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ABSTRACT
The spatial information of sound plays a crucial role in var-
ious situations, ranging from daily activities to advanced
engineering technologies. To fully utilize its potential, numer-
ous research studies on spatial audio signal processing have
been carried out in the literature. Sound field estimation is
one of the key foundational technologies that can be applied
to a wide range of acoustic signal processing techniques,
including sound field reproduction using loudspeakers and
binaural playback through headphones. The purpose of this
monograph is to present an overview of sound field estima-
tion methods. After providing the necessary mathematical
background, two different approaches to sound field estima-
tion will be explained. This monograph focuses on clarifying
the essential theories of each approach, while also referenc-
ing state-of-the-art developments. Finally, several acoustic
signal processing technologies will be discussed as examples
of the application of sound field estimation.

Natsuki Ueno and Shoichi Koyama (2025), “Sound Field Estimation: Theories and
Applications”, Foundations and Trends® in Signal Processing: Vol. 19, No. 1, pp
1–98. DOI: 10.1561/2000000121.
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1
Introduction

1.1 Background

Sound is one of the most commonly used media in all kinds of human
activities, including human (or human–robot) communication, the anal-
ysis of materials and environments, and art-related activities. In many
of these situations, the spatial information of sound plays an essential
role as well as temporal information. For example, in the localization of
sound sources, humans benefit from the interaural difference between
sound signals received by both ears without depending much on the
temporal waveform of the source signal, and further theoretical and
experimental investigations demonstrated the additional effectiveness
of head movement during sound source localization [76], [79], [86], [88].
Such importance of the spatial information of sound has stimulated
the widespread research and development of audio signal processing
technologies for the analysis and control of spatial acoustics.

As a direct attempt to obtain the spatial information of sound,
sound field estimation, also called sound field reconstruction, measure-
ment, or recording depending on the context, has been a fundamental
technique under intensive investigation. The purpose of sound field
estimation is to estimate the spatio-temporal distribution of sound

2
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1.1. Background 3

pressure within a target region from the data obtained by multiple
sensors, i.e., microphones. In this context, it should be emphasized that
the parameters related to the process of generating a sound field, such
as the positions of sound sources or the strength of reverberation, are
not subject to estimation; a sound field can be directly represented as it
is without strong assumptions on or simplifications of these factors. By
combining other signal processing applications, sound field estimation
enables more than just the reconstruction of the sound pressure at
an arbitrary position (see Figure 1.1). One such example is binaural
reproduction [2], [8], [25], [33], [55], [69], which aims to reproduce the
sound that someone would hear if they were present in the target sound
field, including the complex effects of reflection and diffraction caused
by the head. Using this technique, one can appreciate, for example, an
orchestra music recorded in a concert hall anywhere by a headphone
with a high (ideally complete) degree of fidelity. Compared with the
direct playback of binaural signals recorded with a dummy head, the
binaural reproduction from the estimated sound field allows for various
post-processing steps after the recording, such adapting individual head-
related transfer functions (HRTFs) and rendering with head tracking.
There are also other applications, such as sound field synthesis using
multiple loudspeakers [3], [10], [13], [19], [20], [66], [82], [92], spatial
active noise control [16], [42], [52], [94], [95], the analysis or visualization
of room acoustic condition [39], [62], [70], [78].

A sound field can be essentially regarded as a scalar field, i.e., a
function from the space and time/frequency variables to sound pressure.
However, the estimation of a sound field is distinguished from a simple
estimation or interpolation of a function in the common context of
machine learning in several aspects. The most distinctive aspect of the
sound field estimation problem is the existence of the constraint due
to the physical properties of a sound field. This constraint is described
typically by the acoustic wave equation or the Helmholtz equation [90].
In addition, there are also distinctive characteristics in the observation
of a sound field. First, unlike a common interpolation problem of a
function, the observation of a sound field is not necessarily limited to
the sampling of sound pressure. This is because a microphone generally
has a nonuniform frequency response or directivity. Actually, a specific
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4 Introduction

Microphone array

Sound field estimation

Loudspeaker array

Sound field synthesis

Binaural rendering

Headphones

Figure 1.1: Sound field estimation and its applications.

(nonuniform) directivity can even have its advantages over the uniform
directivity in some cases, which will be described in Section 4 in detail.
On the other hand, the observation of a sound field can be regarded
generally as a linear time-invariant system, regardless of the frequency
response or directivity of the microphone. This linear time-invariant
property makes it easy to analyze an observation and estimation of
a sound field in the frequency domain. Thus, how to deal with these
generalities and specificities in a technically tractable way is and will
always be a critical problem in sound field estimation.

From the historical viewpoint, the exact origin of sound field esti-
mation methods is difficult to identify, to the best of our knowledge. In
1985 at the latest, the pioneering idea of sound field estimation referred
to as the near-field acoustic holography was investigated in the field of
audio engineering by Maynard et al. [54], which was also developed as
a sound field synthesis technique called the wave field synthesis [10],
although similar theories were developed earlier for the optical field [50],
[91]. Their approach was based on the Kirchhoff–Helmholtz integral
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1.1. Background 5

theorem and Rayleigh’s formula, both of which are boundary integral
representations that relate a sound field—or, more precisely, a solution
of the Helmholtz equation—to its values on a given surface. The use
of these theorems has so far formed the basis for many sound field
estimation methods [9], [20], [32]. Ambisonics, developed by Gerzon [28]
(referred to as “periphony” therein), is another type of pioneering ap-
proach to sound field estimation. The original work by Gerzon [28]
dealt with the directional component of a sound at one position, not a
sound field in the direct form. However, it was later redeveloped as the
higher-order ambisonics with theoretical and practical improvements [1],
[20], [56], [66], [67], where a sound field was explicitly reconstructed
from the signals observed by a spherical microphone array. In the higher-
order ambisonics, a sound field is analyzed via its local expansion using
the spherical wave functions, which is seemingly different from the
approaches based on the Kirchhoff–Helmholtz integral theorem and
Rayleigh’s formula.

