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ABSTRACT
Cyber-Physical Systems (CPS), the amalgamation of sophis-
ticated sensing, communication, and computing technolo-
gies, applied to physical spaces, have become intrinsically
linked to society’s critical infrastructures. Indeed, CPS find
applications in energy delivery systems, intelligent trans-
portation, smart buildings and health care. Within these
systems, technological advances have enabled mankind to
improve their ability to both accurately monitor large scale
systems and precisely manipulate their behavior in order
to achieve complex local and global objectives. Nonetheless,
the opportunities created by CPS are met with significant
burdens and challenges, threatening the resilience of these
systems to both benign failures and malicious attacks.
In this monograph, we provide a comprehensive survey of
intelligent tools for analysis and design that take fundamen-
tal steps towards achieving resilient operation in CPS. Here,
we investigate the challenges of achieving reliable control
and estimation over networks, particularly in the face of
uncertainty and resource constraints. Additionally, we ex-
amine the threat of bad actors, formulating realistic models
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to characterize adversaries as well as systematic tools to
detect and respond to attacks. Finally, we include a brief
introduction to the problem of privacy in CPS, providing
both measures to describe and techniques to preserve the
confidentiality of sensitive information.
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1
Introduction

Cyber-physical systems (CPS) are computationally capable systems
that directly interact with a physical environment and allow people
to intelligently and efficiently manage physical processes. CPS are the
foundation of key infrastructures such as the smart grid, water distri-
bution systems, and waste management. Their role in transportation,
smart buildings, and medical technologies are also burgeoning as new
application areas are discovered. We refer the reader to Lee (2008),
Rajkumar et al. (2010), Poovendran (2010), Kim and Kumar (2012),
and Johansson et al. (2014) for additional information on the reach of
CPS in today’s applications.

CPS are enabled by technologies which perform sensing, computing,
and communication. In particular, CPS leverage sensing technologies
to gather relevant data about physical systems. In transportation this
could for instance be the position and velocity of vehicles. Alternatively,
in medical technologies, this may be the heart rate or blood pressure of
a patient. Combined with a mathematical model of a system’s physical
dynamics, sensing can enable accurate state estimation and predic-
tion. This in turn allows the monitoring of physical processes. Sensing
technologies have significantly improved. We can sample systems more

3
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4 Introduction

frequently and with less delay. Additionally, sensing devices are in many
cases cheap and economically viable. The availability of cheap and
accurate sensing allows the designer to better understand physical pro-
cesses by obtaining larger numbers of spatial and temporal samples. An
example in this regard is the increased presence of phasor measurement
units (PMUs) in the power grid (Abur and Exposito, 2004). We note
that modern PMU technology has significantly changed the operation of
the electricity grid. In particular, the high sampling rates and accuracy
of voltage phasor measurements have changed state estimation from a
static problem to a dynamic problem.

In addition to monitoring physical processes, it is typically desirable
to physically manipulate a system to achieve some objective. In a
waste management system, a relevant task would be to treat and
purify the wastewater. Alternatively, in smart buildings we wish to
regulate the environment (i.e. using HVAC systems) in an energy efficient
manner. Cyber-physical systems allow us in many cases to automate this
process using computing technologies. The intelligent control of physical
systems is generally a time sensitive task. Thus, a key to incorporating
CPS is improvement in the processing speed of our computers. Today,
programmable logic controllers (PLCs) and microcontrollers are able
to quickly process sensory information and automatically implement
an intelligent algorithm for control. The speed at which this can be
done has allowed humans to explore new frontiers. As an example, the
ability to safely incorporate safe driving cars to transportation systems
is in part a result of the vast computational abilities of the embedded
systems in today’s vehicles.

