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ABSTRACT
Many types of data from fields including natural language
processing, computer vision, and bioinformatics are well
represented by discrete, compositional structures such as
trees, sequences, or matchings. Latent structure models are
a powerful tool for learning to extract such representations,
offering a way to incorporate structural bias, discover insight
about the data, and interpret decisions. However, effective
training is challenging as neural networks are typically de-
signed for continuous computation.
This text explores three broad strategies for learning with
discrete latent structure: continuous relaxation, surrogate
gradients, and probabilistic estimation. Our presentation
relies on consistent notations for a wide range of models.

Vlad Niculae, Caio Corro, Nikita Nangia, Tsvetomila Mihaylova and André F. T. Mar-
tins (2025), “Discrete Latent Structure in Neural Networks”, Foundations and Trends®
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As such, we reveal many new connections between latent
structure learning strategies, showing how most consist of the
same small set of fundamental building blocks, but use them
differently, leading to substantially different applicability
and properties.
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Notation

Vectors, matrices, and indexing.
u, v, W ,X a scalar, a vector, a matrix, and a set.

vi the ith element of vector v.
wj the jth column of matrix W .
∥v∥p :=

(︂∑︁d
i=1 |vi|p

)︂1/p
, the p-norm of v ∈ Rd.

Probabilities and distributions.
Y a random variable with values y ∈ Y.

p(Y = y) probability that Y take the specific value y.
p(y | x) short for p(Y = y | X = x) when unambiguous.
Ep(Y)[Y] := ∑︁

y∈Y yp(y), the expected value of Y.
Differentiation.

∂if the partial derivative of f : Rd1 × . . .×Rdn → Rd w.r.t.
the ith argument. (∂if)(x1, . . . , xn) is a linear Rd → Rdi

map (the pullback of f), identified with a di× d matrix:
the Jacobian transpose. For single-argument f : Rd1 →
Rd we omit the subscript, and if Jx is the Jacobian of f

at x then ∂f(x)(v) = J⊤
x v. This transposed convention

is more convenient for backpropagation.
∂θ(expr .) interprets the (possibly complicated) expression as a

single-argument function of θ and applies ∂.

3
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Convex sets.
Rd

+ := {α ∈ Rd; αi ≥ 0 for all 1 ≤ i ≤ d}, the non-negative
orthant;

△d := {α ∈ Rd
+; ∑︁

i αi = 1}, the simplex with d bins, con-
taining all probability distributions over d choices;

conv(Z) the convex hull of Z, i.e., the smallest convex set con-
taining Z.

Full text available at: http://dx.doi.org/10.1561/2000000134



1
Introduction

1.1 Motivation

Machine learning (ML) is often employed to build predictive models
for analyzing rich data, such as images, text, or sound. Most such data
is governed by underlying structured representations, such as segmen-
tations, hierarchy, or graph structure. For example, natural language
sentences can be analyzed in terms of their dependency structure, yield-
ing an arborescence of directed grammatical relationships between
words (Figure 1.1).

Sleep the clock around Sleep the clock around

Figure 1.1: Some example structures. Left: linear assignment (matching); center:
dependency parse tree (directed arborescence); right: binary constituency parse tree
(binary tree).

5
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6 Introduction

It is common for practical ML systems to be structured as pipelines,
including off-the-shelf components (analyzers) that produce structured
representations of the input, used as features in subsequent steps of
the pipeline. On the one hand, such architectures require availability
of these analyzers (or of the data to train them). Since the analyzer
may not be built with the downstream goal in mind, a disadvantage
of pipelines is that they are prone to error propagation. On the other
hand, they are transparent: the predicted structures can be directly
inspected and used to interpret downstream predictions. In contrast,
deep neural networks rival and even outperform pipelines by learning
dense, continuous representations of the data, solely driven by the
downstream objective.