However, both approaches basically require the boundary measure-
ment of the sound field by microphones with specific directivities, and
indeed they can be interpreted in a unified manner, as pointed out by
Daniel et al. [20] and Poletti [66]. These unified theories are also called
acoustic holography [90]. In 2003, a new approach was proposed by
Laborie et al. [49], which no longer requires boundary measurement but
allows arbitrary positions and directivities of the microphones. The main
idea of this approach lies in the vector and matrix representations of
the sound field and observation, respectively, and the same or a similar
idea is used in many of the current sound field estimation methods [66],
[71], [81]. Whereas all methods mentioned above do not rely on any
specific assumptions on the target sound field, several methods that
utilize prior information on a target sound field, such as the approximate
source direction [83] or sparsity of the source distribution [5], [12], [57],
[58], [85], have also been proposed to improve the estimation accuracy.
Moreover, several studies on learning-based sound field estimation have
been conducted in recent years [18], [46], [51], [73] to further improve
performance, the details of which are beyond the scope of this work.

Practical situations in sound field estimation have also changed
significantly over the last few decades. In many of the early studies, the
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estimation methods were demonstrated primarily through numerical
simulations, with few exceptions [9], [54] because of the difficulties in the
implementation of a large number of microphones and analog-to-digital
converters with a large number of synchronized channels. In recent
years, however, the practical implementation and commercialization
of microphone arrays having a large number of channels have been
realized [25], [34] owing to the development of multichannel analog-
to-digital converters and the improvement of the miniaturization and
integration technologies for microphones. One example of a commercially
available microphone array is the em64 Eigenmike®, which is a spherical
microphone array of 84 mm diameter equipped with 64 microphones.
Such an industrial background implies that sound field estimation
techniques and their applications mentioned above are now available in
almost any situation, in principle, and studies on sound field estimation
methods are gaining increasing attention towards further performance
improvement.

1.2 Purpose of This Monograph

The purpose of this tutorial is to provide basic and advanced theories
on sound field estimation, focusing on how the physical constraints
of sound fields are incorporated into the estimation methods, as well
as to introduce several signal processing applications of sound field
estimation. In this monograph, the sound field estimation methods are
grouped into two types: one with boundary measurement and the other
with discrete measurement, and they are described with the results
of numerical experiments. It should be noted that the latter is not a
simple generalization of the former because they also differ in terms of
their background theories. Even though the estimation methods with
discrete measurement have an advantage in practical feasibility, those
with boundary measurement are also beneficial in terms of their rich
theoretical implications. For the full understanding of these approaches,
we provide the required mathematics, especially on the Helmholtz
equation, with due care of technical correctness. Our main focus lies in
the fundamental ideas of the above approaches, but the state-of-the-art
methods are also discussed briefly with extensive references. Finally,
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1.3. Outline of This Monograph 7

three applications of sound field estimation are presented: binaural
sound reproduction, sound field synthesis with loudspeakers, and active
noise cancellation.

1.3 Outline of This Monograph

This monograph is organized as follows. We begin in Section 2 with
the definition of the sound field estimation problem of interest in this
monograph. Section 3 provides mathematical preliminaries used in
later sections. Readers who are not interested in theoretical details
can skip this section and refer to it later if required. In Sections 4
and 5, we describe two different approaches to sound field estimation
based on boundary measurement and discrete measurement, respectively.
We present signal processing applications of sound field estimation in
Section 6, and finally in Section 7, we conclude this monograph.

1.4 Symbols and Notations

Basic mathematical symbols and notations are listed in Table 1.1. By
convention, Rn×1 and Cn×1 are regarded as identical to Rn and Cn,
respectively (n ∈ N); for instance, for a ∈ Cn, aT and aH are 1 × n

matrices. Similarly, R1 and C1 are regarded as identical to R and C,
respectively. For an inner product space over C, the inner product is
defined such that it is antilinear with respect to the first variable and
linear with respect to the second variable.

Full text available at: http://dx.doi.org/10.1561/2000000121



8 Introduction

Table 1.1: Notations

Numbers:
N set of natural numbers (including 0)
Z set of integers
R set of real numbers
C set of complex numbers
i imaginary unit in C
z∗ complex conjugate of z ∈ C
Ja, bK set of all integers between a and b included (a, b ∈ Z)
Linear algebra (K ∈ {R,C}, m, n ∈ N):
Kn n-dimensional coordinate space over K
Km×n set of m× n matrices over K
AT transpose of A ∈ Km×n

AH conjugate transpose of A ∈ Km×n

A−1 inverse of A ∈ Kn×n (if exists)
δa,b Kronecker’s delta (a, b ∈ Z)
Vector analysis:
x · y dot product between x ∈ R3 and y ∈ R3

∥x∥ Euclidean norm of x ∈ R3

S2 unit sphere in R3

SO(3) rotation group over R3

Cn(Ω) set of nth continuously differentiable functions from an
open set Ω ⊆ R3 to C (n ∈ N)

∇ vector differential operator (gradient)
∆ Laplace operator
∂Ω topological boundary of Ω ⊆ R3

B(r, R) open ball centered at r ∈ R3 with radius R ∈ (0,∞)
B(r, R) closed ball centered at r ∈ R3 with radius R ∈ (0,∞)
V volume measure (3-dimensional Lebesgue measure)
S surface measure (2-dimensional Hausdorff measure)
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