Finally, a sophisticated communication infrastructure allows oper-
ators to control cyber-physical systems remotely while also enabling
them to reliably control large scale systems. Many systems have transi-
tioned from wired to wireless communication technologies, which allows
for ease of maintenance and installation, lower costs, as well as au-
tomation in geographically disparate systems. As an example, wireless
communication technologies play a major role in supervisory control
and data acquisition (SCADA) systems, see, e.g., Cardenas et al. (2009).
A SCADA system is a hierarchical system, which enables the supervi-
sory management of a control system. The lowest layer consists of field
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devices such as sensors and actuators, which directly interact with the
physical environment. Remote terminal units (RTUs) and PLCs are
often used to implement autonomous local control. These units typically
interface with both field devices such as pumps, valves, and switches
as well as a centralized supervisory control layer which monitors the
system. SCADA systems are regularly seen in the smart grid as well
as water distribution and waste management systems. Communication
technologies allows RTUs to interface with human operators at SCADA
systems in real time. This allows operators to make high level control
decisions remotely in a timely fashion. This capability is especially
important when monitoring at the supervisory layer raises an alarm,
which requires immediate operator attention. Communication technolo-
gies not only allow devices and components to interface with central
operators, but also each other. Local communication among field devices
can enable distributed control. Here, autonomous controllers/agents
share information and act to achieve a larger task. Distributed control
can be used to achieve formations in aerial vehicles and platoons in
ground transport.

Unexpected challenges arise when accounting for the tight inter-
action of computing elements with the physical plant in CPS. Unlike
normal IT infrastructures, the operations of CPS are often safety critical
(Lee, 2008; Rajkumar et al., 2010; Giani et al., 2008). For example,
malfunctioning teleoperated robots in surgery may harm or possibly
kill patients. Likewise, blackouts on the electricity grid may disrupt
vital services. Thus, operators are obligated to ensure these systems
perform resiliently. Complicating the matter is the time sensitive nature
of CPS. To ensure that the dynamics of a physical process are well
regulated, CPS must be monitored and acted upon frequently. In this
monograph, we aspire to identify significant challenges, which hinder the
successful operation of cyber-physical systems. To this end, we consider
several proposed tools and methodologies aimed towards addressing
these fundamental problems.

First, in section 2 we consider the problem of modeling CPS.In
control systems, an accurate numerical representation of a plant is often
a crucial component to developing intelligent algorithms for automation,
with provable mathematical properties. These models can be developed
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6 Introduction

from first principles. For instance, Newton’s laws can be used to de-
scribe the dynamics of vehicles while Maxwell’s equations can be used
to derive dynamical equations associated with mathematical genera-
tors. Alternatively, we can utilize big data and in particular system
identification/machine learning techniques to obtain effective models of
our systems. We briefly discuss system identification in subsection 2.1.
Cyber-physical systems pose a particular challenge due to the inherent
diversity of the systems being considered (Derler et al., 2012). They
not only contain a physical plant, which needs to be modeled like a
traditional control system, but also have heterogeneous hardware and
software systems which enable computing and data transfer. The chal-
lenges of modeling CPS are detailed in subsection 2.2. We then look
at specific classes of models. In addition to examining traditional state
space, LTI, and stochastic systems in subsection 2.3, we will address
modeling CPS through a brief discussion of hybrid systems in subsection
2.4.

Even with a precise and accurate model of CPS, operators must
account for sources of uncertainty and how they impact subsequent
analysis and design. As an example, in section 3 we will study net-
worked control systems, focusing on achieving feedback control over
stochastic, resource constrained, communication networks. While tran-
sitioning from wired to wireless communication technologies can reduce
costs and improve efficiency, reliability may be sacrificed. Packets con-
taining sensory or control data may be delayed or dropped over the
communication network. In a cyber-physical system, the availability of
real-time data is often essential for correct and reliable operation. Sen-
sor packet drops leads to inadequate monitoring and feedback control.
Input packet drops prevent corrective commands from being delivered
to the plant. As communication failures can significantly affect the
functionality of CPS, operators must carefully model and account for
their presence through robust analysis and design. We will discuss the
design of robust feedback controllers in CPS with sensor and input
drops respectively in subsection 3.1 and 3.2. In these cases, we will
additionally arrive at fundamental conditions on network reliability,
which allow the aforementioned algorithms to successfully stabilize CPS.
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Improvements in automation and efficiency are often cited as benefits
of incorporating cyber-physical systems to our long standing infrastruc-
tures. Even then, operators must be careful to ensure the economic
viability of these tasks. A traditional goal is to maximize the perfor-
mance of a system subject to a constraint on available resources. For
example, in subsection 3.3, we will briefly investigate resource con-
straints as it applies to sensors. Sensors in CPS are generally small
heterogeneous devices, which are subject to power constraints, band-
width constraints, and topology constraints. We will consider problems
of sensor scheduling and event triggered estimation with the objective
of maximizing system performance while meeting these constraints. In
addition to event triggered estimation, in subsection 3.4, we will explore
the dual problem of event based control.