However, the popular success of end-to-end deep learning hides some
fundamental challenges. For example, large language models are still
based on a pipeline system in which tokenization is an independent
pre-processing step. Another known limitation is the structural general-
ization problem [222]: sequential architectures (both recurrent neural
networks and self-attentive networks) have difficulties to generalize to
unseen (recursive) combinations of known parts. It is possible to tackle
this problem by inducing latent structured representations [22, 124].
Similar limitations are known for length generalization [4, 229]. Another
important research direction in the natural language processing com-
munity is intermediate plan-based representations for text generation
[125, 151], where latent structures may play an important role, for
example, when learning with limited information [221]. Beside natural
language processing, latent structure inference is also a key topic in com-
puter vision for unsupervised segmentation and learning object-centric
representations [55, 69, 129, 196].

This text is about neural network models that induce discrete
latent structure, combining the strengths of both end-to-end and
pipeline systems. In the following, we do not assume a specific down-
stream application in natural language processing nor computer vision.
Our presentation follows an abstract framework that allows to focus
on technical aspects related to end-to-end learning with deep neural
networks.

Full text available at: http://dx.doi.org/10.1561/2000000134



1.2. Supervised Learning 7

1.2 Supervised Learning

We begin by establishing the common setup of predictive machine
learning. A prediction function is a map associating to input x ∈ X an
output y ∈ Y. Prediction functions usually rely on a scoring function

M(x, y; θ), (1.1)

which returns the score, or preference, for some candidate y ∈ Y , given
an input x. In our setting, M is a parametric function with learnable
parameters θ. For simple classification problems, M could be a feed-
forward network with x as input, and a |Y|-dimensional output, such
that the yth position of the output is M(x, y; θ). Our notation allows
for more involved setting like predicting structured objects (for examples
graphs, see Section 2). To make predictions, we search for the output
of maximum weight

ŷ(x; θ) := arg max
y′∈Y

M(x, y′; θ) . (1.2)

In many cases, we are also interested in a distribution over outputs.
Assuming Y is a finite set, a common choice is to rely on a Boltzmann-
Gibbs distribution, also called softmax [25], defined as follows:

p(y | x) = exp M(x, y; θ)∑︁
y′∈Y M(x, y′; θ) for y ∈ Y ,

∝ exp M(x, y; θ) .

Note that the most probable output under distribution p(·|x) is equal
to ŷ(x; θ).

In the supervised learning scenario, we assume access to a dataset
D containing samples of input/output pairs (x, y) ∈ D. Parameters θ

are fixed to minimize the empirical risk

Lavg(θ) := 1
|D|

∑︂
(x,y)∈D

L(y, x; θ) , (1.3)

where L is a loss function [208]. For practical reasons, the loss function
used for classification problems is usually not the targeted evaluation
function (for example the 0-1 loss which is equal to 1 if and only if

Full text available at: http://dx.doi.org/10.1561/2000000134



8 Introduction

the model predicts the expected output) but a surrogate loss that is
amenable for gradient-based optimization. Statistical consistency of
such surrogates has been widely studied [168, 179, 217]. A common
choice is the cross-entropy loss,

L(x, y; θ) = −M(x, y; θ) + log
∑︂

y′∈Y
exp M(x, y′; θ) , (1.4)

which is simply the model negative log-probability of gold output under
a Boltzmann-Gibbs distribution. Then, Equation 1.3 can be interpreted
as maximum likelihood estimation of θ. Non-probabilistic losses like the
hinge loss or the perceptron loss fit the framework as well.

From a computational point of view, both training and prediction
under such a model eventually requires evaluating or optimizing a
function of the form

g(x, y; θ),
which may refer to either the scoring model M or the loss L. Therefore,
we shall use the generic functional notation g(x, y; θ) in the following.
In this text, we are interested in computing (or approximating) partial
derivatives with respect to all values in θ via the backpropagation
algorithm for automatic differentiation [123].

