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Energy-Based Models with
Applications to Speech and
Language Processing
Zhijian Ou

Tsinghua University, Beijing, China; ozj@tsinghua.edu.cn

ABSTRACT
Energy-Based Models (EBMs) are an important class of
probabilistic models, also known as random fields and undi-
rected graphical models. EBMs are un-normalized and thus
radically different from other popular self-normalized prob-
abilistic models such as hidden Markov models (HMMs),
autoregressive models, generative adversarial nets (GANs)
and variational auto-encoders (VAEs). During these years,
EBMs have attracted increasing interest not only from core
machine learning but also from application domains such
as speech, vision, natural language processing (NLP) and
so on, with significant theoretical and algorithmic progress.
To the best of our knowledge, there are no review papers
about EBMs with applications to speech and language pro-
cessing. The sequential nature of speech and language also
presents special challenges and needs treatment different
from processing fix-dimensional data (e.g., images).
The purpose of this monograph is to present a systematic
introduction to energy-based models, including both algo-
rithmic progress and applications in speech and language
processing, which is organized into four main sections. First,

Zhijian Ou (2024), “Energy-Based Models with Applications to Speech and Language
Processing”, Foundations and Trends® in Signal Processing: Vol. 18, No. 1-2, pp
1–199. DOI: 10.1561/2000000117.
©2024 Z. Ou

Full text available at: http://dx.doi.org/10.1561/2000000117



9

we will introduce basics for EBMs, including classic models,
recent models parameterized by neural networks, sampling
methods, and various learning methods from the classic
learning algorithms to the most advanced ones. The next
three sections will present how to apply EBMs in three
different scenarios, i.e., for modeling marginal, conditional
and joint distributions, respectively. 1) EBMs for sequen-
tial data with applications in language modeling, where we
are mainly concerned with the marginal distribution of a
sequence itself; 2) EBMs for modeling conditional distribu-
tions of target sequences given observation sequences, with
applications in speech recognition, sequence labeling and
text generation; 3) EBMs for modeling joint distributions of
both sequences of observations and targets, and their appli-
cations in semi-supervised learning and calibrated natural
language understanding. In addition, we will introduce some
open-source toolkits to help the readers to get familiar with
the techniques for developing and applying energy-based
models.
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1
Introduction

1.1 The Probabilistic Approach

As a community we seem to have embraced the fact that dealing with
uncertainty is crucial for machine intelligence tasks such as speech recog-
nition and understanding, speech synthesis, natural language labeling,
machine translation, text generation, computer vision, signal denoising,
decision making, and so on. Uncertainty arises because of limitations
in our ability to observe the world, limitations in our ability to model
it, and possibly even because of innate nondeterminism [77]. In the
face of such uncertainty, we use probabilistic models to describe the
random phenomena. Indeed, many tasks in intelligent signal processing
and machine learning are solved in the probabilistic approach, which
generally involves probabilistic modeling, inference and learning, as
shown in Figure 1.1. Such probabilistic approach has been introduced
in textbooks with sufficient details [14], [59], [77], [110], and thus in this
paper we only give a brief overview as the background material.

A probabilistic model is, in mathematical terms, a distribution over a
set of random variables, which are assumed to characterise the random
phenomena in the specific task. The set of variables can generally
be divided into observations x and (optionally) hidden variables h,

10
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1.1. The Probabilistic Approach 11

Figure 1.1: The probabilistic approach

according to their roles in the task. Hidden variables, or called latent
variables, are variables that are part of the model, but which we do
not observe, and are therefore not part of the data. Remarkably, the
observability of some variables may change, depending on what phase
(training or testing) the model is used. A most common example is the
target variable in prediction tasks, such as the class label in classification
or the response variable in regression, which is observed in training but
becomes unknown in testing. To avoid clutter in this paper, such variable
is viewed as part of the hidden variables and usually denoted by y.

We will typically denote a variable by a lower case letter such as
x, h and y. Whether x denotes the value that the variable takes or
represents the variable itself would be clear from the context. Further,
for notational simplicity, we also use lower case letter (e.g., x) to denote
a set of random variables, i.e., flattened and concatenated such that the
set is represented as a single vector. So if x is a vector or a sequence,
its components can be accessed by subscripts xi. Here, we are using
the terminology distribution or density loosely, typically denoted by
p. Our notation p should be understood as a mass function (density
with respect to counting measure) in the discrete case, and a density
function with respect to Lebesgue measure in the continuous case. See
Appendix A for more on notations.

