE
[
‖X− X̂‖22

]
= 1

NE
[
‖X‖22

]
=

1
N

∑(NK)
s=1 p(bs)Tr

(
ΣXs

)
≤ D.

Combining the above derivations with Remarks E.1 and E.2, Rrem
X|B(D) has

the characterization of Theorem 1, which concludes the proof.
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F
The Conditional Direct RDF

The conditional direct RDF Rdir
X|B(D) determines the minimum achievable

rate R for distortion D ≥ 0 in the compression scheme, where the encoder
observes X directly (i.e., without CS), and B is available as SI at the encoder
and decoder. It is defined as (cf. (118))

Rdir
X|B(D) = min

{f(x̂|x,bs)}|B|s=1:E[d(X,X̂)]≤D

1
N
I(X; X̂|B) (257a)

where the optimization is over the conditional PDFs f(x̂|x,bs),
s = 1, . . . , |B|. The conditional mutual information between X and X̂ given
B is

I(X; X̂|B) =
∑|B|
s=1 p(bs)I(X; X̂|B = bs)

=
∑|B|
s=1 p(bs)

∫
x

∫
x̂
f(x|bs)f(x̂|x,bs)logf(x̂|x,bs)

f(x̂|bs)
dxdx̂
(257b)

and the average MSE distortion between X and X̂ is

E
[
d(X, X̂)

]
=
∑|B|
s=1 p(bs)E

[
d(X, X̂)|B = bs

]
=
∑|B|
s=1 p(bs)

∫
x

∫
x̂
f(x|bs)f(x̂|x,bs)d(x, x̂)dxdx̂.

(257c)
Following the steps analogous to those for Rrem

X|B(D), the conditional direct
RDF is given as (cf. (134))

Rdir
X|B(D) = min∑|B|

s=1 p(bs)
∑K

k=1 Ds,k=D
Ds,k≥0, k=1,...,K, s=1,...,|B|

N−1∑|B|
s=1 p(bs)

∑K
k=1 max

{
0, 1

2log λ̄s,k
Ds,k

}

(258)
where Ds,k, k = 1, . . . ,K, s = 1, . . . , |B|, are the optimization vari-
ables; λ̄s,1 ≥ . . . ≥ λ̄s,K > 0 are the eigenvalues of covariance matrix
ΣXs = Q̄sΛ̄sQ̄T

s , where the columns of Q̄s ∈ RK×K are the eigenvectors of
ΣXs ∈ SK++, and Λ̄s , diag(λ̄s,1, . . . , λ̄s,K).
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Proof of Proposition 7

A stationary point P̄, Q̄ and Ē of (P2) must satisfy the following first-order
optimality conditions [34]

0Nx×Ny ∈ ∂Ef(P̄, Q̄, Ē) = (259){
f̃(P̄Q̄T , Ē) +µβ̄

[
sgn(Ē) + Ẽ

] ∣∣∣∣Ē� Ẽ = 0, ‖Ẽ‖∞ ≤ 1
}

∇Pf(P̄, Q̄, Ē) = f̃(P̄Q̄T , Ē)Q̄ + λβ̄P̄ = 0Nx×ρ (260)

∇QT f(P̄, Q̄, Ē) = P̄T f̃(P̄Q̄T , Ē) + λβ̄Q̄T = 0ρ×Ny (261)

where � denotes the element-wise (Hadamard) product. Through post-
multiplying (260) by P̄T and pre-multiplying (261) by Q̄, one can see that

f̃(P̄Q̄T , Ē) = −µβ̄(sgn(Ē) + Ẽ)

tr
(
f̃(P̄Q̄T , Ē)Q̄P̄T

)
= −λβ̄tr(P̄P̄T ) = −λβ̄tr(Q̄Q̄T ). (262)

Define now κ(R1,R2) := 1
2 (tr(R1) + tr(R2)), and consider the following

convex problem

(P4) min
L,E∈RNx×Ny ,
R1∈RNx×Nx ,
R2∈RNy×Ny

T∑
τ=1

βT−τ c(τ)(L,E) + λβ̄ κ(R1,R2) + µβ̄ ||E||1

subject to R :=
(

R1 L
LT R2

)
� 0 (263)

which is equivalent to (P1). Equivalence can be easily inferred by minimizing
(P4) with respect to {R1,R2} and noting an alternative characterization of
the nuclear norm given by [245]