Gradient-based learning. The gradient method for minimizing a dif-
ferentiable function F : Rd → R iterates

θ(t+1) ← θ(t) + η(t)(∂F )(θ(t)) , (1.5)

where η(t) is a step size schedule, and ∂F (·) is identified with its column-
vector Jacobian. This method converges to a stationary point of F

under some assumptions on the step size [16, §1.2.2]. Often in machine
learning evaluating F is slow and memory-intensive, as it depends on
the entire training data; this is the case in Equation 1.3. In such cases,
the stochastic gradient [SG, 182] method may be preferred. The SG
method replaces the gradient with a stochastic direction G such that

E[G] = ∂F (θ(t)) , (1.6)

followed by updating

θ(t+1) ← θ(t) + η(t)G . (1.7)

Full text available at: http://dx.doi.org/10.1561/2000000134



1.3. Latent Representations 9

This method also converges to a stationary point under mild assumptions
[17] : mainly, requiring smooth F , square-summable decreasing step sizes,
and a linear bound on the variance of G w.r.t. the norm of the gradient
of F . If F takes the form of an average, i.e., F (θ) = 1

N

∑︁N
i=1 Fi(θ) (for

instance Equation 1.3), then G may be chosen as a single sample Fi(θ)
where i is drawn uniformly from {1, . . . , N}, or a mini-batch estimator.
The gradient and stochastic gradient methods can be extended to a
broader family using acceleration, momentum, and adaptivity [43, 99,
130, 154]. Algorithms in this family are the de facto choice in deep
learning at the time of writing. For this reason, our work focuses on
compatibility with gradient-based learning.

Backpropagation and the Chain Rule. Given a composition of func-
tions u : Rm → Rn, v : Rn → Rp, w : Rp → Rq, and their composition
(w ◦ v ◦ u)(θ) := w(v(u(θ))) we have:

∂(w ◦ v ◦ u)(θ) = (∂u)(θ) ◦ (∂v)(u(θ)) ◦ (∂w)(v(u(θ))) . (1.8)

The derivatives are applied in the opposite order compared to the com-
putation. This is known as backpropagation or reverse-mode automatic
differentiation [70] and is popular in deep learning, where models are
built using such compositions, with the final layer w having a scalar
output (loss). The forward pass computes and stores the intermediate
values that appear in w ◦ v ◦ u, and the backward pass invokes the
∂ operator to propagate gradients from the output to the input. In
the most popular software frameworks today [e.g., 175], elementary
building blocks are provided as composable modules, with implementa-
tions providing forward calls f(θ) and backward calls (vector-Jacobian
products) ∂f(θ)(z), and the automatic differentiation engine handles
the composition.

1.3 Latent Representations

Our main motivation is to go beyond direct mappings x→ y, toward
machine learning models with latent representations. In this text, we
take a rather inclusive view of what constitutes a latent representation
[12]. We call a latent representation z ∈ Z an object designed to capture

Full text available at: http://dx.doi.org/10.1561/2000000134



10 Introduction

some relevant property of a data point x ∈ X , which can be inferred
based on x, but is typically unobserved. In particular, we cover but do
not require probabilistic modeling of z [19]. On the other hand, we are
explicitly interested in discrete and structured latent representations.

Latent representations are often designed with downstream tasks in
mind: we may look for a model of y ∈ Y that has access not only to x

but also to the representation z:

g(x, y, z; θg) . (downstream model) (1.9)

Remark. During prediction from a pretrained model, we may think of
g as a classifier returning the score of class y. For training the model,
however, we may want to think of g as some loss function on top of
the same classifier. Mathematically, this distinction is irrelevant for the
purpose of our text, which is the modelling of z, so we henceforth use
g(x, y, z; θg) to denote either. Practitioners should exercise caution.

