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ABSTRACT

The presence of embedded electronics and communication ca-
pabilities as well as sensing and control in smart devices has
given rise to the novel concept of cyber-physical networks, in
which agents aim at cooperatively solving complex tasks by
local computation and communication. Numerous estima-
tion, learning, decision and control tasks in smart networks
involve the solution of large-scale, structured optimization
problems in which network agents have only a partial knowl-
edge of the whole problem. Distributed optimization aims at
designing local computation and communication rules for the
network processors allowing them to cooperatively solve the
global optimization problem without relying on any central
unit. The purpose of this survey is to provide an introduc-
tion to distributed optimization methodologies. Principal
approaches, namely (primal) consensus-based, duality-based
and constraint exchange methods, are formalized. An anal-
ysis of the basic schemes is supplied, and state-of-the-art
extensions are reviewed.

Giuseppe Notarstefano, Ivano Notarnicola and Andrea Camisa (2020), Distributed
Optimization for Smart Cyber-Physical Networks, Foundations and TrendsR© in
Systems and Control: Vol. 7, No. 3, pp 253–383. DOI: 10.1561/2600000020.
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Introduction

Motivation

In recent years, the breakthroughs in embedded electronics are giving
the opportunity to include computation and communication capabilities
in almost any device of several domains as factories, farms, buildings,
grids and cities. Communication among devices has enabled a number
of new challenges along the direction of turning smart devices into smart
(cooperating) systems. The keyword “cyber-physical networks” is being
adopted to refer to this permeating reality, whose distinctive feature is
that a great advantage can be obtained if its interconnected, complex
nature is exploited. A novel peer-to-peer distributed computational
framework is emerging as a new opportunity in which peer processors,
communicating over a network, cooperatively solve a task without
resorting to a unique provider that knows and owns all the data.

Several challenges arising in cyber-physical networks can be stated as
optimization problems. Examples are estimation, decision, learning and
control applications. To solve optimization problems over cyber-physical
networks, it is not possible to apply the classical optimization algorithms
(that we call centralized), which require the data to be managed by a
single entity. In fact, the problem data are spread over the network, and
it is undesirable (or even impossible) to collect them at a unique node.
To this end, parallel computing serves as a source of inspiration. In order

2
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3

to speed up the solution of large-scale optimization problems, several
effort has been made in designing parallel algorithms by splitting the
computational burden among several processors. However, for typical
parallel optimization algorithms, a central coordinating node is required
and the communication topology is designed ad hoc. In distributed
computation the communication topology cannot be thought of as a
design parameter. Rather, it is a given part of the problem. Thus, in
cyber-physical networks, the goal is to design algorithms, based on the
exchange of information among the processors, that take advantage of
the aggregated computational power. All the agents must be treated
as peers and each of them must perform the same tasks and no “mas-
ter” node must be present. Moreover, information privacy is often a
requirement (i.e., private problem data at each node must not be shared
with the other nodes). These challenges call for tailored strategies and
have given rise to a novel, growing research branch termed distributed
optimization.

Scope of the Monograph

The purpose of this survey is to give a comprehensive overview of
the most common approaches used to design distributed optimization
algorithms, together with the theoretical analysis of the main schemes in
their basic version. We identify and formalize classes of problem set-ups
that arise in motivating application scenarios. For each set-up, in order to
give the main tools for analysis, we review tailored distributed algorithms
in simplified cases. Extensions and generalizations of the basic schemes
are also discussed at the end of each chapter. The algorithms have been
developed by combining mathematical tools from optimization theory
(e.g., duality) and network control theory (e.g., average consensus). For
some of the discussed algorithms, we will present also parallel algorithms
that serve as a starting point for the development of distributed methods.

We focus on three main categories of distributed optimization ap-
proaches: (i) primal consensus-based methods, i.e., methods combining
classical gradient or subgradient steps with local averaging schemes;
(ii) dual methods, i.e., methods which employ the Lagrangian dual
of suitable equivalent formulations of the target problem to obtain a

Full text available at: http://dx.doi.org/10.1561/2600000020
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distributed routine; (iii) constraint exchange methods, which are based
on the exchange of (active) constraints among agents to compute a
solution of the considered problem.

