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ABSTRACT

This monograph presents a theoretical background and a
broad introduction to the Min-Max Framework for Majori-
zation-Minimization (MM4MM), an algorithmic methodol-
ogy for solving minimization problems by formulating them
as min-max problems and then employing majorization-
minimization. The monograph lays out the mathematical
basis of the approach used to reformulate a minimization
problem as a min-max problem. With the prerequisites cov-
ered, including multiple illustrations of the formulations
for convex and non-convex functions, this work serves as
a guide for developing MM4MM-based algorithms for solv-
ing non-convex optimization problems in various areas of
signal processing. As special cases, we discuss using the

Astha Saini, Petre Stoica, Prabhu Babu and Aakash Arora (2024), “Min-Max
Framework for Majorization-Minimization Algorithms in Signal Processing Applica-
tions: An Overview”, Foundations and Trends® in Signal Processing: Vol. 18, No. 4,
pp 310–389. DOI: 10.1561/2000000129.
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2

majorization-minimization technique to solve min-max prob-
lems encountered in signal processing applications and min-
max problems formulated using the Lagrangian. Lastly, we
present detailed examples of using MM4MM in ten signal
processing applications such as phase retrieval, source lo-
calization, independent vector analysis, beamforming and
optimal sensor placement in wireless sensor networks. The
devised MM4MM algorithms are free of hyper-parameters
and enjoy the advantages inherited from the use of the
majorization-minimization technique such as monotonicity.

Keywords: Conjugate function; min-max problem; majorization-
minimization; non-convex optimization.

Full text available at: http://dx.doi.org/10.1561/2000000129



1
Introduction

The Majorization Minimization (MM) method, with its roots in the
1970s, is a generalization of the classical Expectation-Maximization
(EM) method [33]. MM was earlier known by different names like
space-alternating generalized EM (SAGE) [39], optimization transfer
[6], and iterative majorization [56], and it was mainly used in the field
of statistics [10], [29], [55], [56], [68] and image processing [30]–[32], [46],
[47], [66], [101]. MM is a general algorithmic framework for convex and
non-convex problems [59], [68]. [59], [67], [69], [132], [133] triggered the
attention of researchers from the statistics and signal processing fields
to the MM methodology. The work [59], in particular, sparked research
interest in using the MM algorithmic framework for solving non-convex,
non-smooth optimization problems encountered in applications such as
compressive sensing [13], [17], [73], [107], covariance estimation [109]–
[111], [123], non-negative matrix factorization [40]–[42], [113], sequence
design [104]–[106], [115], [127], localization in sensor networks [26], [61],
[82], and image processing [11], [43], [44], [70], [83], [125].

We will always abbreviate majorization-minimization as MM. How-
ever, the abbreviation MM4MM has different (but related) meanings
depending on the context:

3
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4 Introduction

• In Section 3.2.1, we use a min-max formulation to derive an MM
algorithm and there MM4MM = min-max for MM.

• In Section 3.2.2, we swap the min and max operators and therefore
MM4MM = max-min for MM.

• Finally in Section 4, we get the min-max formulation for free
(without any need for a max formulation of the function to be
minimized), consequently there MM4MM = MM for min-max.

1.1 MM Summary

Employing MM involves two basic steps: majorizing the objective func-
tion to create a surrogate function and then minimizing the surrogate
function iteratively to solve the min problem. Consider the following
optimization problem:

min
x∈X

f(x), (1.1)

where X ⊆ Rn is a non-empty convex set and f(x): X → R is a
continuous function that is bounded below. To solve (1.1) using MM, a
suitable surrogate function fs(x | xt) needs to be constructed such that
given a feasible point xt ∈ X, the following inequality holds:

fs(x | xt) ≥ f(x) + ct ∀ x ∈ X. (1.2)

The constant ct ∈ R ensures that equality is satisfied in (1.2) at x = xt.
In other words, the surrogate function fs(x | xt) majorizes f(x) and is
equal to f(xt) + ct at x = xt.