A downstream model as in Equation 1.9 is not directly usable, since
z is unknown both at training and at test time. Therefore, the problem
we are concerned with in this text is jointly learning to predict z from
x using an encoder f : X × Z → R:

f(x, z; θf ), (encoder model) (1.10)

assigning higher values to better-fitting choices of z to the given x.
The key challenge of learning latent variable models is that we

cannot learn θf using standard supervised approaches, since z is not
observed. This text is about how to learn a good encoder model f jointly
with the downstream model only from pairs (x, y). During training, the
downstream model gets direct supervision, but the encoder model only
gets a form of distant supervision, its only learning signal is coming in
the form of gradients propagated through the downstream model. Joint
learning with latent structure in this scenario is the main topic of our
text. The next three paragraphs outline the main ways to train end-to-
end models in such encoders; the main part of our text (Sections 3 to 5)
later goes into detail.

Pretraining and pipelines. A first strategy is to sidestep the issue alto-
gether and obtain supervision. This poses no challenge mathematically,

Full text available at: http://dx.doi.org/10.1561/2000000134



1.3. Latent Representations 11

and is not studied further in this text, but serves as a motivating base
case: If in fact some training pairs (x, z) are available, it is promising
to first train a model f(x, z; θf ) and then deploy a two-step pipeline:

1. predict ẑ = arg maxz′∈Z f(x, z′; θf ),

2. use downstream model g(x, y, ẑ; θg).

The parameters of the downstream model θg can now be trained in
a fully-supervised fashion, since ẑ is a known fixed input. This corre-
sponds to the time-tested approach of using off-the-shelf analysis models
(parsers, object detection, entity recognizers, etc.) as a pre-processing
step. This approach is vulnerable to two main sources of error: domain
shift, due to the fact that θf is likely trained on samples coming from
a different distribution than the one D is drawn from, and error prop-
agation, due to the lack of mechanism for improving θf if the model
makes errors. The latent representation treatment we propose mitigates
both these concerns by allowing the fine-tuning of θf with signal from
downstream, see [167] for examples.

Deterministic latent representations. A straightforward idea for end-
to-end learning would be to characterize the mapping from x to a
promising candidate ẑ as a function,

ẑ(x; θf ),

which implicitly defined by the encoder f . (For example, ẑ(x) =
arg maxz∈Z f(x, z).) Then, an end-to-end model emerges as a com-
position of functions:

g (x, y, ẑ(x; θf ); θg) . (1.11)

This resembles the pipeline approach, but now we aim to train θf and
θg jointly using gradient methods. Depending on how ẑ is constructed,
we may have an end-to-end differentiable relaxed model (Section 3) or a
discrete model optimized with surrogate gradient heuristics (Section 4).
Both cases will require further assumptions compared to the pipeline
approach with frozen θf , but require no supervision on z.

Full text available at: http://dx.doi.org/10.1561/2000000134



12 Introduction

Probabilistic latent variables. Alternatively, we can gain expressive-
ness by modelling latent representations as random variables whose
distribution is induced by the encoder f . Notationally, we define a ran-
dom variable Z taking values z ∈ Z, with distribution p(Z = z | x; θf )
parametrized in some way using f (e.g., p(z | x; θf ) ∝ exp f(x, z; θf ).)
Then, the end-to-end model will consider not a single value of z but the
expectation over all possible values z ∈ Z:

ḡ(x, y; θf , θg) :=EZ [g(x, y, Z; θg)]
=

∑︂
z∈Z

g(x, y, z; θg)p(z | x; θf ). (1.12)

The expected loss depends on both θf and θg, and so provides a learning
signal to both the encoder and the downstream model. In particular,
some choices of g can correspond to a probabilistic treatment of Y
as well, making this strategy interesting for generative modelling. We
study methods for probabilistic latent variables in Section 5. Broadly
speaking, these methods tend to require fewer assumptions compared
to deterministic ones, but come at a higher computational cost.

Remark. What sets apart a latent representation from an arbitrary
“hidden layer” is that the former is designed to capture a specific aspect
of x, relevant to the modeler. In this text, we focus on discrete z with
structural constraints that can guide it to take a certain form of interest
(e.g., alignments, syntax.) This is often (but not necessarily) reflected in
the more transparent, informed way in which the way the downstream
model g accesses z.