Survey papers on distributed optimization have been proposed in the
literature. An early survey paper presenting a broad class of relevant op-
timization problems in control is [85]. It also discusses tailored, parallel
and distributed optimization algorithms based on decomposition tech-
niques and including also the distributed subgradient method. Recent
surveys analyze thoroughly average consensus [87] and the distributed
subgradient method [87, 88, 91], with a literature review on other dis-
tributed optimization techniques. The book [97] provides parallel and
distributed asynchronous optimization algorithms, including gradient
tracking techniques. Some latest advances in distributed optimization
are collected in [45].

Organization

In Chapter 1, we introduce the relevant problem set-ups, that we call
cost-coupled, constraint-coupled and common cost, along with several mo-
tivating applications of interest arising in estimation, learning, decision
and control. In Chapter 2 we provide an overview of primal approaches
to solve cost-coupled problems, namely the distributed subgradient al-
gorithm and the gradient tracking algorithm. In Chapter 3, a discussion
on relevant duality forms for distributed optimization is first provided,
and then distributed algorithms relying on Lagrangian approaches are
reviewed. Namely, for cost-coupled problems, distributed dual decom-
position and distributed ADMM algorithms are considered, while for
constraint-coupled problems, a distributed dual subgradient algorithm
and a method based on relaxation and successive distributed decom-
position are presented. In Chapter 4, we focus on constraint exchange
methods. We introduce the Constraints Consensus algorithm applied to
common-cost problems, along with its most relevant extensions.

We also provide illustrative numerical examples to highlight signif-
icant properties of the considered distributed optimization methods.
Since the described algorithms are designed for different problem set-ups,
different, relevant simulation scenarios are considered in each chapter.
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Concluding Remarks

In this survey, we considered a distributed optimization framework
arising in modern cyber-physical networks, in which computing units
have only a partial knowledge of a global optimization problem and
must solve it through local computation and communication without
any central coordinator. First, we introduced main optimization set-ups
addressed in distributed optimization (i.e., cost-coupled, common-cost,
and constraint-coupled), and motivated them with relevant estimation,
learning, decision and control applications arising in smart networks.
Then, we reviewed three main approaches to design distributed opti-
mization algorithms, namely (primal) consensus-based, duality-based
and constraint-exchange methods, and provided a theoretical analysis
under simplified communication assumptions and/or problem set-ups.
To highlight the behavior of the presented algorithms, the theoretical
results are also equipped with numerical examples.

99
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A
Centralized Optimization Methods

A.1 Gradient Method

Consider the following unconstrained optimization problem

min
x∈Rd

f(x), (A.1)

where f : Rd → R. The gradient method is an iterative algorithm given
by

xt+1 = xt − γt∇f(xt), (A.2)

where t ≥ 0 denotes the iteration counter and γt is the step-size. The
following result states the convergence of the gradient method for
constant step-size.

Proposition A.1 ([9, Proposition 1.2.3]). Assume that f is a C1 function
with Lipschitz continuous gradient ∇f with constant L. Let the step-size
be constant, i.e., γt = γ, for all t ≥ 0, and such that 0 < γ < 2/L. Then,
every limit point of the sequence {xt}t≥0 generated by the gradient
method (A.2), is a stationary point of problem (A.1), i.e., there exists
a subset of indices K ⊆ N such that

lim
K3t→∞

‖xt − x̄‖ = 0,

where x̄ is a stationary point of (A.1). �

The previous result can be extended in several ways, e.g., with
different step-size rules and adapted to constrained problems. We refer
the interested reader to [9] and references therein.