At the second step, the surrogate function is minimized yielding the
next iterate point of the algorithm, that is,

xt+1 = arg min
x∈X

fs(x | xt). (1.3)

This implies,

fs(xt+1 | xt) ≤ fs(x | xt) ∀ x ∈ X. (1.4)

Using (1.4) and (1.2), we get:

f(xt+1) ≤ fs(xt+1 | xt)− ct
≤ fs(xt | xt)− ct = f(xt).

(1.5)

Full text available at: http://dx.doi.org/10.1561/2000000129



1.2. Need for MM4MM 5

From (1.5) it follows that the sequence of function values {f(xt)} is
monotonically non-increasing. What plays a crucial role in developing a
computationally efficient MM algorithm for an optimization problem is
the construction of a suitable surrogate function. The surrogate function
needs to be such that it follows the shape of the objective function
as closely as possible and the computational cost of minimizing it is
low. To construct a surrogate function, different techniques can be used
such as Jensen’s inequality, arithmetic-geometric mean inequality, and
linearizing a concave function using a first-order Taylor expansion. Many
of these techniques are discussed in [112], which also provides a general
overview of the MM algorithmic framework along with applications of
MM in signal processing, communication and machine learning. The MM
technique has been used to solve a wide variety of optimization problems
from areas such as signal processing [1], [25], [62], [91], communication
[3], [28], [48], [65], [85], radar and sonar [7], [36], [98], [124], machine
learning and computer vision [16], [22], [45], [57], [72], [121], [129], image
recovery [18], [75], [90], intelligent transportation systems [58], [80],
[130], graph learning [37], [63], [64], [71], [77], [92], [128], biomedical
signal processing [23], [34], [78], [79], and neuroimaging applications
[49], [52], [131].

1.2 Need for MM4MM

There exist minimization problems for which surrogate functions are
difficult to derive or, even if such functions can be found, they are
not convenient to deal with from a computational standpoint. Indeed
for functions in x ∈ Rn like xTAx log(xTAx) where A � 0, and
(log ‖x− a‖)2 where a ∈ Rn finding a suitable surrogate is difficult. On
the other hand, for log|XTΣ−1X| (where X ∈ Rn×m and Σ ∈ Sn++)
a surrogate can be found using a first-order Taylor expansion (below
Y = XTΣ−1X):

log|Y| ≤ log|Yt|+ Tr(Y−1
t (Y−Yt)). (1.6)

However, the cost of computing Y−1
t = (XT

t Σ−1Xt)−1 at each iteration
is usually high.

Full text available at: http://dx.doi.org/10.1561/2000000129



6 Introduction

To deal with cases such as those above, the proposed MM4MM
framework expresses the function f(x) as maximum of an augmented
function g(x, z), where z is an auxiliary variable:

f(x) = max
z

g(x, z). (1.7)

We call this representation of f(x) the max formulation. Finding the
function g(x, z) requires ingenuity. This function should be such that
suitable surrogate function(s) for the non-convex term(s) of g(x, z)
are easy to obtain, making it possible to come up with an efficient
MM algorithm. The problem of minimizing f(x) is reformulated as a
min-max problem with g(x, z) as the objective function:

min
x

max
z

g(x, z). (1.8)

The problem in (1.8) can be solved using MM as we explain in Section 3.
We show how the proposed MM4MM algorithmic framework can be used
to find suitable surrogate functions for the examples mentioned in the
previous paragraph in Section 5.3 (for xTAx log(xTAx)), Section 5.4
(for (log ‖x− a‖)2), and Section 5.5 (for log|XTΣ−1X|).

One of the first algorithms using the basic ideas of the MM4MM
framework is the PDMM (Primal-Dual Majorization Minimization) [38]
algorithm that solves the inverse problem of phase retrieval for Pois-
son noise. [95] proposes a special case of MM4MM algorithm using a
Lagrangian min-max formulation of the problem of E-optimal experi-
ment design (see Section 4.1). Also, [99] uses the max formulation of
the objective function and then employs MM for the problem of total
variation filtering. However, this problem is convex, and thus [99] uses
the max formulation only to deal with non-differentiability of `1 norm
penalty. More details on the applications in [4], [38], [86], [95]–[97], [99],
[114] and on the way in which these works use the MM4MM framework
can be found in Section 5.