Given the form of the probabilistic model, namely the distribution
pθ(x, h) with parameters θ, there are two crucial problems that must
be solved in applying the model in real-world tasks:

Full text available at: http://dx.doi.org/10.1561/2000000117



12 Introduction

• Inference: how to reason in the presence of uncertainty;

• Learning: how to learn from experience.

The former problem is often referred to probabilistic inference with
a fully-specified model, or inference for short; and the later problem
sometimes referred to statistical inference (or more often to say, learning
in machine learning terminology) for model parameters [112].

Put in a more straightforward way, learning is to find the most
appropriate model with parameters, using both data and human knowl-
edge. Human knowledge is implicitly employed to specify the family of
parametric distributions, and data are used to estimate the parameters.
Given a fully-specified model, i.e., fully-determined with fixed parame-
ters, inference is to infer the unknown from the observation x. There
are several typical classes of inference problems:

• Computing conditional probabilities, e.g., pθ(h|x). This amounts
to computing the posterior probability of some variables given the
values of other variables (i.e., given evidence on others).

• Computing marginal probabilities, including the likelihood pθ(x).

• Computing modes, e.g., arg maxh pθ(h|x).

• Sampling from the model [87], [112].

We provide two more points for readers to appreciate the importance
of the inference problems. First, the inference problems themselves
are often taken as the means to use the model. For example, speech
recognition is generally to find the mode of the posterior distribution
on state sequences given observed speech. Second, learning algorithms
often make use of some inference problem as a subroutine. For example,
algorithms that maximize the likelihood for learning latent variable
models, e.g., the expectation-maximization (EM) algorithm [38], call the
calculation of pθ(h|x) as a subroutine. Seeking computational efficient
algorithms to solve these inference problems for increasingly complex
models has been an enduring challenge for our research community.
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1.1. The Probabilistic Approach 13

1.1.1 Generative models and discriminative models

One major division in the probabilistic approach is generative versus
discriminative modeling. In generative modeling, one aims to learn
the joint distribution pθ(x, h) over all the variables. In discriminative
modeling, one only models the conditional distribution pθ(h|x) over the
target variable (denoted by h for convenience) given the observation x.
In discriminative modeling, the observation and the target variable are
also called the input and output, respectively.

The generative-discriminative distinction has received much atten-
tion in machine learning [84], [116]. When a discriminative model
follows the induced form of the conditional distribution pθ(h|x) from
a generative model pθ(x, h), the two models are called a generative-
discriminative pair (i.e., under the same parametric family of models)
[116]. For example, naive Bayes classifier and logistic regression, hidden
Markov model (HMM) [133] and conditional random field (CRF) [79],
[170], form Generative-Discriminative pairs, respectively. To compare
generative and discriminative learning, it seems natural to focus on
such pairs. Basically, there are different regimes of performance as the
training set size is increased. Taking naive Bayes and logistic regression
as a case study, it is shown in [116] that “while discriminative learning
has lower asymptotic error, a generative classifier may also approach its
(higher) asymptotic error much faster”. The comparison of HMM and
CRF is further studied in [84], and it is found that generative modeling
(modeling more of the data) tends to reduce asymptotic variance, but
at the cost of being more sensitive to model misspecification. These
previous results, including [84], [116], to name a few, strengthen our
basic intuitions about generative-discriminative distinction.

Given that the generative and discriminative estimators are com-
plementary, one natural question is how to interpolate between the
two to get the benefits of both. There have been studies on hybrid
generative-discriminative methods (see [15] and the references therein).
Notably, those hybrid models have been applied for semi-supervised
learning (SSL), where one may have few labeled examples and many
more unlabeled examples, but mostly based on traditional generative
models like naive Bayes.
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In recent years, generative modeling techniques have been greatly ad-
vanced by inventing new models with new learning algorithms under the
umbrella of deep generative models (DGMs), which are characterized by
using multiple layers of stochastic or deterministic variables in modeling
and are much more expressive than classic generative models such as
naive Bayes and HMM. See [121] for a systematic introduction to DGMs
from perspective of graphical modeling. The generative-discriminative
discussion continues with new points, when more types of generative
models have constantly emerged and become studied. Here we provide
two examples with the new points.