101

Full text available at: http://dx.doi.org/10.1561/2600000020



102 Centralized Optimization Methods

A.2 Subgradient Method

Consider the following constrained optimization problem

min
x∈X

f(x), (A.3)

with f : Rd → R a convex function and X ⊆ Rd a closed, convex set.
A vector ∇̃f(x) ∈ Rd is called a subgradient of the convex function

f at x ∈ Rd if

f(y) ≥ f(x) + ∇̃f(x)>(y− x)

for all y ∈ Rd. The (projected) subgradient method is the iterative
algorithm given by

xt+1 = PX
(
xt − γt∇̃f(xt)

)
, (A.4)

where t ≥ 0 denotes the iteration counter, γt is the step-size, ∇̃f(xt)
denotes a subgradient of f at xt, and PX( · ) is the Euclidean projection
onto X.

Assumption A.1 (Diminishing Step-size). The step-size sequence {γt}t≥0
is such that γt ≥ 0 and satisfies

lim
t→∞

γt = 0,
∞∑
t=0

γt =∞,
∞∑
t=0

(γt)2 <∞. �

The following proposition formally states the convergence of the
subgradient method (A.4).

Proposition A.2 ([10, Proposition 3.2.6]). Assume that all the subgra-
dients of f are bounded at each x ∈ X. Moreover, assume the optimal
solution set of problem (A.3) is not empty. Let the step-size γt satisfy
Assumption A.1. Then, the sequence {xt}t≥0 generated by the subgradi-
ent method (A.4) converges to an optimal solution x? of problem (A.3),
i.e.,

lim
t→∞
‖xt − x?‖ = 0, lim

t→∞
‖f(xt)− f?‖ = 0. �

Full text available at: http://dx.doi.org/10.1561/2600000020



A.3. Lagrangian Duality and Dual Subgradient Method 103

A.3 Lagrangian Duality and Dual Subgradient Method

Consider a constrained optimization problem, addressed as primal
problem, having the form

min
x∈X

f(x)

subj. to g(x) ≤ 0,
(A.5)

where X ⊆ Rd is a convex, compact set, f : Rd → R is a convex
function and g : Rd → RS is such that each component gs : Rd → R,
s ∈ {1, . . . , S}, is a convex (scalar) function.

The following optimization problem

max
µ

q(µ)

subj. to µ ≥ 0
(A.6)

is called the dual of problem (A.5), where q : RS → R is obtained by
minimizing with respect to x ∈ X the Lagrangian function L(x,µ) =
f(x) + µ>g(x), i.e., q(µ) = minx∈X L(x,µ). It can be shown that the
domain of q (i.e., the set of µ such that q(µ) > −∞) is convex and that
q is concave on its domain. A vector µ̄ ∈ RS is said to be a Lagrange
multiplier if it holds µ̄ ≥ 0 and

inf
x∈X
L(x, µ̄) = inf

x∈X : g(x)≤0
f(x).

It can be shown that the following inequality holds [9]

inf
x∈X

sup
µ≥0
L(x,µ) ≥ sup

µ≥0
inf
x∈X
L(x,µ), (A.7)

which is called weak duality. When in (A.7) the equality holds, then we
say that strong duality holds and, thus, solving the primal problem (A.5)
is equivalent to solving its dual formulation (A.6). In this case the
right-hand-side problem in (A.7) is referred to as saddle-point problem
of (A.5).

Definition A.1. A pair (x?,µ?) is called a primal-dual optimal solution
of problem (A.5) if x? ∈ X and µ? ≥ 0, and (x?,µ?) is a saddle point
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104 Centralized Optimization Methods

of the Lagrangian, i.e.,

L(x?,µ) ≤ L(x?,µ?) ≤ L(x,µ?)

for all x ∈ X and µ ≥ 0. �

Given the dual function q, an important property is as follows.
A subgradient of −q at a given µ̄ can be efficiently computed as g(x̄),
where x̄ = argminx∈X f(x) + µ̄>g(x) (see [9, Section 6] for further
details). Then, a subgradient method to solve the dual problem (A.6)
reads

xt+1 = argmin
x∈X

f(x) + (µt)>g(x)

µt+1 = Pµ≥0
(
µt + γtg(xt+1)

)
,

where γt is a suitable step-size and µ0 ≥ 0 is arbitrary.