At the heart of this monograph, in section 4, we will consider the
security of cyber-physical systems. While it is important to achieve
resilience to systematic and benign failures, which for instance can
occur due to operator error, normal wear and tear, or environmental
conditions, the bulk of our attention will be placed on malicious ad-
versarial scenarios. As cyber-physical systems are intrinsically linked
to our critical infrastructures, there exist ample motivation to target
them. Attacks on transportation CPS can lead to car accidents while
attacks on CPS associated with water treatment and management could
damage the environment or contaminate the water supply. Additionally,
attacks on the grid can disrupt vital services due to blackouts and
attacks on medical CPS can cause injury or even death to patients.

Next generation cyber-physical systems also create opportunities for
adversaries. Introducing wireless technologies into control systems allow
remote attackers to perform man in the middle attacks. Moreover, the
incorporation of heterogeneous subsystems and components provides
numerous attack surfaces for adversaries. The internet of things (IoT),
creates additional advantages for an attacker. CPS which leverage the
IoT utilize existing (and possibly insecure) networking infrastructures,
particularly the internet, to enable communication and remote pro-
cessing (for instance through cloud computing). Finally, there exists
precedence for attacks. Perhaps, the best known attack on a cyber-
physical system is the Stuxnet attack, which was a malicious worm
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8 Introduction

which targeted uranium enrichment facilities in Iran and was able to
disable approximately one thousand centrifuges (Langner, 2011). In
subsection 4.1, we go into deeper detail regarding the motivation for
studying cyber-physical system security.

Next, in subsection 4.2, we will discuss common adversarial models
in CPS, describing potential attacker’s in terms of their knowledge,
capabilities, and potential strategies. Here, we pay special attention to
stealthy attack strategies, which allow an attacker to act on a system
without being recognized, thus eliminating reactive defensive counter-
measures. After, we describe potential mechanisms for achieving security
in CPS. The ultimate goal is for the system to remain operational, even
in the presence of an attacker. We argue the first step of this process
is detection. As an example, in subsection 4.3, we will evaluate how
sensor and link placement can be used structurally to ensure properties
of attack detectability and identifiability. Additionally, in subsection
4.4, we will introduce tools for active detection, which enable operators
to recognize and isolate classes of harmful and stealthy attacks, by
intelligently perturbing the system.

Beyond detection, we wish to recover from and resiliently respond to
attacks on our control system so that we can achieve graceful degradation
of system performance under attack. We remark that directly designing
resilient control laws to counter attacks is application dependent. Instead,
we argue that a necessary step to achieve desirable system performance
in the presence of an attacker is to perform resilient state estimation,
the subject of subsection 4.5. Indeed, resilient state estimation allows a
remote defender to maintain understanding of the system state under
attack, even when a subset of inputs and outputs are compromised. This
ability to perform resilient estimation in turn enables resilient control.
Specifically, a defender can incorporate reliable state information when
designing appropriate countermeasures (including a resilient feedback
control law) to remedy a cyber-physical system.

Finally, as noted in the title of this monograph, we aim to counter
adversarial behavior in CPS. While section 4 considers methods to
counter attacks which actively affect the operations of a control system,
passive adversaries in a CPS can also cause significant harm to society. In
particular, in the age of big data, copious amounts of information, much
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of which can be sensitive, is used to efficiently and effectively control
CPS. For instance, power consumption data aids in demand prediction,
transportation data reveals information about traffic patterns, and
medical information can enable preventive treatments. However, in the
wrong hands this type of data can reveal sensitive information about a
user’s routines, travel habits, and preexisting conditions. As a result, in
order to truly consider the impact of adversarial behavior in CPS, we
argue that one must also pay close attention to notions of privacy. An
introduction to some concepts in privacy is given in section 5. Here, we
wish to provide some intuition about how important and useful data
can be leveraged in a CPS without leaving citizens and users vulnerable
to the actions of a passive, information collecting, attacker. To begin,
we consider data privacy in subsection 5.1. We will discuss notions
of differential privacy and inference privacy. In this respect, we will
consider the problem of average consensus and discuss mechanisms that
achieve these notions of privacy in subsection 5.2. Finally, in subsection
5.3, we will give a brief overview of cryptography based privacy.