• A type of DGMs, variational autoencoders (VAEs) [75], has been
successfully applied in the setting of semi-supervised learning.

• It is concurrently shown in [49], [162] that a standard discrimina-
tive classifier pθ(y|x) can be used to directly define an energy-based
model (EBM) for the joint distribution pθ(x, y). It is shown in [162]
that energy-based semi-supervised training of the joint distribu-
tion produces strong classification results on par with state-of-art
DGM-based semi-supervised methods. It is demonstrated in [49]
that energy based training of the joint distribution improves
calibration, robustness, and out-of-distribution detection while
also generating samples rivaling the quality of recent generative
adversarial network (GAN) [45] approaches.

1.1.2 Conditional models

Discriminative models are a kind of conditional models for discrimina-
tive tasks. However, conditional modeling is a more general modeling
concept than discriminative modeling. Basically, a conditional model is,
in probability terms, a conditional distribution of a random variable of
interest, when another variable c is known to take a particular value.
In this case, c is often called the input of the model. The variable of
interest generally can still consist of observable and (optionally) hidden
components, denoted by x and h respectively. Thus, a conditional model
can generally be denoted by pθ(x, h|c).
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1.2. Features of EBMs 15

Many real-world applications are solved by conditional modeling.
Some examples from discriminative tasks are as follows.

• First, by abuse of notation, discriminative modeling of image
classification involves the conditional model pθ(y|x), where x is
the input image and y is the images’s class.

• A more complicated example is the recurrent neural network trans-
ducer (RNN-T) model [50] for speech recognition. Let x denote
the input speech, y the label sequence (e.g., word transcription),
and π the hidden state sequence (or say, a path) which realizes
the alignment of x and y. Then the RNN-T model involves the
conditional model pθ(y, π|x). See Section 4.3.1 for more details on
RNN-T.

Apart from discriminative tasks, conditional models can also be
used for conditional generation tasks. One example is the reverse of the
image classification problem: prediction of a distribution over images,
conditioned on the class label.

Importantly, one should keep in mind that the learning and inference
methods introduced in unconditional modeling are in theory equally
applicable to conditional models. So the basics introduced in Section
2 lay the foundation for both (unconditional) EBMs in Section 3 and
conditional EBMs in Section 4. On the other hand, the unconditional
and conditional settings have their own characteristics, and thus needs
different treatments, as we will detail in Section 3 and 4 respectively.

1.2 Features of EBMs

In the probabilistic approach, the family of models chosen in real-world
applications clearly plays a crucial role. In terms of graphical modeling
terminology [77], probabilistic models can be broadly classified into two
classes - directed and undirected.

• In directed graphical models (DGMs), also known as (a.k.a.)Bayes-
ian networks (BNs) or called locally-normalized models, the dis-
tribution is factorized into a product of local conditional density
functions.
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• In contrast, in undirected graphical models (UGMs), also known
as Markov random fields (MRFs) or energy-based models (EBMs)
or called globally-normalized models, the distribution is defined to
be proportional to the product of local potential functions. The
three terms, UGMs, MRFs and EBMs, are exchangeable in this
monograph.

Simply speaking, an easy way to tell an undirected model from a directed
model is that an undirected model is un-normalized and involves the
normalizing constant (also called the partition function in physics),
while the directed model is self-normalized.

In general, directed models and undirected models make different
assertions of conditional independence. Thus, there are families of prob-
ability distributions that are captured by a directed model and are
not captured by any undirected model, and vice versa [126]. Therefore,
undirected models, though less explored, provide an important comple-
mentary choice to directed models for various real-world applications.

During these years, EBMs have attracted increasing interest not
only from core machine learning but also from application domains such
as speech, vision, natural language processing and so on, with significant
theoretical and algorithmic progress. There has emerged a dedicated
workshop at ICLR 2021, which is a broad forum about EBM research,
and a tutorial at CVPR 2021, which focuses on computer vision tasks.