‖L‖∗ = min
R1,R2

κ(R1,R2)

subject to R � 0. (264)
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244 Proof of Proposition 7

In what follows, the optimality conditions of the conic program (P4) are
explored. Introducing a Lagrange multiplier matrix M ∈ R(Nx+Ny)×(Nx+Ny)

associated with the conic constraint in (263), the Lagrangian is first formed as

L(L,E,R1,R2; M) =
T∑
τ=1

βT−τ c(τ)(L,E)

+ λβ̄ κ(R1,R2) + µβ̄ ||E||1 − 〈M,R〉. (265)

For notational convenience, partition M as

M :=
(

M1 M2
M4 M3

)
(266)

in accordance with the block structure of R in (263), where M1 ∈ RNx×Nx
and M3 ∈ RNy×Ny . The optimal solution to (P4) must satisfy: (i) the station-
arity conditions

∇LL(L,E,R1,R2; M) = f̃(L,E)−M2 −MT
4 = 0 (267)

0 ∈ ∂EL(L,E,R1,R2; M) ={
f̃(L,E) + µβ̄

[
sgn(E) + Ẽ

] ∣∣∣∣E� Ẽ = 0, ‖Ẽ‖∞ ≤ 1
}

(268)

∇R1L(L,E,R1,R2; M) = λβ̄

2 INx −M1 = 0 (269)

∇R2L(L,E,R1,R2; M) = λβ̄

2 INy −M3 = 0 (270)

(ii) complementary slackness condition 〈M,R〉 = 0; (iii) primal feasibility
R � 0; and (iv) dual feasibility M � 0.
Using the stationary point P̄, Q̄ and Ē of (P2), construct a candidate solution
for (P4) as L̂ := P̄Q̄T , Ê := Ē, R̂1 := P̄P̄T , and R̂2 := Q̄Q̄T , as well as
M̂1 := λβ̄

2 INx , M̂2 := 1
2 f̃(P̄Q̄T , Ē), M̂3 := λβ̄

2 INy , and M̂4 := M̂T
2 . After

substituting these into (267)–(270), it can be readily verified that condition (i)
holds. Condition (ii) also holds since

〈M̂, R̂〉 = 〈M̂1, R̂1〉+ 〈M̂2, L̂〉+ 〈M̂3, R̂2〉+ 〈M̂4, L̂T 〉

= λβ̄

2 tr(P̄P̄T + Q̄Q̄T ) + tr
(
f̃(P̄Q̄T , Ē)Q̄P̄T

)
= 0 (271)
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where the last equality follows from (262). Condition (iii) is met since R can
be rewritten as

R =
(

P̄P̄T P̄Q̄T
Q̄P̄T Q̄Q̄T

)
=
(

P̄
Q̄

)(
P̄
Q̄

)T
� 0. (272)

For (iv), according to the Schur complement condition for positive semidefinite
matrices, M � 0 holds if and only if

M̂3 − M̂4M̂−1
1 M̂2 � 0 (273)

which is equivalent to λmax(M̂T
2 M̂2) ≤ (λβ̄/2)2, or ||f̃(P̄Q̄T , Ē)|| ≤

λβ̄. �
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H
Proof of Proposition 8

The proof uses the technique similar to the one employed in [199], where
the convergence of online algorithms for optimizing objectives involving non-
convex bilinear terms and sparse matrices was established in the context of
dictionary learning.
In order to proceed with the proof, three lemmata are first established. The
first lemma concerns some properties of g(X, ξ(t)) := g1(X, ξ(t)) + g2(X),
and ǧ(X,X(t−1), ξ(t)) := ǧ1(X,X(t−1), ξ(t)) + g2(X).
Lemma 4: If the assumptions (a1)–(a5) in Proposition 8 hold, then