A.4 ADMM Algorithm

In this section, we review the Alternating Direction Method of Mul-
tipliers (ADMM) following [12, Section 3.4]. Consider the following
optimization problem

min
x∈Rd

G1(x) +G2(Ax)

subj. to x ∈ C1, Ax ∈ C2,
(A.8)

where G1 : Rd → R and G2 : RS → R are convex functions, A is a
S × d matrix, and C1 ⊆ Rd and C2 ⊆ RS are nonempty, closed convex
sets. We assume that the optimal solution set X? of problem (A.8) is
nonempty. Furthermore, either C1 is bounded or else A>A is invertible.

Problem (A.8) can be equivalently rewritten as

min
x∈Rd,z∈RS

G1(x) +G2(z)

subj. to Ax = z,
x ∈ C1, z ∈ C2.

(A.9)

Let λ ∈ RS be a multiplier associated to the equality constraint
Ax = z and introduce the augmented Lagrangian of problem (A.9)

Lρ(x, z,λ) = G1(x) +G2(z) + λ>(Ax− z) + ρ

2‖Ax− z‖2
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A.4. ADMM Algorithm 105

where ρ > 0 is a penalty parameter. The ADMM algorithm is an
iterative procedure in which at each iteration t ≥ 0, the following steps
are performed

xt+1 = argmin
x∈C1

Lρ(x, zt,λt) (A.10a)

zt+1 = argmin
z∈C2

Lρ(xt+1, z,λt) (A.10b)

λt+1 = λt + ρ (Axt+1 − zt+1), (A.10c)

where the initialization of the variables z0 and λ0 can be arbitrary.
The ADMM algorithm is very similar to dual ascent and to the

Method of Multipliers (MM): it consists of an x-minimization, a z-
minimization, and a dual variable update. As in the method of multi-
pliers, the dual variable update uses a step-size equal to the augmented
Lagrangian parameter ρ. In the MM, the augmented Lagrangian Lρ is
minimized jointly with respect to the two primal variables. In ADMM,
on the other hand, x and z are updated in an alternating or sequential
fashion, which accounts for the term alternating direction.

Proposition A.3 ([12, Proposition 4.2]). Consider a sequence

{xt, zt,λt}t≥0

generated by the ADMM algorithm (A.10). Then, the generated se-
quence is bounded and every limit point of {xt}t≥0 is an optimal solution
of problem (A.8). Furthermore, the sequence {λt}t≥0 converges to an
optimal solution of the dual of problem (A.8). �

In [18] a more general problem set-up for ADMM is considered.
Specifically, let us consider a two-variable problem defined as

min
x∈Rd,z∈RS

G1(x) +G2(z)

subj. to Ax +Bz + c = 0
x ∈ C1, z ∈ C2.

(A.11)

with A ∈ Rp×d, B ∈ Rp×S and c ∈ Rp×1. Then, the ADMM algorithm
applied to problem (A.11) reads as follows

xt+1 = argmin
x∈C1

Lρ(x, zt,λt) (A.12a)
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106 Centralized Optimization Methods

zt+1 = argmin
z∈C2

Lρ(xt+1, z,λt) (A.12b)

λt+1 = λt + ρ (Axt+1 +Bzt+1 + c), (A.12c)

where the augmented Lagrangian is defined as

Lρ(x, z,λ) = G1(x) +G2(z) + λ>(Ax +Bz + c) + ρ

2‖Ax +Bz + c‖2.
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B
Consensus Over Networks

Consensus and distributed averaging are fundamental building blocks
in distributed optimization.

We introduce the consensus problem for a group of N agents that
considers conditions under which, using a certain message-passing proto-
col, the local variables of each agent converge to the same value. There
exist several results related to the convergence of local variables to a
common value using various information exchange protocols among
agents.