• ICLR2021 Workshop - Energy Based Models: Current Perspec-
tives, Challenges, and Opportunities, https://sites.google.com/
view/ebm-workshop-iclr2021

• CVPR 2021 Tutorial: Theory and Application of Energy-Based
Generative Models, https://energy-based-models.github.io/

To the best of our knowledge, there are no review papers about EBMs
with applications to speech and language processing. The sequential
nature of speech and language also presents special challenges and needs
treatment different from processing fix-dimensional images that was
described in the CVPR 2021 tutorial. The aim of this monograph is
to present a systematic introduction to energy-based models, including
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both algorithmic progress and applications in speech and language
processing. We hope it will also be of general interest to the artificial
intelligence and signal processing communities.

Before delving into the specific content, we first point out five key
features of EBMs, which may motivate you to pursue the study and
application of EBMs.

• Flexibility in modeling. Compared to modeling a self-normalized
density function, learning EBMs relaxes the normalization con-
straint and thus allows much greater flexibility in the parameteri-
zation of the energy function. Moreover, undirected modeling is
more natural for certain domains, where fixing the directions of
edges is awkward in a graphical model.

• Computation efficiency in likelihood evaluation, since the negative
log likelihood of an EBM (by ignoring an additive constant)
can be easily evaluated, without incurring any calculation for
normalization.

• Naturally overcoming label bias and exposure bias suffered by
locally-normalized models (Section 4.1.2).

• Superiority for hybrid generative-discriminative and semi-super-
vised learning (Section 5).

• Challenge in model training. Both computation of the exact likeli-
hood and exact sampling from EBMs are generally intractable,
which makes training especially difficult.

1.3 Organization of This Monograph

The rest of the monograph is organized as follows.
In Section 2, we present the basics for EBMs. We start with a

brief introduction to probabilistic graphical models (PGMs), because
we introduce EBMs as undirected graphical models (UGMs). Then,
we present EBM model examples, including both classic ones (such
as Ising model and restricted Boltzmann machines) and modern ones
parameterized by neural networks. Next, basic algorithms for learning
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EBMs are described, which covers the two most widely used classes of
methods - Monte Carlo based maximum likelihood methods and noise-
contrastive estimation (NCE) methods. Finally, we present a dedicated
section to introduce how to sample/generate from EBMs, since sampling
is not only a critical step in maximum likelihood learning of EBMs,
but also itself forms an important class of applications in speech and
language processing.

The basics for inference and learning with EBMs are general for both
discrete and continuous data modeling. Remarkably, most applications
covered in this monograph are discrete data modeling (text in natural
language processing, discrete labels in speech recognition), but in some
places, we also present examples and applications in images. For example,
Ising model is introduced for readers to get the abstract concepts
conveyed by EBMs. EBM based joint-training for semi-supervised image
classification is a fixed-dimensional counterpart of the more complicated
sequence setting, which is for semi-supervised natural language labeling.

The next three sections introduce how to develop EBMs in three
different scenarios respectively.

• Note that the sequential nature of speech and language presents
special challenges and needs treatment different from processing
fix-dimensional data (e.g., images). In Section 3, we introduce
EBMs for sequential data with applications in language model-
ing. In this scenario, we are mainly concerned with learning the
(marginal) distribution of an observation sequence x itself, e.g., a
natural language sentence as in language modeling.

• In Section 4, we introduce EBMs for modeling conditional distribu-
tions of target sequences given observation sequences. Conditional
EBMs have been successfully applied in speech recognition, se-
quence labeling in natural language processing (NLP), and various
forms of conditional text generation (e.g., controlled text genera-
tion, factual error correction).

• In Section 5, we introduce EBMs for modeling joint distributions
of both sequences of observations and targets. We first introduce
the fixed-dimensional case, then move on to the sequential case,
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Figure 1.2: Outline of this monograph

and finally present the applications in semi-supervised natural
language labeling and calibrated natural language understanding.

Finally, conclusions are given in Section 6 to summarize the mono-
graph and to discuss future challenges and directions.

We visualize the content of this monograph in Figure 1.2. At the
center is the basic knowledge for EBM modeling and learning. The
basic theory can be applied to model different types of distributions –
the distribution of the observation itself, the conditional distribution,
and the joint distribution. In different applications or scenarios, we are
concerned with different types of distributions. In Sections 3, 4, and
5, we in fact show how to develop EBMs for the three different types
of distributions in three different scenarios, respectively, as described
above.