(p1) ǧ1(X,X(t−1), ξ(t)) majorizes g1(X, ξ(t)), i.e.,
ǧ1(X,X(t−1), ξ(t)) ≥ g1(X, ξ(t)) ∀X ∈ X ′;

(p2) ǧ1 is locally tight, i.e., ǧ1(X(t−1),X(t−1), ξ(t)) = g1(X(t−1), ξ(t));

(p3) ∇ǧ1(X(t−1),X(t−1), ξ(t)) = ∇g1(X(t−1), ξ(t));

(p4) ǧ(X,X(t−1), ξ(t)) := ǧ1(X,X(t−1), ξ(t)) + g2(X) is uniformly
strongly convex in X, i.e.,
∀(X,X(t−1), ξ(t)) ∈ X × X × Ξ , it holds that

ǧ(X + D,X(t−1), ξ(t))− ǧ(X,X(t−1), ξ(t))

≥ ǧ′(X,X(t−1), ξ(t); D) + ζ

2 ||D||
2
F

where ζ > 0 is a constant and ǧ′(X,X(t−1), ξ(t); D) is a directional
derivative of ǧ at X along the direction D;

(p5) g1 and ǧ1, their derivatives, and their Hessians are uniformly bounded;

(p6) g2 and its directional derivative g′2 are uniformly bounded; and

(p7) there exists ḡ ∈ R such that |ǧ(X,X(t−1), ξ(t))| ≤ ḡ.

246
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Proof: For (p1), let us first show that ∇Pg1(P,Q,E, ξ(t)),
∇Qg1(P,Q,E, ξ(t)), and∇Eg1(P,Q,E, ξ(t)) are Lipschitz continuous for
X := (P,Q,E) ∈ X ′ and ξ(t) ∈ Ξ. For arbitrary X1 := (P1,Q1,E1),
X2 := (P2,Q2,E2) ∈ X ′, the variation of ∇g1 in (177) can be bounded as

‖∇Pg1(P1,Q,E, ξ(t))−∇Pg1(P2,Q,E, ξ(t))‖F

=
∥∥∥∥∥
M∑
m=1
〈W(t)

m , (P1 −P2)QT 〉W(t)
m Q

∥∥∥∥∥
F

(i1)
≤

M∑
m=1
|〈W(t)

m , (P1 −P2)QT 〉|‖W(t)
m Q‖F

(i2)
≤

M∑
m=1
‖P1 −P2‖F ‖W(t)

m Q‖2F

where (i1) and (i2) are due to the triangle and Cauchy-Schwarz inequalities,
respectively. Since X ′ and Ξ are assumed to be bounded,

∑M
m=1 ‖W

(t)
m Q‖2F

is bounded. Therefore, there exists a positive constant LP such that

‖∇Pg1(P1,Q,E, ξ(t))−∇Pg1(P2,Q,E, ξ(t))‖F ≤ LP‖P1 −P2‖F
(274)

meaning that∇Pg1(P,Q,E, ξ(t)) is Lipschitz continuous with constant LP.
Similar arguments hold for ∇Qg1(P,Q,E, ξ(t)) and∇Eg1(P,Q,E, ξ(t)) as
well, with Lipschitz constants LQ and LE, respectively. Then, upon defining
‖X‖∆ :=

√
L2

P‖P‖2F + L2
Q‖Q‖2F + L2

E‖E‖2F , it is easy to verify

‖∇g1(X1, ξ
(t))−∇g1(X2, ξ

(t))‖F ≤ ‖X1 −X2‖∆. (275)

On the other hand, the proof of the Descent Lemma [29] can be adopted to
show

g1(X, ξ(t))− g1(X(t−1), ξ(t))

≤ 〈X−X(t−1),∇g1(X(t−1), ξ(t))〉+
∫ 1

0
‖X−X(t−1)‖F

× ‖∇g1(X(t−1) + α(X−X(t−1)), ξ(t))
−∇g1(X(t−1), ξ(t))‖Fdα. (276)

Note that
‖X‖F ≤

1
Lmin

‖X‖∆ (277)
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248 Proof of Proposition 8

where Lmin := min{LP, LQ, LE}. Then, substitution of (275) into (276)
with X1 = X(t−1) + α(X−X(t−1)) and X2 = X(t−1) yields

g1(X(t−1), ξ(t)) + 〈X−X(t−1),∇g1(X(t−1), ξ(t))〉

+ 1
2Lmin

‖X−X(t−1)‖2∆ ≥ g1(X, ξ(t)) (278)

which completes the proof by the construction of ǧ1, provided that η(t)
i ≥

L2
i /Lmin for all i ∈ {P,Q,E}.