We remark that this is far from the only monograph to examine
cyber-physical systems. To date dozens of books on CPS have been
published. Many of these texts are for more detailed in their discussion
of applications, modeling, and specific architectures. Additionally, while
not a focus of this monograph, several books have studied concepts of
verification and validation in CPS. The main contribution of this text
relative to most other works is the highly mathematical, model aware
approach it takes to analysis and design when dealing with problems
of robust and resilient control in CPS. Our aim is to provide readers
with an introduction to challenges in this arena and discuss the basic
tools that have been used to address these problems. Of course, not all
concepts in resilient cyber-physical systems can be covered in this text.
However, to aid the interested reader, several further reading subsections
have been included to provide additional pointers to applicable and
related research.

In the rest of this section, we discuss several applications of CPS in
moderate detail. Here, we will emphasize application specific problems
that highlight challenges for ensuring resilience in CPS.
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10 Introduction

1.1 Applications

In this subsection, we discuss several applications of cyber-physical sys-
tems, specifically the smart grid/energy management systems, medical
technologies, transportation, and water treatment/distribution. While
a comprehensive analysis of each infrastructure is out of scope, we aim
to highlight the role cyber-physical technologies play in these systems
and summarize key challenges which can threaten resilience.

1.1.1 Smart Grid and Energy Management CPS

The electric grid is a massive infrastructure, composed of a variety of
subsystems with different owners and a diverse range of regulators. This
large and complex system is inevitably prone to key challenges and
vulnerabilities. This includes withstanding the failure of components
and transmission lines, matching generation to demand, and preserving
the environment.

The development of a smart grid in particular aims to address
the major challenges and inefficiencies that exist in the current infras-
tructure through the use of advanced information, computing, and
communication technologies, smarter devices, and economically viable
renewable resources (Farhangi, 2010; Amin and Wollenberg, 2005; Fang
et al., 2012). For instance, the introduction of an advanced metering
infrastructure (Mohassel et al., 2014) and dynamic pricing will enable
demand response (Albadi and El-Saadany, 2008). This along with dis-
tributed generation can reduce the cost of electricity for consumers
as well as decrease peak demand. Additionally, the widespread use of
phasor measurement units (PMUs) allows for wide area monitoring via
dynamic state estimation as well as automatic control to improve real
time efficiency. Furthermore, increased information and better predictive
tools will help society in leveraging clean renewable resources such as
wind and solar power. The smart grid is a preeminent example of a CPS
where generation, transmission, and distribution subsystems comprise
the physical system, while sensors collecting data, networks routing
data, and computers processing data constitute the cyber system.
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1.1. Applications 11

At a smaller scale, we consider energy management systems in build-
ings. Kleissl and Agarwal (2010) note that 70% of our total energy
consumption is spent in buildings, which also generate 40% of green-
house gases. Hence the application of information and communication
technologies to achieve smart buildings has significant potential. Modern
buildings could be viewed as cyber-physical systems that consist of heat
control, water distribution, airflow, and security subsystems interacting
closely via the usage of embedded sensing and control systems. Kleissl
and Agarwal (2010) in particular examine opportunities to optimize
energy consumption by both occupants and information processing
equipment and provides recommendations for buildings to achieve zero
net energy usage. The role of humans, especially in residential buildings
can not be underestimated. Information technologies can allow humans
to make better decisions in smart buildings. For instance Aksanli and
Rosing (2017), after obtaining a model to capture the relationship be-
tween activities of residents in a house and total power consumption,
use a human-behavior-centric scheduling method to achieve significant
energy savings and peak demand reduction in residential CPS.

As an aside, cyber-physical technologies play an important role in
managing energy usage in data centers. Data centers have shown rapid
growth in energy consumption (Koomey, 2011). With data collection and
storage only increasing, special care must be taken to efficiently manage
electricity usage in data centers. Parolini et al. (2012) considers the
problem of energy management in data centers using a cyber-physical
system approach. In particular, the authors provide a coordinated
strategy leveraging cooling and information technologies to achieve both
energy efficiency and a high quality of service.

