
Causal Deep Learning:
Encouraging Impact on

Real-world Problems
Through Causality

Full text available at: http://dx.doi.org/10.1561/2000000123



Other titles in Foundations and Trends® in Signal Processing

Energy-Based Models with Applications to Speech and Language Pro-
cessing
Zhijian Ou
ISBN: 978-1-63828-306-5

Model-Based Deep Learning
Nir Shlezinger and Yonina C. Eldar
ISBN: 978-1-63828-264-8

Generalizing Graph Signal Processing: High Dimensional Spaces, Models
and Structures
Xingchao Jian, Feng Ji and Wee Peng Tay
ISBN: 978-1-63828-150-4

Learning with Limited Samples: Meta-Learning and Applications to
Communication Systems
Lisha Chen, Sharu Theresa Jose, Ivana Nikoloska, Sangwoo Park, Tianyi
Chen and Osvaldo Simeone
ISBN: 978-1-63828-136-8

Full text available at: http://dx.doi.org/10.1561/2000000123



Causal Deep Learning: Encouraging
Impact on Real-world Problems

Through Causality

Jeroen Berrevoets
University of Cambridge

jeroen.berrevoets@maths.cam.ac.uk

Krzysztof Kacprzyk
University of Cambridge

kk751@cam.ac.uk

Zhaozhi Qian
University of Cambridge

zhaozhi.qian@maths.cam.ac.uk

Mihaela van der Schaar
University of Cambridge, and

The Alan Turing Institute
mv472@cam.ac.uk

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2000000123



Foundations and Trends® in Signal Processing

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

J. Berrevoets et al.. Causal Deep Learning: Encouraging Impact on Real-world
Problems Through Causality. Foundations and Trends® in Signal Processing, vol. 18,
no. 3, pp. 200–309, 2024.

ISBN: 978-1-63828-401-7
© 2024 J. Berrevoets et al.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2000000123



Foundations and Trends® in Signal Processing
Volume 18, Issue 3, 2024

Editorial Board

Editor-in-Chief
Yonina Eldar
Weizmann Institute
Israel

Editors

Selin Aviyente
Michigan State University
Yuejie Chi
Carnegie Mellon
University
Georgios Giannakis
University of Minnesota
Vivek Goyal
Boston University
Sinan Gunturk
New York University
Robert W. Heath, Jr.
North Carolina State
University
Sheila Hemami
Triple Ring Technologies
Lina Karam
Lebanese American
University
Nick Kingsbury
University of Cambridge
Jelena Kovacevic
New York University

Geert Leus
TU Delft

Henrique Malvar
Microsoft Research

Urbashi Mitra
University of Southern
California

Björn Ottersten
KTH Stockholm

Piya Pal
University of California,
San Diego

Vincent Poor
Princeton University

Miguel Rodrigues
UCL

Anna Scaglione
Cornell Tech

Nicholas D. Sidiropoulos
University of Virginia

Michael Unser
EPFL

P. P. Vaidyanathan
California Institute of
Technology

Mihaela van der Shaar
University of California,
Los Angeles

Ruud van Sloun
TU Eindhoven

Rabab Ward
University of British
Columbia

Ami Wiesel
The Hebrew University of
Jerusalem

Min Wu
University of Maryland

Josiane Zerubia
INRIA

Hong (Vicky) Zhao
Tsinghua University

Full text available at: http://dx.doi.org/10.1561/2000000123



Editorial Scope
Foundations and Trends® in Signal Processing publishes survey and tutorial
articles in the following topics:

• Adaptive signal processing
• Audio signal processing
• Biological and biomedical signal

processing
• Complexity in signal processing
• Digital signal processing
• Distributed and network signal

processing
• Image and video processing
• Linear and nonlinear filtering
• Multidimensional signal process-

ing
• Multimodal signal processing
• Multirate signal processing
• Multiresolution signal processing
• Nonlinear signal processing
• Randomized algorithms in signal

processing
• Sensor and multiple source signal

processing, source separation
• Signal decompositions, subband

and transform methods, sparse
representations

• Signal processing for communica-
tions

• Signal processing for security and
forensic analysis, biometric signal
processing

• Signal quantization, sampling,
analog-to-digital conversion, cod-
ing and compression

• Signal reconstruction, digital-to-
analog conversion, enhancement,
decoding and inverse problems

• Speech/audio/image/video com-
pression

• Speech and spoken language pro-
cessing

• Statistical/machine learning
• Statistical signal processing

– Classification and detection
– Estimation and regression
– Tree-structured methods

Information for Librarians

Foundations and Trends® in Signal Processing, 2024, Volume 18, 4
issues. ISSN paper version 1932-8346. ISSN online version 1932-8354.
Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2000000123



Contents

1 Introduction 3

2 Background 8
2.1 Graphical Modelling . . . . . . . . . . . . . . . . . . . . . 8
2.2 Causal Learning . . . . . . . . . . . . . . . . . . . . . . . 12