To show (p2) and (p3), let us first denote

∇g1(X, ξ(t)) =
(
∇Pg1(X, ξ(t)),∇Qg1(X, ξ(t)),∇Eg1(X, ξ(t))

)
(279)

∇ǧ1(X,X(t−1), ξ(t)) =
(
∇Pg1(X, ξ(t)) + η

(t)
P (P−P(t−1)),

∇Qg1(X, ξ(t)) + η
(t)
Q (Q−Q(t−1)),

∇Eg1(X, ξ(t)) + η
(t)
E (E−E(t−1))

)
. (280)

Then, it suffices to evaluate ǧ1(X, ξ(t)) and ∇ǧ1(X,X(t−1), ξ(t)) at X(t−1)

to see that (p2) and (p3) hold.
To show (p4), let us first find ǧ′1 and g′2. Along a direction
D := (DP,DQ,DE) ∈ X ′, it holds that ǧ′1(X,X(t−1), ξ(t); D) =
〈∇ǧ1(X,X(t−1), ξ(t)),D〉 since ǧ1 is differentiable. Similarly, g′2(X; D) =
λ(〈P,DP〉+〈Q,DQ〉)+µh′(E; DE) where h(E) := ‖E‖1, dE := vec(DE)
with its l-th entry being dE,l, and

h′(E; DE) := lim
t→0+

h(E + tDE)− h(E)
t

= lim
t→0+

∑
l,el 6=0(|el + tdE,l| − |el|) +

∑
l,el=0 |tdE,l|

t

=
∑
l,el 6=0

sgn(el)dE,l +
∑
l,el=0

|dE,l|. (281)

On the other hand, the variation of ǧ can be written as

ǧ(X + D,X(t−1), ξ(t))− ǧ(X,X(t−1), ξ(t))

= ǧ′1(X,X(t−1), ξ(t); D) +
∑

i∈{P,Q,E}

η
(t)
i

2 ‖Di‖2F + g2(X + D)− g2(X).

(282)
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Note that
∑
i
η

(t)
i
2 ‖Di‖2F ≥

Lmin
2 ||D||

2
F since η(t)

i ≥ L2
i /Lmin by algorithmic

construction. Furthermore, g2(X + D) − g2(X) ≥ g′2(X; D) since g2 is
convex [226]. Then, the variation of ǧ in (282) can be lower-bounded as

ǧ(X + D,X(t−1), ξ(t))− ǧ(X,X(t−1), ξ(t))

≥ ǧ′(X,X(t−1), ξ(t); D) + Lmin
2 ||D||2F (283)

where ǧ′(X,X(t−1), ξ(t); D) = ǧ′1(X,X(t−1), ξ(t); D) + g′2(X; D). There-
fore, (p4) holds for a positive constant ζ ≤ Lmin.
By the compactness ofX and boundedness of Ξ by (a3), (p5) is automatically
satisfied since g1 and ǧ1 are continuously twice differentiable in X [242]. In
addition, one can easily show (p6) since g2 and g′2 are also uniformly bounded
by the compactness of X .
LetK1 andK2 denote constants where |ǧ1| ≤ K1 and |g2| ≤ K2, respectively,
by (p5) and (p6). Then, (p7) readily follows since

|ǧ(X,X(t−1), ξ(t))| = |ǧ1(X,X(t−1), ξ(t)) + g2(X)|
≤ |ǧ1(X,X(t−1), ξ(t))|+ |g2(X)|
≤ K1 +K2 =: ḡ. � (284)