Unfortunately their exists ample motivation for attackers to target
the smart grid. First, there exists economic benefits for potential at-
tackers. On one hand, an adversary can physically tamper with smart
meters in order to reduce electricity bills. Alternatively, attacker’s who
participate in the electricity market can elicit a profit by intelligently
compromising sensor measurements (Xie et al., 2010). Attackers may
also perturb the grid as a prank or for far more nefarious reasons in-
cluding terrorism. In particular, an attacker targeting the smart grid
will affect critical life-saving resources.
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12 Introduction

There exists a precedent for attacks on the grid, perhaps most
notably the attack on the Ukraine power grid in 2015 (Pultarova,
2016). Here, hackers were able to deliver the BlackEnergy3 malware
to a SCADA system operating the grid months before commencing a
physical attack. The attackers were able to harvest valid credentials
and perform reconnaissance to ascertain appropriate targets. Finally, on
December 23, 2015, attackers remotely carried out an attack on the grid,
tripping breakers and blocking remote access from system operators.
As a result tens of thousands of customers lost power over a period
of several hours. The attackers also performed a telephone denial of
service to cut off communication between consumers and providers and
used the KillDisk malware to destroy data.

Mo et al. (2012a) mention confidentiality and privacy as another
relevent issue that arises due to the use of information technologies.
Energy use information stored in smart meters can leak personal informa-
tion about consumer habits and activities (McDaniel and McLaughlin,
2009). For instance, it is possible to intuit general information such as
when a user is at home or awake or even very specific information, such
as when a consumer is watching television. As many consumers consider
this information to be sensitive, we observe a critical tradeoff between
the benefits provided by data collection (improved demand prediction,
efficient use of resources), and the resulting loss in privacy (Le Ny and
Pappas, 2014). Differentially private filtering as discussed by Le Ny and
Pappas (2014) can help to address such tradeoffs by aggregating data
in a manner which provides strong privacy guarantees.

1.1.2 Medical CPS

Cyber-physical technologies have had a direct impact on medical sys-
tems. The management and operation of medical cyber-physical systems
have been positively influenced by miniaturized sensing implants and
actuating platforms, energy harvesting, in-body and on-body networks
and new fabrication methods such as 3D printing. Additionally, improve-
ments in communication and computing allow autonomous coordination
of medical devices, both microscopically via nanorobots and macro-
scopically in the operating room. Precise control also has enabled new
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1.1. Applications 13

methods for device placement and drug delivery. We expand upon these
topics below.

Traditionally, intelligent sensing and actuation has found applica-
tions in scenarios that involve wearable devices and implantable devices
such as pacemakers and defibrillators. In particular, mobile monitoring
of vital signals and physical activities obviate the need of doctors to be
physically present to diagnose the health of individual patients. Schirner
et al. (2013) suggests that embedded sensors which measure human cog-
nitive activity are enablers of human in the loop CPS. Specifically, the
development of human and machine interfaces can improve interactions
with assistive robots, which perform actions for the benefit of a person
with a disability and allow for enhancements in intelligent prostheses,
restoring function to amputees.

Similarly, there is now also growing interest towards in-body and on-
body sensor networks that can measure activity and athletic performance
based on body state indicators such as heart and breathing rate, blood-
sugar level and skin temperature. In this respect, developing energy
harvesting technologies (such as RF energy harvesting or thermoelectric
energy harvesting using body heat) enable battery free operation and
ease of implementation in various types of body sensor applications. RF
energy harvesting is a well known technique for increasing the lifetime
of implantable devices (Ho et al., 2014). In addition, thermoelectric
generators, kinetic harvesters and solar technology are also being used
in body sensor networks to harvest energy in wireless bio-sensor devices
(Mitcheson, 2010).

It is argued by Lee and Sokolsky (2010) that monitoring and control
in medicine could greatly benefit from newly developed cyber-physical
technologies. Real time embedded closed-loop control could facilitate
immediate diagnostic evaluation of vital signals and make constant care
possible. For example, Lee and Sokolsky (2010) discuss how intelligent
coordination between x-ray machines and ventilators during an operation
can save patient lives. Specifically, to currently obtain good images
(without patient motion) during an operation, a ventilator must be
paused, thus preventing lung movement. However, patients have died in
cases where the ventilator would not restart. An intelligent alternative
involving precise control would be to enable automatic coordination
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between the x-ray and the ventilator. The x-ray would take images
when it detects the end of a breathing cycle. As a result, the ventilator
does not need to be turned off.