3 CDL in 3 Dimensions: Structural, Parametric, and
Temporal 17
3.1 The Structural Scale and Rung 1.5 . . . . . . . . . . . . . 17
3.2 The Parametric Scale . . . . . . . . . . . . . . . . . . . . 22
3.3 The Temporal Scale . . . . . . . . . . . . . . . . . . . . . 25
3.4 Characterizing CDL Models Using the Scale . . . . . . . . 26

4 Constructing and Testing Model Pipelines 28
4.1 Transition in the Knowledge . . . . . . . . . . . . . . . . . 28
4.2 Building CDL Model Pipelines . . . . . . . . . . . . . . . 29
4.3 Non-matching Assumptions . . . . . . . . . . . . . . . . . 31

5 Treatment Effects: An Illustrative Example Using CDL 32
5.1 Treatment Effects: The CDL Description . . . . . . . . . . 33
5.2 Treatment Effects Over Time . . . . . . . . . . . . . . . . 36

Full text available at: http://dx.doi.org/10.1561/2000000123



6 Real-world Applications 38
6.1 Empowering Machine Learning . . . . . . . . . . . . . . . 39
6.2 Solutions in the Real-world . . . . . . . . . . . . . . . . . 49
6.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Categorising CDL Methods 66
7.1 Comparing Methods . . . . . . . . . . . . . . . . . . . . . 68
7.2 Developing Methods . . . . . . . . . . . . . . . . . . . . . 68

8 Using Methods 71
8.1 Beyond Supervised Learning . . . . . . . . . . . . . . . . . 72

9 Conclusion and Guidelines for CDL Papers 78

Acknowledgements 80

References 81

Full text available at: http://dx.doi.org/10.1561/2000000123



Causal Deep Learning: Encouraging
Impact on Real-world Problems
Through Causality
Jeroen Berrevoets1, Krzysztof Kacprzyk1, Zhaozhi Qian1 and
Mihaela van der Schaar1,2

1University of Cambridge, UK; jeroen.berrevoets@maths.cam.ac.uk,
kk751@cam.ac.uk, zhaozhi.qian@maths.cam.ac.uk, mv472@cam.ac.uk
2The Alan Turing Institute, UK

ABSTRACT
Causality has the potential to truly transform the way we
solve a large number of real-world problems. Yet, so far,
its potential largely remains to be unlocked as causality
often requires crucial assumptions which cannot be tested
in practice. To address this challenge, we propose a new
way of thinking about causality-– we call this causal deep
learning. Our causal deep learning framework spans three
dimensions: (1) a structural dimension, which incorporates
partial yet testable causal knowledge rather than assuming
either complete or no causal knowledge among the variables
of interest; (2) a parametric dimension, which encompasses
parametric forms that capture the type of relationships
among the variables of interest; and (3) a temporal dimen-
sion, which captures exposure times or how the variables
of interest interact (possibly causally) over time. Our CDL
framework enables us to precisely categorise and compare
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causal statistical learning methods. We use this categorisa-
tion to provide a comprehensive review of the CDL field.
More importantly, CDL enables us to make progress on
a variety of real-world problems by aiding us to leverage
partial causal knowledge (including independencies among
variables) and quantitatively characterising causal relation-
ships among variables of interest (possibly over time). Our
framework clearly identifies which assumptions are testable
and which are not, so the resulting solutions can be judi-
ciously adopted in practice. Our formulation helps us to
combine or chain causal representations to solve specific
problems without losing track of which assumptions are re-
quired to build these solutions, pushing real-world impact in
healthcare, economics and business, environmental sciences
and education, through causal deep learning.
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1
Introduction

Causality holds the promise to transform the way we solve a large
number of real-world problems [158], [162]. Unlocking this promise
amounts to adapting causality to the real world with its highly complex,
unstructured, and abundant data. Beyond rich datasets, causal inference
methods typically rely on diverse and extensive prior knowledge about
the causal nature of the underlying system, many of which are not
available or even testable in the application domain [83]. This has led
to two consequences. Firstly, practitioners may shy away from adopting
causal inference in general because the available causal knowledge is
not sufficient, let alone complete. Secondly, the emphasis on causal
knowledge may overshadow other important considerations such as the
statistical, functional, or temporal properties. These consequences may
lead the practitioner to under-utilize these methods which ultimately
results in sub-optimal solutions.

We want to encourage researchers and practitioners to take causality
to its next step: real-world impact. For this, we recognise the need to
integrate causal inference with the sophisticated modelling capabilities
of deep learning. This integration is particularly vital in real-world
domains where understanding causal relationships can lead to better
decision-making and predictions.

3
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4 Introduction

In this monograph, we introduce a new framework which enables
pragmatically adopting causality ideas to solve real-world problems:
Causal Deep Learning (CDL). Informally, CDL methods can leverage
partial causal knowledge (among some and not necessarily all variables
of interest), and quantitatively characterises the functional form (among
variables of interest) and the time-evolution of the variables to provide
significant insights to researchers and decision-makers. The reason why
the above properties are important is two-fold: (i) We need a good way
to match a model with prior knowledge in a complex system, this should
allow information of any type (be it no information, partial information,
or full information); and (ii) We need a good way to evaluate a solution.
This latter point is important in any real-world setting, especially
where we rely on modelling solutions to support impactful decisions.
Inherently being built on a strong set of assumptions, model validation
is a particularly tricky endeavour in causality and one which CDL can
help us solve [160].