The next lemma asserts that a distance between two subsequent estimates
asymptotically goes to zero, which will be used to show limt→∞ Č1,t(X(t))−
C1,t(X(t)) = 0, almost surely.
Lemma 5: If (a2)–(a5) hold, then ||X(t+1) −X(t)||F = O(1/t).
Proof: See [242, Lemma 2]. A proof of Lemma 5 is omitted to avoid du-
plication of the proof of [242, Lemma 2]. Hence, it suffices to mention that
Lemma 4 guarantees the formulation of the proposed work satisfying the
general assumptions on the formulation in [242]. �
Lemma 5 does not guarantee convergence of the iterates to the stationary point
of (P2). However, the final lemma asserts that the overestimated cost sequence
converges to the cost of (P2), almost surely. Before proceeding to the next
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lemma, let us first define

C1,t(X) := 1
t

t∑
τ=1

g1(X, ξ(τ)) (285)

Č1,t(X) := 1
t

t∑
τ=1

ǧ1(X,X(τ−1), ξ(τ)) (286)

and C2(X) := g2(X). Note also that Čt(X)− Ct(X) = Č1,t(X)− C1,t(X).
Lemma 6: If (a1)–(a5) hold, Čt(X(t)) converges almost surely, and
limt→∞ Č1,t(X(t))− C1,t(X(t)) = 0, almost surely.
Proof: See [242, Lemma 1]. A proof of Lemma 6 is omitted to avoid du-
plication of the proof of [242, Lemma 1]. Instead, a sketch of the proof is
following. It is firstly shown that the sequence {Čt(X(t))}∞t=1 follows a quasi-
martingale process and converges almost surely. Then, the lemma on positive
converging sums (see [199, Lemma 8]) and Lemma 3 are used to claim that
limt→∞ Č1,t(X(t))− C1,t(X(t)) = 0, almost surely. �
The last step of the proof for Proposition 8 is inspired by [242]. Based
on Lemma 6, it will be shown that the sequence {∇Č1,t(X(t)) −
∇C1,t(X(t))}∞t=1 goes to zero, almost surely. Together with C ′2, it follows
that limt→∞C

′
t(X(t); D) ≥ 0 ∀D, a.s. by algorithmic construction, imply-

ing convergence of a sequence {X(t)}∞t=1 to the set of stationary points of
C(X).
By the compactness of X , it is always possible to find a convergent sub-
sequence {X(t)}∞t=1 to a limit point X̄ ∈ X . Then, by the strong law of
large numbers [116] under (a1) and equicontinuity of a family of functions
{C1,t(·)}∞t=1 due to the uniform boundedness of ∇g1 in (p5) [35], upon re-
stricting to the subsequence, one can have

lim
t→∞

C1,t(X(t)) = Eξ[g1(X̄, ξ)] =: C1(X). (287)

Similarly, a family of functions {Č1,t(·)}∞t=1 is equicontinuous due to the
uniform boundedness of ∇ǧ1 in (p5). Furthermore, {Č1,t(·)}∞t=1 is point-
wisely bounded by (a1)–(a3). Thus, Arzelá-Ascoli theorem (see [35, Cor. 2.5]
and [96]) implies that there exists a uniformly continuous function Č1(X)
such that limt→∞ Č1,t(X) = Č1(X) ∀ X ∈ X and after restricting to the
subsequence

lim
t→∞

Č1,t(X(t)) = Č1(X̄). (288)
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Furthermore, since ǧ1(X,X(t−1), ξ(t)) ≥ g1(X, ξ(t)) as in (p1), it follows
that

Č1,t(X)− C1,t(X) ≥ 0 ∀X. (289)

By letting t → ∞ on (289) and combining Lemma 6 with (287) and (288),
one deduces that

Č1(X̄)− C1(X̄) = 0, a.s. (290)

meaning that Č1,t(X)− C1,t(X) takes its minimum at X̄ and

∇Č1(X̄)−∇C1(X̄) = 0, a.s. (291)

by the first-order optimality condition.
On the other hand, the fact that X(t) minimizes Čt(X) by algorithmic con-
struction and g′2 exists (so does C ′2), yields