Additionally, the use of computing, sensing, and communication
technologies can reduce humans erros. Cyber-physical technologies
promise to minimize human mistakes by automating various medical
tasks both in clinical scenarios and operation room practice. For instance,
Lee and Sokolsky (2010) consider patient-controlled analgesia and argues
that it can benefit from feedback control. In this process, infusion pumps
are commonly used to deliver opioids for pain management before and
after surgery. Current technological safeguards suchs as drug libraries
and programmable limits can be insufficient in safely addressing pain
management. The authors propose a closed-loop control system with
a supervisor to monitor patient data for the early signs of respiratory
failure. The automated supervisor can stop infusions and sound an alarm
in case of an adverse event. We also remark the role of nanorobots in
the development of new drug delivery methods, see, e.g., Douglas et al.
(2012). This technology promises to deliver drugs to a targeted region in
the body and hence minimize the risks and possible side effects caused
by its use.

Unfortunately, without proper care, cyber physical technologies can
negatively impact the security and reliability of medical devices. First,
medical devices may be subject to a significant failure risk with poten-
tially catastrophic impacts on patients. Alemzadeh et al. (2012) argue
that faulty monitoring devices could cause serious injury and death.
An over reliance on autonomous monitoring and treatment in a faulty
scenario could result in harm to a patient, which could have otherwise
been prevented with a doctor in the loop. In addition, the dependence
of cyber-physical systems on information technology make them more
vulnerable to cyber attacks. Alemzadeh et al. (2013) report that tele-
operated robots are vulnerable to malicious adversaries. In particular,
this work considers attackers who install malware to strategically affect
robots during surgery. To detect and mitigate such attacks, Alemzadeh
et al. (2013) devises a model-based analysis framework using the dy-
namics of the surgical robot. This framework is utilized to determine if
a command is trustworthy before execution.
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An enhanced information technology infrastructure also creates
significant privacy concerns. Patients often wish to keep medical infor-
mation private often due to a perceived stigma associated with various
health conditions. A release of such information can violate the trust
patients have in medical professionals and the system as a whole. As
such, the privacy of an individuals mental/physical health along with
the treatment they receive is mandated by law through the Health
Insurance Portability and Accountability Act (HIPPA). Unfortunately,
increased data collection in next generation and state of the art medical
systems have made personal medical information more vulnerable. The
research community has been active in attempting to prevent medical
information from leaking. As an example, Kocabas et al. (2016) pro-
vides a detailed survey of encryption schemes to enable privacy at data
collection, data aggregation, cloud storage, and action layers of medical
CPS.

1.1.3 Transportation related CPS

Transportation infrastructures, including both terrestrial and aerial
systems have been heavily influenced by CPS. Most obviously, improve-
ments in embedded sensing and control have allowed self driving cars
and unmanned aircrafts to surface. In addition, advanced wireless com-
munication methods made in-vehicle and vehicle-to-vehicle coordination
possible. This enhanced networking along with improvements in cloud
computing and cellular wireless technologies has opened up the possi-
bility of intelligent city wide and highway traffic control. With global
travel now a common necessity, the problem of intelligent aerial traffic
management has become increasingly important. On a smaller scale, as
advances are being made in drone technology, city wide aerial traffic
control may also pose a significant challenge.

Qu et al. (2010) argue that cyber-physical technologies have cre-
ated opportunities for intelligent transportation systems which reduce
traffic, improve safety, and increase sustainability. The authors envi-
sion a unified platform which integrates pedestrians, vehicles, roadside
infrastructures, traffic management centers, sensors, and satellites to
achieve safety and efficiency. Noting the capability of wireless commu-
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nication technology to transfer information rapidly in mobile systems,
Qu et al. (2010) analyze several candidate technologies for intra-vehicle
communication as well as vehicle-to-vehicle and vehicle-to-infrastructure
communication. Additionally, the future of transportation faces the chal-
lenge of integrating self-driving cars to traditional traffic. Self-driving
vehicles leverage precise sensing technologies such light detection and
radar (LIDAR) and GPS/INS and intelligent algorithms which perform
simultaneous localization and mapping (SLAM) (Wolcott and Eustice,
2014). Autonomous vehicles have the potential to improve safety and
increase efficiency.

