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Abstract

Recent advances in wired and wireless technology lead to the emer-
gence of large-scale networks such as Internet, wireless mobile ad-hoc
networks, swarm robotics, smart-grid, and smart-sensor networks. The
advances gave rise to new applications in networks including decentral-
ized resource allocation in multi-agent systems, decentralized control
of multi-agent systems, collaborative decision making, decentralized
learning and estimation, and decentralized in-network signal process-
ing. The advances also gave birth to new large cyber-physical systems
such as sensor and social networks. These network systems are typi-
cally spatially distributed over a large area and may consists of hun-
dreds of agents in smart-sensor networks to millions of agents in social
networks. As such, they do not possess a central coordinator or a cen-
tral point for access to the complete system information. This lack of
central entity makes the traditional (centralized) optimization and con-
trol techniques inapplicable, thus necessitating the development of new
distributed computational models and algorithms to support efficient
operations over such networks. This tutorial provides an overview of
the convergence rate of distributed algorithms for coordination and its
relevance to optimization in a system of autonomous agents embedded
in a communication network, where each agent is aware of (and can
communicate with) its local neighbors only. The focus is on distributed
averaging dynamics for consensus problems and its role in consensus-
based gradient methods for convex optimization problems, where the
network objective function is separable across the constituent agents.

Angelia Nedić. Convergence Rate of Distributed Averaging Dynamics and
Optimization in Networks. Foundations and TrendsR© in Systems and Control,
vol. 2, no. 1, pp. 1–100, 2015.
DOI: 10.1561/2600000004.
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1
Introduction

Recent technological advances resulted in various devices with com-
putational and communication capabilities, such as a wide variety of
sensors, robots, computers, laptops, cell-phones, iPads, etc. In turn,
various networks of such interconnected devices have emerged giving
birth to a wide range of physical and cyber systems. Some of these
systems have been carefully engineered, while others have grown spon-
taneously on their own (such as Internet and many of the cyber-based
social networks and data-base networks including Facebook, Twitter,
Google, and YouTube). Due to the size of such networks, and often,
due to the proprietary regulations, the complete network information
is distributed among the entities that comprise the network and there
is no central entity that controls or has access to the whole network in-
formation. In some networks, such as surveillance networks, centralized
information architecture is often not desirable as it makes the system
inoperable when the central entity fails. Instead, it is desirable to de-
sign the system with distributed information architecture in order to
enhance the system robustness to a failure. Some of today’s networks
are mobile such as cell-phone networks or robotic networks. As such,
they are characterized with a dynamic spatial-temporal connectivity

2
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3

structure. Thus, inherently, the algorithms for optimization and con-
trol of these networks have to be distributed, robust, and adaptive to
the time-varying connectivity structure of the network.

Over the past decade, a substantial research effort has been spent
in addressing the challenges imposed by such distributed and time-
varying networks. Most relevant to this tutorial is the research on so
called consensus (or agreement) problem studied within the control
systems community. This problem deals with a quest of determining
a decentralized control law that is compatible with the local agent
knowledge of the network and that ensures the agent agreement on
quantity (or a collection of quantities) asymptotically in time. The
control laws solving the consensus problems, which are often referred
to as consensus protocols, are at the core of the distributed algorithms
that are discussed in this tutorial. In these algorithms, the consensus
law is used as an underlying mechanism for diffusing the information
from one agent to every other agent in the network.

Distributed computational models have a significant potential for
affect several applications including distributed detection and estima-
tion, machine learning, statistical inference, swarm intelligence, social
networks, recommendation systems, computer systems, etc. Such com-
putational models are relevant to any application where an aggregate
behavior of a distributed networked agent system is to be monitored,
estimated, or managed in order to achieve some system wide objective.
These models are also useful where some aggregate system quantity is
to be evaluated or estimated under restricted information access such
as the absence of central entity, privacy-preserving restrictions, and
partial and/or noisy observations of only a part of the network.

The goal of this tutorial to provide a connection between continu-
ous optimization techniques from operations research and distributed
averaging schemes to illustrate how standard optimization techniques
could be used within multi-agent setting for distributed optimization
over networks in a general setting. The main focus is on first-order
optimization algorithms due to their low overhead computational cost
and good stability properties with respect to noisy gradient evalua-
tions, among others. In order to focus more on the interplay of the
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4 Introduction

optimization techniques and distributed averaging schemes, the sur-
vey is focused on algorithms that do not use any knowledge about the
global network properties such as, for example, the number of agents,
the graph connectivity structure or any parameters characterizing con-
nectivity (e.g., the second smallest eigenvalue of the associated graph
Laplacian or a gap value of the associated Markov chain transition ma-
trix). The algorithms that truly obey local connectivity structure are
considered only, so the agents can only communicate with their local
(one-hop) neighbors (i.e., multi-hop communications are not allowed).
Furthermore, due to the inherent nature of iterative optimization algo-
rithms, only a discrete-time setting is considered in this tutorial, while
both static and time-varying graphs are addressed.

The basic discrete-time setting that we consider here corresponds
to a so called synchronous update model, where all agents update at
the same instances of time. There are many practical issues that arise
for this model including difficulties associated with maintaining time-
synchronization in face of computational and communication delays,
reaching deadlock situations requiring re-initializations of the update
process due to node/link failures. As our focus is on the interplay of two
coupled processes (i.e., averaging dynamic and optimization), we are
not going to spend significant time in addressing synchronicity issues.
These issues can be resolved by using randomization techniques, as
often done in communication networks by implementing a gossip- or
broadcast-based updates (see, for example, papers by Boyd et al. [2005],
Aysal et al. [2008], Nedić [2011b]), which are discussed to some extent
in Chapter 5.

One of the main criticism of the distributed optimization algorithms
that use weighted averaging protocols for information diffusion is that
their convergence to an optimal solution of the problem of interest
requires a construction of doubly stochastic matrices. This construction
should be relying on local agent interactions and, moreover, it needs to
be done at every step if the networks structure is time-varying. Simple
and efficient such constructions exist for networks with bi-directional
communication links even if the connectivity structure of the network is
changing with time. However, such constructions are computationally
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5

prohibitive for networks with directed links, as shown by Gharesifard
and Cortés [2012]. Some new algorithms have been recently developed
that do not require doubly stochastic weights, as discussed in Chapter 5.

Another distributed algorithm for solving optimization problems in
networks that has recently drawn significant attention is a distributed
variant of the ADMM method (see survey by Boyd et al. [2010] for
an elegant exposure of the ADMM). This algorithm is efficient for
some structured problems since it is a dual-ascent algorithm. The major
drawback of the current developments of distributed ADMM method
is that it appears that the ADMM is limited to static bi-directional
networks. It is a question whether the ADMM can be implemented in
directed and/or time-varying networks. If it can be done, what is its
efficiency? The author of this tutorial is unaware of any such work.

The tutorial is structured as follows. In Chapter 2 we provide an
overview of consensus and distributed optimization problems. In Chap-
ter 3, we focus on distributed weighted-averaging algorithms for solving
the unconstrained consensus problem. Distributed algorithms for con-
strained consensus are discussed in Chapter 4. Basic distributed sub-
gradient methods for solving optimization problems over networks is
discussed in Chapter 5, while some conclusions are given in Chapter 6.
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