Č1,t(X(t)) + C2(X(t)) ≤ Č1,t(X) + C2(X) ∀X ∈ X (292)

and limt→∞ Č1,t(X(t)) + C2(X(t)) ≤ limt→∞ Č1,t(X) + C2(X) ∀X ∈ X ,
which implies

lim
t→∞
〈∇Č1,t(X(t)),D〉+ C ′2(X(t); D) ≥ 0 ∀D. (293)

Using the result in (291), (293) can be re-written as 〈∇C1(X̄),D〉 +
C ′2(X̄; D) ≥ 0 ∀D, a.s. or

C ′(X̄; D) ≥ 0 ∀D, a.s. (294)

Thus, the subsequence {X(t)}∞t=1 asymptotically coincides with the set of
stationary points of C(X). �
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Proof of (215)

To solve the optimization problem (214), consider first the unconstrained
solution to the LS part of the cost, which can be written as

bLS
k :=

(
y′k −

∑K
`=k+1Rk`b̂

DDD
`

)
/Rkk. (295)

The detected symbol in (214) can be equivalently expressed as

b̂DDD
k = arg min

bk∈Aa
f(bk),

f(bk) :=
(
bLS
k − bk

)2
+ (2λ/R2

kk)|bk|0. (296)

The solution b̂DDD
k can be obtained by comparing f(0) with minbk∈A f(bk).

Specifically, as the cost f(bk) is quadratic for bk ∈ A, the minimum is
achieved at f(bbLS

k e), by quantizing bLS
k to the nearest point in A. Thus,

b̂DDD
k = 0 only if f(0) ≤ f(bbLS

k e), or equivalently, after using the definition
of f(·), if 2bLS

k bbLS
k e − bbLS

k e2 − 2λ/R2
kk ≤ 0. This completes the proof of

(215).
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Proof of (216)

When M = 2, the DDD solution (215) reduces to

b̂DDD
k = sign(bLS

k )11(2|bLS
k | − 1− 2λ/R2

kk > 0) (297)

due to the fact that bbLS
k e = sign(bLS

k ) ∈ {±1}.
Recalling that b̌ denotes the transmitted vector, and substituting y = Hb̌ + w
yields

y′ := QTy = Rb̌ + u (298)

where u := QTw is zero-mean Gaussian with identity covariance matrix.
Supposing that there is no error propagation, the bLS

k term in (297) becomes
[cf. (295)]

bLS
k =

 K∑
`=k

Rk`b̌` + uk −
K∑

`=k+1
Rk`b̂

DDD
k

/Rkk

= b̌` + uk/Rkk (299)

where uk denotes the k-th entry of u.
To analyze the error probability for the detector in (297) consider the following
three cases.
a) b̌k = 0 is sent: under this case, bLS

k = uk/Rkk and a detection error emerges
when b̂DDD

k = 1 or −1. With the closed-form DDD detector (297) in mind,
such an error occurs only if both bLS

k 6= 0 and 2|bLS
k | − 2λ/R2

kk − 1 > 0
hold. The first case corresponds to uk 6= 0 and the second one is equivalent
to |uk| > |Rkk|/2 + λ/|Rkk|, which is included in the event uk 6= 0. Hence,
to evaluate the error probability it suffices to consider only the case |uk| >
|Rkk|/2 + λ/|Rkk|.
b) b̌k = 1 is sent: following the analysis in a), an error occurs if sign(Rkk)uk ≤
−|Rkk|/2 + λ/|Rkk|.
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254 Proof of (216)

c) b̌k = −1 is sent: following the analysis in a), an error occurs if
sign(Rkk)uk ≥ |Rkk|/2− λ/|Rkk|.
Given that the Gaussian distributed uk has variance 1, the overall SER for the
k-th entry bk becomes

PDDD
e,k =

∑
i=0,±1 P (error|b̌k = i)P (b̌k = i)

= 2(1− pa)Q
( |Rkk|

2 + λ

|Rkk|

)
+ paQ

( |Rkk|
2 − λ

|Rkk|

)
. (300)
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