Work and Bayen (2008) consider the role of mobile phones in the
way transportation CPS is evolving. It is argued in Work and Bayen
(2008) that cell phones can be used as traffic sensors in dynamic envi-
ronments. The utility of mobile devices is propelled by their ubiquity,
built infrastructure, and diverse capabilities. In particular, visualization
and computation platforms in cellphones enable crucial feedback in the
operation of transportation CPS. In Work et al. (2008), automotive
CPS are considered and in-vehicle and among vehicles data collection
and processing opportunities are set forth including forms of social net-
working and environmental monitoring. Possible benefits expected to be
gained by such integration opportunities, including more energy efficient
and human-centric operation, which remove a human from information
acquisition tasks and leave them with higher lever decisions.

Sampigethaya and Poovendran (2013) propose an aviation CPS
framework consisting of aircrafts, passengers, air traffic management,
and airports. The authors observe that advances and innovations
recorded in aviation design, flight operation, and airport management,
which mainly rely on information and computational capabilities on
the ground and during flight, will enable a new frontier for this infras-
tructure. As an example, aircrafts are beginning to employ integrated
modular avionics (IMA)-based architecture, which yield software sys-
tems with lower power consumption and higher integration. Moreover,
coupling higher level flight management systems with flight control en-
ables route optimization in the presence of uncertainty and constraints
while providing decision support for pilots. Improvements in air traf-
fic management will improve air-to-ground interactions. For instance
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weather information can be collected by an aircraft, processed on the
ground, and delivered to other planes which will travel through the same
airspace. Tactical decisions can be made by the pilots of these aircrafts
accordingly. Finally, at airports, cyber-physical technologies will improve
surface operations, turnaround time at gates, and passage/baggage flow.

The resilience of transportation systems to failures and attacks is
critical for the safety of the public. To achieve widespread adoption
of next generation technologies (for instance autonomous vehicles that
leverage both vehicle to vehicle and vehicle to infrastructure communi-
cation), resilient architectures must be developed which can withstand
benign faults as well as malicious attacks. To investigate this matter
further, we consider the example of vehicular platoons. In a vehicle
platoon, several closely spaced vehicles follow a leader. The vehicles
leverage radar technology and (in certain cases) vehicle to vehicle com-
munication to share relative distances and velocities, as well as planned
accelerations. By autonomously reducing inter-vehicle distance and
relative velocities, platoons increase throughput and save fuel.

Nonetheless, platoons are vulnerable to attacks. Amoozadeh et al.
(2015) notes that messages between vehicles can be falsified, spoofed or
replayed by attackers while jamming attacks can disrupt communication
entirely. System level attacks can also tamper with vehicle hardware or
software. This can be done both at the manufacturing state or remotely
(Miller and Valasek, 2015). Gerdes et al. (2013) demonstrates how such
attacks can be subtly used to increase energy expenditures of vehicles
from anywhere between 20− 300%. More malicious adversaries can use
control of a single vehicle to manipulate the actions of all other vehicles
in a stream and destabilize a platoon (Dadras et al., 2015). DeBruhl
et al. (2015) for instance demonstrates a particularly powerful attack
where a vehicle communicates that it is going to accelerate to the vehicle
behind it, only to brake suddenly. The authors demonstrate that careful
model-based detection and control schemes are needed to detect and
respond to such an attack safely while simultaneously benefiting from
the typical advantages of platooning in the absence of an attack.

The privacy of location data has been frequently emphasized in the
context of transportation CPS (Qu et al., 2010; Work and Bayen, 2008;
Work et al., 2008; Sampigethaya and Poovendran, 2013; Amoozadeh
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et al., 2015; Hoh et al., 2006). Hoh et al. (2006) for instance notes that
location monitoring services in next generation traffic systems can allow
drivers to be be tracked. Privacy can be corrupted by eavesdroppers
on the network, attackers who install spyware, or malicious insiders
with access to a traffic monitoring server. Significant information can
be gleaned from tracking a user. As noted by Hoh et al. (2006) ,
one can learn about the health of a driver if they frequently visit a
doctor/specialist or political leanings from visits to activist organizations.
Perhaps more worrisome is the home identification of particular drivers.
As such, the privacy of transportation data requires significant attention.