1.4 Further History and Scope

Latent variable models have a long history in ML, especially for un-
supervised learning. In this section, we briefly survey this history and
clarify the scope of this work.

Shallow models. Many popular models fall under this umbrella, typ-
ically with linear f and g. Factor analysis (FA) is an unsupervised
representation learning model (Y = Rd, X = ∅) with continuous latent
variables (Z = Rk) defined by [6, §21.1]

Full text available at: http://dx.doi.org/10.1561/2000000134



1.4. Further History and Scope 13

f(y, z; θ) = −1
2(y − F z − µ)⊤Σ−1(y − F z − µ) , (1.13)

where the covariance Σ is a diagonal matrix. If Σ is further constrained
to be isotropic, FA reduces to probabilistic PCA. The discrete counter-
part is the Gaussian mixture model (GMM) where Z = {1, 2, . . . , k} is
a discrete variable, and we have

f(y, z; θ) = −1
2(y − µz)⊤Σ−1

z (y − µz) . (1.14)

For supervised regression of continuous y given x, the counterpart of
FA is the linear mixed effect model

f(y, z, x; θ) = −1
2(y − F z −W x)⊤Σ−1(y − F z −W x) . (1.15)

and the counterpart of the GMM is the mixture of linear regressions

f(y, z, x; θ) = −1
2(y −W zx)⊤Σ−1

z (y −W zx) , (1.16)

corresponding to learning a separate linear regression model for each clus-
ter component. All of the above can be fit by expectation-maximization
algorithms, with the notable exception of probabilistic PCA, for which
the exact solution can be found from a single SVD of the design matrix.
Extensions to categorical (i.e., classification) models of Y are mostly
studied in the context of mixed effects models within the framework of
hierarchical generalized linear models.

Unsupervised linguistic structure discovery. An important line of
work in natural language processing is the use of latent structures for
language modeling (i.e., learning a distribution over sentences) in a
Bayesian setting, that is by defining a Bayesian network whose obser-
vations are sentences and latent variables include structure modeling.
Then, parameter inference from raw texts can provide structured repre-
sentation of texts. Although useful for unsupervised and semi-supervised
structured prediction, it is important to bear in mind that part of this
line of work is also motivated by the goal of automatically discovering
structures that may be useful for linguistic research.

Segmentation models are often used for discovering word boundaries
[24, 66, 210], especially in languages that do not have explicit boundary
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markers and speech processing for (non-written) low resource languages
[226]. Unsupervised tagging models learn to group similar words in
the same class [67]. They are mainly based on hidden Markov models,
possibly with an infinite number of classes [10]. Syntactic models aim
to represent more complex relations between words in a sentence than
as a sequence of words. We often differentiate two types of syntactic
structures:

• Such models are mainly based on latent probabilistic context-free
grammars [32, 88, 117]. Phrase structures or constituency trees
that model syntax by grouping words in hierarchical spans.

• Dependency trees that model syntax using bilexical dependencies
between words. The main approach is called dependency model
with valence [104].

Beyond the sentence level, previous work considered latent modeling of
discourse structures [29] and topic segmentation, which aims to model
topical changes in a document [50, 53].

Note that these works are not covered in this manuscript. Cohen
[34] covers all basic techniques in the purely probabilistic setting (e.g.,
parameter inference techniques like Markov chain Monte Carlo and
variational inference) including the use of priors to bias models toward
linguistically plausible structures. These approaches exploit probability
distribution structures and their (simple) parametrization, which is
not possible with the neural network setting that we cover in this
manuscript. We instead focus on techniques for learning neural models
in end-to-end approaches with limited assumptions, including but not
limited to techniques described by Kim et al. [98].

