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ABSTRACT
Signal processing traditionally relies on classical statisti-
cal modeling techniques. Such model-based methods utilize
mathematical formulations that represent the underlying
physics, prior information and additional domain knowledge.
Simple classical models are useful but sensitive to inaccura-
cies and may lead to poor performance when real systems
display complex or dynamic behavior. More recently, deep
learning approaches that use highly parametric deep neural
networks (DNNs) are becoming increasingly popular. Deep
learning systems do not rely on mathematical modeling,
and learn their mapping from data, which allows them to
operate in complex environments. However, they lack the
interpretability and reliability of model-based methods, typ-
ically require large training sets to obtain good performance,
and tend to be computationally complex.
Model-based signal processing methods and data-centric
deep learning each have their pros and cons. These paradigms
can be characterized as edges of a continuous spectrum vary-
ing in specificity and parameterization. The methodologies
that lie in the middle ground of this spectrum, thus integrat-
ing model-based signal processing with deep learning, are

Nir Shlezinger and Yonina C. Eldar (2023), “Model-Based Deep Learning”, Foun-
dations and Trends® in Signal Processing: Vol. 17, No. 4, pp 291–416. DOI:
10.1561/2000000113.
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referred to as model-based deep learning, and are the focus
here.
This monograph provides a tutorial style presentation of
model-based deep learning methodologies. These are fam-
ilies of algorithms that combine principled mathematical
models with data-driven systems to benefit from the advan-
tages of both approaches. Such model-based deep learning
methods exploit both partial domain knowledge, via mathe-
matical structures designed for specific problems, as well as
learning from limited data. We accompany our presentation
with running signal processing examples, in super-resolution,
tracking of dynamic systems, and array processing. We show
how they are expressed using the provided characterization
and specialized in each of the detailed methodologies. Our
aim is to facilitate the design and study of future systems
at the intersection of signal processing and machine learn-
ing that incorporate the advantages of both domains. The
source code of our numerical examples are available and
reproducible as Python notebooks.
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1
Introduction

The philosophical idea of artificial intelligence (AI), dating back to
the works of McCarthy from the 1950’s [40], is nowadays evolving into
reality. The growth of AI is attributed to the emergence of machine
learning (ML) systems, which learn their operation from data, and
particularly to deep learning, which is a family of ML algorithms that
utilizes neural networks as a form of brain-inspired computing [35].
Deep learning is demonstrating unprecedented success in a broad range
of applications: deep neural networks (DNNs) surpass human ability in
classifying images [24]; reinforcement learning allows computer programs
to defeat human experts in challenging games such as Go [70] and
Starcraft [74]; generative models translate text into images [50] and
create images of fake people which appear indistinguishable from true
ones [29]; and large language models generate sophisticated documents
and textual interactions [48].

While deep learning systems rely on data to learn their operation,
traditional signal processing is dominated by algorithms that are based
on simple mathematical models which are hand-designed from domain
knowledge. Such knowledge can come from statistical models based
on measurements and understanding of the underlying physics, or

3
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4 Introduction

from fixed deterministic representations of the particular problem at
hand. These knowledge-based processing algorithms, which we refer to
henceforth as model-based methods, carry out inference based on domain
knowledge of the underlying model relating the observations at hand
and the desired information. Model-based methods, which form the
basis for many classical and fundamental signal processing techniques,
do not rely on data to learn their mapping, though data is often used
to estimate a small number of parameters. Classical statistical models
rely on simplifying assumptions (e.g., linear systems, Gaussian and
independent noise, etc.) that make inference tractable, understandable,
and computationally efficient. Simple models frequently fail to represent
nuances of high-dimensional complex data, and dynamic variations,
settling with the famous observation made by statistician George E. P.
Box that “Essentially, all models are wrong, but some are useful". The
usage of mismatched modeling tends to notably affect the performance
and reliability of classical methods.

The success of deep learning in areas such as computer vision and
natural language processing made it increasingly popular to adopt
methodologies geared towards data for tasks traditionally tackled with
model-based techniques. It is becoming common practice to replace
principled task-specific decision mappings with abstract purely data-
driven pipelines, trained with massive data sets. In particular, DNNs can
be trained in a supervised way end-to-end to map inputs to predictions.
The benefits of data-driven methods over model-based approaches are
threefold:

1. Purely data-driven techniques do not rely on analytical approxi-
mations and thus can operate in scenarios where analytical models
are not known. This property is key to the success of deep learn-
ing systems in computer vision and natural language processing,
where accurate statistical models are typically scarce.

2. For complex systems, data-driven algorithms are able to recover
features from observed data which are needed to carry out infer-
ence [6]. This is sometimes difficult to achieve analytically, even
when complex models are perfectly known, e.g., when the envi-
ronment is characterized by a fully-known complex simulator or a
partial differential equation.

Full text available at: http://dx.doi.org/10.1561/2000000113
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3. The main complexity in utilizing ML methods is in the train-
ing stage. In most signal processing domains, this procedure is
carried out offline, i.e., prior to deployment of the device which
utilizes the system. Once trained, they often implement infer-
ence at a lower delay compared with their analytical model-based
counterparts [22].