1.1.4 Water Based CPS

Sewage or wastewater treatment allows communities to remove contam-
inants from wastewater, enabling this water to be returned to nature
with minimal environmental consequence or in some cases, be reused.
A cyber-physical approach to water treatment improves automation
in this system (Department-of-Homeland-Security, 2015). Enhanced
sensing and monitoring will allow operators to anticipate failures and
thus increase reliability. Moreover, it will enable real time feedback
control at collection stations and pumping stations. As an example,
intelligent sensing and control can be utilized to monitor and finely tune
the environment of rotating biological contactors. Rotating biological
contactors consist of bacteria which can break down contaminants in
water, but require very specific environmental conditions (which can be
managed by SCADA systems) to function properly. Additionally, Konig
et al. (2015) discuss how SCADA and IoT based technologies will allow
cities to implement decentralized wastewater treatment, an initiative
which will significantly reduce energy consumption, decrease long term
costs, and increase the recycling of water.

Water distribution has also benefited from improvements in sensing,
computing, and control (Mutchek and Williams, 2014). Smart water
meters can monitor real time pressure and flow. This enables these
sensors to automatically detect costly leaks/breakages. Moreover, smart
meters enable consumers to control their water habits in much the way
that demand response has been considered in the smart grid. This can be
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highly useful during droughts. Contamination sensors can additionally
be used detect impurities, which decay the quality of water. In addition
smart valves and pumps can control the flow of water in response to
environmental conditions. For instance, smart valves can reduce harmful
fluctuations in water pressure (Mistry, 2011) and isolate contaminated
water while smart pumps can detect and respond to clogs in pipes.

The resilience of smart water technologies, however, has been brought
to question. For instance, Amin et al. (2013) discuss relevant adversarial
models against an automated canal system. The authors also perform
tests on the Gignac canal system to demonstrate the effectiveness of
potential attacks. These attacks can occur at various levels of a hierar-
chical SCADA system. For instance, attacks may occur on the physical
infrastructure, the regulatory control layer (which interacts with the
canal network through sensing and actuation devices), the communica-
tion network, the supervisory control layer (which performs tasks such
state estimation/fault diagnosis/selection of control parameters), or the
corporate network. In water distribution systems, Laszka et al. (2017)
considers a cyber-physical attack model where the attacker introduces
contaminants into the water supply and disables a subset of sensors.
The authors recommend that operators intelligently add redundant
sensors, introduce diverse sensing devices, and increase device security
to achieve resilience.

The examination of the resilience of water based CPS has been in
part motivated by a precedent for attacks. Most notably, one can consider
the Maroochy Shire incident (Slay and Miller, 2007; Abrams and Weiss,
2008) an attack on a sewage treatment SCADA system in Queensland,
Australia. The system contained 142 pumping stations monitored by two
monitoring workstations. Radio communication was enabled between
pumping stations and central computers. An attack on this system
was carried out by a disgruntled former employee over a period of 2
months in the year 2000. The attack, which was done remotely using a
laptop and radio transmitter, led to communication failures among the
pumping stations and the central computer, unexpected pump behavior,
and a malfunctioning alarm system. Moreover, as a result of the attack,
800,000 liters of raw sewage spilled into the community. The attack
demonstrated the power of a malicious insider. Moreover, it revealed
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the vulnerability of remote control and sensing technologies when they
are used without adequate security defenses.

Privacy must also be accounted for in water distribution systems.
While water consumption may not release as much sensitive information
about users as electricity consumption, there exist avenues for adver-
sary’s to learn about the user. For instance Rottondi and Verticale (2016)
discuss how information can be leaked in gaming scenarios where users
are incentivized by operators to alter their water consumption habits.
In particular, it is argued that game actions can be related to physical,
social, and mental characteristics of the user. Thus, while cyber-physical
technologies such as smart water meters provide operators the ability
to increase efficiency by influencing resource consumption, collecting
the necessary data raises significant privacy concerns.
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