Deep models. Sigmoid belief networks [SBN, 152] and Boltzmann
machines [BM, 1] are popular generative neural networks with discrete
latent variables that have a long history in machine learning. They are
graphical models (Bayesian network in the case of SBN, factor graph in
the case of BM) that use implicit parametrization using a small neural
network instead of explicit contingency tables. SBNs can naturally de-
scribe deep architectures with several layers of latent variables whereas
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RBMs can be stacked to achieve a similar goal [80, 191]. Straightforward
approaches to fit these models are based on Markov chain Monte Carlo
estimation of the gradient [79, 80, 152], which can be slow in practice.
Generalization of the expectation-maximization [EM, 46] algorithm
using mean field theory approximation [164] allows fast training of
these models [170, 192]. A downside of EM is that it relies on strong
assumption on factors’ parametrization (i.e., simple linear projection),
and therefore does not extend to complex neural parametrization. This
contrasts with methods studied in this manuscript that focus on tech-
niques for learning discrete latent variables that (1) can learn more
complex latent structures than binary variables and (2) are compatible
with the modern end-to-end learning framework. Moreover, some of the
techniques we described do not have a probabilistic interpretation of
latent variables.

Nonlinear models parametrized by neural networks have proven
themselves effective for generative modeling. Prominent among them
is the variational auto-encoder [VAE, 100, 181], which is a Bayesian
network where conditional distributions are parametrized by deep neural
networks. This means that variational methods used for SBN are not
applicable anymore. Key to the success of the VAE is the “evidence
lower bound” (ELBO) objective

L(x; θg) = − logEp(Z) [p(x | Z; θg)]
≤ KL[p(Z | x; θf ), p(Z)]− Ep(Z|x;θf )[log p(x | Z; θg)]⏞ ⏟⏟ ⏞

reconstruction term:= L̄(x, θg, θf ) ,

(1.17)

where KL denotes the Kullback–Leibler divergence and p(Z | x; θf ) cor-
responds to the approximate posterior. The conditional and approximate
posterior distributions are fully specified by the Gibbs distributions

p(x | z; θg) ∝ exp f(x; z, θg) , p(z | x; θf ) ∝ exp g(z; x, θf ) .

As such, the reconstruction term of the ELBO is similar to Equation 1.12.
In our framework, we may take y = x to represent an autoencoding

task, and set, for a Gaussian latent and Gaussian output VAE,

f(z; x, θf ) =
(︁
z − µz(x; θf )

)︁⊤Σ−1
z (x; θf )

(︁
z − µz(x; θf )

)︁
,

g(x; z; θg) =
(︁
x− µx(z; θg)

)︁⊤Σ−1
x (z; θg)

(︁
x− µx(z; θg)

)︁
,

(1.18)

Full text available at: http://dx.doi.org/10.1561/2000000134



16 Introduction

i.e., a neural network is used to generate the parameters of an obser-
vation distribution and of an approximate posterior; this strategy is
known as amortization.

In this text, we focus on deep models with discrete, structured
latent variables. This differs from works that extend the original VAE
with richer priors or structured inference networks [89, 122, 166, 228,
amongst others]. For a tutorial on latent variable learning with a focus
on probabilistic models for language, we refer the reader to the thorough
tutorial by Kim et al. [98].

1.5 Roadmap

Before getting into the matter of discrete latent structure, in Section 2
we revisit the tools of the trade of (supervised) structure prediction;
they will prove essential for the latent case as well. Sections 3 to 5 form
the main part of our text, covering three different directions to take
for learning deep networks with discrete latent structure. In Section 3
we explore a deterministic approach to learning latent structure, using
a fundamental relaxation strategy, at the cost of partially abandoning
discreteness. Then, in Section 4 we discuss a range of methods that
regain discreteness by introducing a gap between the learning objective
and the desired model. Finally, in Section 5 we study strategies for
approximately minimizing the true stochastic objective, allowing for the
most flexible latent structure models, at a controllable computational
cost. Section 6 summarizes the field and provides a table of various
trade-offs and applicability of the discussed methods, along with pointers
to prominent libraries.
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