This monograph contains the material expanded from the tutorial
that the author gave at ICASSP 2022 in May 2022. Substantial updates
have been made to incorporate more recent work and cover wider areas
of research activities.
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A
Notations and Definitions

A.1 Notations

Example Description
zi:j For any generic sequence {zn}, we shall use zi:j to

denote zi, zi+1, · · · zj . Similarly, wherever a collection
of indices appears in the subscript, we refer to the
corresponding collection of indexed variables, e.g.,
cl,1:H ≜ {cl,1, cl,2, · · · cl,H}.

x x generally denotes a random variable, which can ei-
ther be scalar- or vector-valued, and often denotes the
observation variable. For simplicity, we also use the
same notation x to denote the values taken by the
random variable x, e.g., in the argument of its density
function, which should be clear from the context.

h The hidden variable.
y The class label, or the output variable.
|B| The cardinality/size of a set B
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xT , AT A superscript T denotes the transpose of a vector x or
matrix A

∆K The K-dimensional probability simplex.∑
x f(x) The summation over x is a shorthand, which should be

an appropriate combination of summation and integra-
tion, depending on the components of x being discrete
variables, continuous variables, or a combination of the
two.

pora(·) The (unknown) oracle density, sometimes also known
as the data distribution and denoted as pdata(·).

pemp(·) The empirical density. For a training dataset consisting
of n independent and identically distributed (IID) data
points {x1, · · · , xN}, we have

pemp(x) ≜ 1
N

N∑
i=1

δ(x− xi)

pθ(·), p(·; θ) The (target) model density, parameterized by θ.
qϕ(·), q(·;ϕ) The auxiliary density introduced in training, parame-

terized by ϕ.
Uni[a, b] Uniform distribution for a continuous variable over

interval [a, b], or for a discrete variable over integers
from a to b.

A.2 Definitions

Term Description
σ(v) The sigmoid function, σ(v) ≜ 1

1+e−v , also called
the logistic sigmoid function. It is also known as a
squashing function, since it maps the whole real line
to [0, 1], which is necessary for the output to be
interpreted as a probability.
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logit(σ) The logit function, logit(σ) ≜ log( σ
1−σ ) for 0 < σ <

1, also known as the inverse of the sigmoid function.
It represents the log of the ratio of probabilities for
two classes, also known as the log odds.

softmax(z1:K) The softmax function, softmax(z1:K)k ≜
exp(zk)∑K

j=1 exp(zj)
, which realizes normalization from RK

to ∆K (the K-dimensional probability simplex). It
is also known as the normalized exponential and
can be regarded as a multiclass generalization of the
logistic sigmoid.

δ(x = a) An indicator function of x which takes the value 1
when x = a and 0 otherwise.

H[q] The entropy is defined as H[q] ≜ −
∫
qlogq.

KL[p||q] The inclusive KL-divergence between two distri-
butions p(·) and q(·) is defined as KL[p||q] ≜∫
plog

(
p
q

)
, which by default is called the KL-

divergence, and is sometimes referred to as the for-
ward KL-divergence, relative entropy.

KL[q||p] The exclusive KL-divergence is defined as KL[q||p] ≜∫
qlog

(
q
p

)
, which is sometimes also referred to as

the reverse KL-divergence.
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B
Background Material

B.1 Maximum entropy models

Theorem B.1. When confronted by a probability distribution p(x)
about which only a few facts are known, the maximum entropy principle
(maxent) offers a rule for choosing a distribution that satisfies those
constraints [31], [94]. According to maxent, one should select the p(x)
that maximizes the entropy

H(p) = −
∑

x

p(x) log p(x) (B.1)

subject to the constraints. When there is a reference distribution q(x),
one should select the p(x) that minimizes the relative entropy or
Kullback-Leibler divergence1

KL(p||q) =
∑

x

p(x) log p(x)
q(x) (B.2)

Assuming the constraints assert that the averages of certain functions
fk(x) are known, i.e.,

Ep(x) [fk(x)] = Fk, k = 1, 2, · · · (B.3)