Despite the aforementioned advantages of deep learning methods,
they are subject to several drawbacks. These drawbacks may be limit-
ing factors particularly for various signal processing, communications,
and control applications, which are traditionally tackled via principled
methods based on statistical modeling. For one, the fact that massive
data sets, i.e., large number of training samples, and high computa-
tional resources are typically required to train such DNNs to learn
a desirable mapping, may constitute major drawbacks. Furthermore,
even using pre-trained DNNs often gives rise to notable computational
burden due to their immense parameterization. This is highly rele-
vant for hardware-limited devices, such as mobile phones, unmanned
aerial vehicles, and Interent of Things systems, which are often limited
in their ability to utilize highly-parametrized DNNs [10], and require
adapting to dynamic conditions. Furthermore, the abstractness and
extreme parameterization of DNNs results in them often being treated
as black-boxes; understanding how their predictions are obtained and
characterizing confidence intervals tends to be quite challenging. As
a result, deep learning does not offer the interpretability, flexibility,
versatility, reliability, and generalization capabilities of model-based
methods [42].

The limitations associated with model-based methods and conven-
tional deep learning systems gave rise to a multitude of techniques for
combining model-based processing and ML, aiming to benefit from the
best of both approaches. These methods are typically application-driven,
and are thus designed and studied in light of a specific task. For example,
the combination of DNNs and model-based sparse recovery algorithms
was shown to facilitate sparse recovery [22], [47] as well as enable com-
pressed sensing beyond the domain of sparse signals [7], [77]; Deep
learning was used to empower regularized optimization methods [3],
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6 Introduction

[16], [19], while model-based optimization contributed to the design and
training of DNNs for such tasks [1], [39], [78]; Digital communication
receivers used DNNs to learn to carry out and enhance symbol detec-
tion and decoding algorithms in a data-driven manner [43], [63], [65],
while symbol recovery methods enabled the design of model-aware deep
receivers [23], [30], [57]. The proliferation of hybrid model-based/data-
driven systems, each designed for a unique task, motivates establishing
a concrete systematic framework for combining domain knowledge in
the form of model-based methods and deep learning, which is the focus
here.

In this monograph we present strategies for designing algorithms
that combine model-based methods with data-driven deep learning
techniques. While classic model-based inference and deep learning are
typically considered to be distinct disciplines, we view them as edges
of a continuum varying in specificity and parameterization. We build
upon this characterization to provide a tutorial-style presentation of the
main methodologies which lie in the middle ground of this spectrum,
and combine model-based optimization with ML. This hybrid paradigm,
which we coin model-based deep learning, is relevant to a multitude of
research domains where one has access to some level of reliable mathe-
matical modelling. While the presentation here is application-invariant,
it is geared towards families of problems typically studied in the signal
processing literature. This is reflected in our running examples, which
correspond to three common signal processing tasks of compressed signal
recovery, tracking of dynamic systems, and direction-of-arrival (DoA)
estimation in array processing. These running examples are repeatedly
specialized throughout the monograph for each surveyed methodology,
facilitating the comparison between the considered approaches.

We begin by providing a unified characterization for inference and
decision making algorithms in Section 2. There, we discuss different
types of inference rules, present the running examples, and discuss the
main pillars of designing inference rules, which we identify as selecting
their type, setting the objective, and their evaluation procedure. Then,
we show how classical model-based optimization as well as data-centric
deep learning are obtained as special instances of this unified character-
ization in Sections 3 and 4, respectively. We there also review relevant
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basics that are core to the design of many model-based deep learning sys-
tems, including fundamentals in convex optimization (for model-based
methods) and in neural networks (for deep learning). We identify the
components dictating the distinction between model-based and data-
driven methodologies in the formulated objectives, the corresponding
decision rule types, and their associated parameters.

The main bulk of this monograph, which builds upon the fun-
damental aspects presented in Sections 2-4, is the review of hybrid
model-based deep learning methodologies in Section 5. A core principle
of model-based deep learning is to leverage data by converting classical
algorithms into trainable models with varying levels of abstractness
and specificity, as opposed to the more classical model-based approach
where data is used to characterize the underlying model. These two
rationales are highly related to the ML paradigms of generative and
discriminative learning [27], [45]. Consequently, we commence this part
by presenting a spectrum of decision making approaches which vary
in specificity and parameterization, with model-based methods and
deep learning constituting its edges, followed by a review of generative
and discriminative learning. Based on these concepts, we provide a
systematic categorization of model-based deep learning techniques as
concrete strategies positioned along the continuous spectrum.

We categorize model-based deep learning methods into three main
strategies:

1. Learned optimization: This approach is highly geared towards
classical optimization and aims at leveraging data to fit model-
based solvers. In particular, learned optimizers use automated deep
learning techniques to tune parameters conventionally configured
by hand.

2. Deep unfolding: This family of techniques converts iterative op-
timizers into trainable parametrized architectures. Its instances
notably vary in their parameterization and abstractness based
on the interplay imposed in the system design between the train-
able architecture and the model-based algorithm from which it
originates.

Full text available at: http://dx.doi.org/10.1561/2000000113



8 Introduction

3. DNN-aided inference: These schemes augment model-based al-
gorithms with trainable neural networks, encompassing a broad
family of different techniques which vary in the module being
replaced with a DNN.

We exemplify the considered methodologies for the aforementioned
running examples via both analytical derivations as well as simulations.
By doing so, we provide a systematic qualitative and quantitative
comparison between representative instances of the detailed approaches
for signal processing oriented scenarios. The source code used for the
results presented in this monograph is available as Python Notebook
scripts1, detailed in a pedagogic fashion such that they can be presented
alongside lectures, either as a dedicated graduate level course, or as
part of a course on topics related to ML for signal processing.

1The source code and Python Notebooks can be found online at https://github.
com/ShlezingerLab/MBDL_Book.
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