With new methods being proposed at various machine learning and
statistics venues, tracking solved problems across research efforts is
hard. Our CDL framework allows this necessary comparison across
these fields. Allowing: (i) accurate comparison of existing methods, (ii)
identifying gaps in contemporary research, ultimately driving research
forward, (iii) communicate methods to a practical audience, encouraging
the adoption of causal deep learning in practice. Throughout this text,
we will use “Causal deep learning” and its acronym “CDL” to refer to
methods that leverage causal ideas in their models as presented in this
work.

Illustrative examples. Let us explore four diverse domains where
causal deep learning, characterised by its focus on causal structure, func-
tional relationships among variables of interest, and time, to understand
the need for this new way of thinking.

First, consider the medical and healthcare domain, where determin-
ing the effectiveness of medications is paramount. Traditional models
from pharmacology or physiology often struggle to capture the com-
plexity of drug interactions and patient responses. To make progress
in studying the effects of medications on health outcomes, CDL might
focus on the causal relationship between the drug dosage and patient

Full text available at: http://dx.doi.org/10.1561/2000000123
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recovery rate while controlling for other variables like age, gender, and
pre-existing conditions. In such a case, a CDL method would not assert
complete causality of overall health factors but rather isolate the drug’s
impact. By employing only a partial causal structure, CDL can model
the nuanced relationship between drug dosage and patient recovery,
considering both linear and non-linear effects. Moreover, by incorporat-
ing temporal dynamics, CDL may unravel how medication effectiveness
evolves in time, providing critical insights for personalized medicine.
Naturally, without first identifying methods that allow partial causal
knowledge as input, we may make mistakes and employ a method re-
quiring full (and correct) causal knowledge. Using our framework may
avoid such critical mistakes.

In economics and business, the relationship between interest rate
changes and consumer spending is a classic example of a complex causal
interaction. Traditional econometric models might fail to capture the
intricacy of this relationship. CDL, with its ability to handle non-linear
and high-dimensional data, can provide a more robust understanding.
By adopting a pragmatic approach, CDL could enable the investigation
of partial causality between interest rate changes and consumer spending.
While acknowledging that other factors like education, employment rates,
inflation, and economic policies also impact spending, the focus here is
on understanding how variations in interest rates specifically influence
consumer behaviour. By considering the temporal dimension, CDL may
also uncover lag effects, where changes in interest rates take time to
manifest in consumer behaviour, a crucial insight for policymakers.

Environmental science, especially the study of climate change, pre-
sents another compelling case for causal deep learning. An interesting
research aspect might be to explore the causal relationship between
carbon dioxide emissions and global temperature increase, acknowledg-
ing that other factors like deforestation and solar radiation also play
roles in climate change. Using such a pragmatic CDL approach which
requires only partial causal structure would allow researchers to isolate
and understand the specific impact of CO2 emissions. In addition, the
relationship between CO2 emissions and global temperature increase is
not straightforward and likely non-linear. Here, causal deep learning
framework can capture the complexity of this relationship beyond tradi-
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6 Introduction

tional linear models. Additionally, understanding how this relationship
evolves over time is critical for predicting future climate patterns and
for formulating effective environmental policies.

Lastly, in the education sector, the impact of classroom size on
student performance is a topic of ongoing debate. While simple linear
models might suggest a straightforward inverse relationship, the reality
is likely more nuanced. Causal deep learning can help in identifying not
just whether, but how class size impacts student performance, including
potential threshold effects or non-linear dynamics. Furthermore, by
examining how this relationship changes over an academic year or
across different educational stages, deeper insights can be gained into
effective educational planning and resource allocation. Solving this
problem requires detailed descriptions of these dynamics are typically
only possible with a set of fully known equations describing the data-
generating process. These methods exist but often require a large set of
modelling assumptions which are best charted with our framework.

In these and other real-world domains, causal deep learning can be
used as a powerful framework to make progress. Unlike current causal
models in machine learning, CDL allows for a nuanced understanding
of causal relationships without requiring complete causal knowledge,
learns in a data-driven manner the parametric form of the relationships
among the variables of interest using powerful deep-learning models,
and importantly, considers the dimension of time. This approach can
uncover insights that traditional models might miss, leading to more ef-
fective interventions and policies across various sectors. The exploration
of causal deep learning in these diverse real-world domains not only un-
derscores its versatility but also highlights its potential to revolutionize
how we understand and interact with the world around us.

With our detailed definitions, we can better align a problem with
the (causal) solution. While research in causality has a long history of
listing out the various assumptions necessary to identify causal effects,
these assumptions often do not map easily into practice. Furthermore,
deep learning has no such history, typically because most deep learning
architectures are assumed to be non-parametric. However, not all prob-
lems require the enormous flexibility of deep neural networks, but may

Full text available at: http://dx.doi.org/10.1561/2000000123
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still be non-linear. Our proposal encompasses all the above in hopes of
aiding the correct and useful adoption of causal deep learning methods.

Please refer to https://nowpublishers.com/article/Details/SIG-123
for the online version of this monograph.
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