1.3 Organization

Before describing the Min-Max framework for MM, we present some
preliminary results in Sections 2 and 3.1. In Section 2, we describe the
max formulation for convex and non-convex functions, along with ten
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1.4. Notation 7

illustrative examples for functions which are found in various signal
processing problems. The minimax theorem is discussed in Section 3.1.
These sections cover the prerequisites for the MM4MM framework,
which is described in Section 3.2. Section 4 describes two special cases
of the MM4MM framework. The bulk of the monograph is Section 5 in
which we present detailed derivations of the MM4MM algorithms for
ten signal processing applications.

1.4 Notation

Italic letters (x), lower case bold letters (x) and upper case bold letters
(X) denote scalars, vectors and matrices respectively. |x| is the absolute
value of x and |x| is the element-wise absolute value of vector x. The
ith element of a vector x is denoted xi. xi denotes the ith column and
Xij the (i, j)th element of the matrix X. I is the identity matrix and 0
the zero matrix. Tr(X) and |X| denote the trace and determinant of the
matrix X. X � 0 (X � 0) denotes the positive definiteness (positive
semi-definiteness) of the matrix X. vec(X) is the vectorization operator
reshaping a matrix X of size m× n in a vector of size of mn× 1.

The sets of real numbers and complex numbers are denoted R and C.
R+ is the set of non-negative real numbers. Sn+ and Sn++ represent the
sets of positive semi-definite matrices and positive definite matrices of
size n×n. A subspace is represented by X . The indicator function IX(x)
is zero 0 for all x lying in the set X and ∞ otherwise. N (µ, σ2) denotes
Gaussian distribution with mean µ and variance σ2. The notation x ∼
Poisson(λ) means that x follows a Poisson distribution with mean and
variance λ. The natural logarithm is denoted log(·) and the logarithm
to the base 10 is denoted log10(·). f ′(x) is the derivative of the function
f(x). The symbols � and � denote the element-wise multiplication
and division of two vectors. ⊗ denotes the Kronecker product of two
matrices. Infimal convolution between two functions f1(x) and f2(y) is
defined as:

(f1�f2)(x) = min
y

f1(x− y) + f2(y). (1.9)

Full text available at: http://dx.doi.org/10.1561/2000000129



8 Introduction

The proximal operator of a scaled function proxαf (z) is defined as
follows:

proxαf (z) = arg min
x

(
f(x) + 1

2α‖x− z‖22
)
. (1.10)

Superscripts (·)T, (·)H and (·)−1 denote the transpose, conjugate
transpose and inverse operations respectively. (X)

1
2 or
√

X refers to the
matrix square root of the positive semi-definite matrix X ∈ Sn+ such
that (X)

1
2 (X)

1
2 = X. The symbol ‖x‖p denotes the `p norm of vector

x ∈ Rn defined as:

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)1/p, (1.11)

which has the following special cases:

‖x‖1 = |x1|+ · · ·+ |xn|, (1.12)
‖x‖∞ = max{|x1|, . . . , |xn|}. (1.13)

The dual norm of any norm ‖x‖ is represented by ‖z‖∗ and is defined
as:

‖z‖∗ = max{zTx | ‖x‖ ≤ 1}. (1.14)
Huber norm ‖x‖H of vector x is given as follows:

‖x‖H =
n∑
i=1

fα(xi); fα(xi) =


|xi|2

2α if |xi| ≤ α

|xi| −
α

2 if |xi| > α.
(1.15)

Unless otherwise stated, ‖x‖ will be used to denote the `2 norm of the
vector x, i.e., ‖x‖2. For matrix X ∈ Rm×n, the ‖X‖1 norm is given by:

‖X‖1 = max
j=1,...,n

m∑
i=1
|Xij |. (1.16)

The nuclear norm, defined as sum of the singular values and denoted
‖X‖2∗, is given by:

‖X‖2∗ = σ1(X) + · · ·+ σr(X) = Tr(XTX)
1
2 , (1.17)

where {σi} are the singular values and r is the rank of the matrix X.
The spectral norm, defined as the maximum singular value and denoted
‖X‖2, is given by:

‖X‖2 = σmax(X). (1.18)
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