Then, it can be shown that by introducing Lagrange multipliers (one
for each constraint, including normalization),

• The distribution that maximizes the entropy has the following
form

p∗(x) = 1
Z

exp
(∑

k

wkfk(x)
)

(B.4)

1When q(x) is uniform, this is the same as maximizing the entropy.
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• The distribution that minimizing relative entropy relative to q(x),
has the following form

p∗(x) = 1
Z
q(x) exp

(∑
k

wkfk(x)
)

(B.5)

where {wk} are set such that the constraints Eq. (B.3) are satisfied, and
Z is the normalizing constant. The two forms in Eq. (B.4) and Eq. (B.5)
are often collectively referred to as maximum entropy distributions.

Theorem B.1 gives the form of maximum entropy distributions
that satisfy certain moment constraints. In an opposite way, when
given that a distribution satisfies the form of Eq. (B.4) or Eq. (B.5),
the following theorem establish the connection between the maximum
entropy distribution and the maximum likelihood distribution.

Theorem B.2. Assume that a variable x comes from a probability
distribution of the form in Eq. (B.4) or Eq. (B.5), where the functions
fk(x) are given, and the parameters {wk} are not known. A dataset
{x(n)} is supplied. Then, it can be shown that by differentiating the log
likelihood, the maximum-likelihood (ML) parameters wML satisfy

Ep(x) [fk(x)] = 1
N

∑
n

fk(x(n)), k = 1, 2, · · ·

= Epemp(x) [fk(x)]
(B.6)

where the left-hand is the model average under the fitted model, the
right-hand the empirical average over the training data points, and
pemp(·) denotes the empirical density over the training data points.

Combining the above two theorems, we can easily see that maximum
entropy fitting with Fk’s being set as the empirical averages is equivalent
to maximum likelihood fitting of a log-linear distribution [94], [129].

B.2 Fisher equality

Formally, for any density function pθ(x), the partial derivative w.r.t.
θ of the log density function, ∂

∂θ logpθ(x), is called the “score”. Under
certain regularity conditions, the expectation of the score w.r.t. the
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density itself is 0. This formula is often referred in presenting Fisher
information2, so we call it Fisher equality, which, is frequently used in
this monograph.

Epθ(x)

[
∂

∂θ
log pθ(x)

]
= 0. (B.7)

Further, based on the above basic Fisher equality, we have the
following very useful theorem.
Theorem B.3. Consider any latent-variable model pθ(x, h), which con-
sisting of observation x and latent variable h, then we have

∂

∂θ
log pθ(x) = Epθ(h|x)

[
∂

∂θ
log pθ(x, h)

]
(B.8)

which means that the gradient of the log marginal likelihood is equal to
the expected log joint likelihood, where the expectation is taken over
the posteriori distribution.

Proof.

∂

∂θ
log pθ(x) = Epθ(h|x)

[
∂

∂θ
log pθ(x)

]
= Epθ(h|x)

[
∂

∂θ
log pθ(x, h)− ∂

∂θ
log pθ(h|x)

]
= Epθ(h|x)

[
∂

∂θ
log pθ(x, h)

]
where in the second line, according to Fisher equality, we have

Epθ(h|x)

[
∂

∂θ
log pθ(h|x)

]
= 0,

and thus we obtain the final line. For simplicity, Eq. (B.8) is also referred
to as Fisher equality. ■

2https://en.wikipedia.org/wiki/Fisher_information
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C
Open-source Toolkits Related to EBMs

• Trans-dimensional random field (TRF) LMs: https://github.com/
thu-spmi/SPMILM

• Energy-based cloze models for representation learning over text
(Electric): https://github.com/google-research/electra

• CRF-based ASR Toolkit (CAT): https://github.com/thu-spmi/
CAT

• Neural CRF Transducers for Sequence Labeling: https://github.
com/thu-spmi/SPMISeq

• Controlled text generation from pre-trained language models (mix-
and-match): https://github.com/mireshghallah/mixmatch

• Learning neural random fields with inclusive auxiliary generators:
https://github.com/thu-spmi/Inclusive-NRF

• JEMs and JRFs for semi-supervised learning: https://github.com/
thu-spmi/semi-EBM
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