B.1 Average Consensus over Static Networks

One of the most used models for consensus is based on the following
discrete-time iteration: to generate an estimate at iteration t+1, agent i
forms a convex combination of its current estimate zti with the estimates
received from other agents as

zt+1
i =

∑
j∈Ni

aij ztj , (B.1)

where aij denotes a (positive) weight that agent i assigns to each
neighbor j, and we recall that Ni is the set of neighbors of agent i in
the (static) undirected communication graph. The weights aij are set to
zero if i and j are not neighbors in the communication graph G and are
doubly stochastic, i.e., they satisfy

∑N
j=1 aij = 1, for all i ∈ {1, . . . , N},

and
∑N
i=1 aij = 1, for all j ∈ {1, . . . , N}.

The consensus algorithm can be written in an aggregate form by
stacking all the agents’ estimates in a single variable which evolves

107
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108 Consensus Over Networks

according to

zt+1 =


zt+1

1
...

zt+1
N

 = Azt, (B.2)

where A is a matrix whose (i, j)-th entry is aij for all i, j ∈ {1, . . . , N}.
A useful property of doubly stochastic matrices is the following.

Given A doubly stochastic, it holds

‖Az− z̄‖ ≤ σA‖z− z̄‖,

where z̄ , 1
N

∑N
i=1 zi and σA is the spectral radius of A − 11>/N . It

can be proven (see [148]) that if the graph is connected and A is doubly
stochastic, then σA ∈ (0, 1), and specifically σA = max{|λ2|, |λN |},
where λh denotes the h-th largest eigenvalue of A.

Theorem B.1. Let G be a connected graph and let aij , i, j ∈ {1, . . . , N}
be doubly stochastic weights matching the graph. Then, the sequences
{zti}t≥0, i ∈ {1, . . . , N}, generated by (B.1) satisfy

lim
t→∞
‖zti − z̄0‖ = 0,

for all i ∈ {1, . . . , N}, where z̄0 = 1
N

∑N
i=1 z0

i . �

Several extensions of the basic consensus algorithm (B.1) exist. For
instance, one can consider time-varying networks that have some long-
term connectivity properties. The consensus algorithm needs to be
adapted to accommodate the time-varying network by considering time-
varying weights atij . Also, it is possible to design a consensus algorithm
that works under delays and is robust to packet losses. See [46] for
a recent survey on this topic. Next, we describe another extension in
which the consensus algorithm is tailored for directed networks.

B.2 Push-sum Consensus over Directed Networks

In this section we describe how the average consensus algorithm can
be adapted to work on directed networks. This algorithm is known as
push-sum algorithm and has been introduced in [7].
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B.3. Dynamic Average Consensus Algorithm 109

In directed networks is not always possible to construct a doubly
stochastic matrix A, while a column stochastic matrix is always available.
We useB to denote a column stochastic matrix, i.e., such that 1>B = 1>.
Formally, the push-sum consensus reads

φt+1
i =

∑
j∈Ni

bij φ
t
j (B.3a)

st+1
i =

∑
j∈Ni

bij stj (B.3b)

zt+1
i = st+1

i

φt+1
i

, (B.3c)

with the initial values φ0
i = 1 for all i ∈ {1, . . . , N}.

The convergence of this scheme has been proven in [7], i.e., the
sequences {zti}t≥0, i ∈ {1, . . . , N}, generated by (B.3) satisfy

lim
t→∞
‖zti − z̄0‖ = 0,

for all i ∈ {1, . . . , N}, where z̄0 = 1
N

∑N
i=1 z0

i .

B.3 Dynamic Average Consensus Algorithm

In this section, we present a distributed algorithm to achieve dynamic
average consensus that has been proposed in [162]. See also [59] for a
very recent tutorial.

We consider a network of N agents in which each agent i is able
to measure a local discrete-time signal {rti}t≥0. The goal is to design a
distributed algorithm that enables agents to eventually track the average
of their signal rti, i ∈ {1, . . . , N}, by means of local communication only.

The dynamic consensus algorithm proposed in [162] consists in
a consensus-based procedure in which each agent maintains a local
estimate zti of the average. The local estimate is iteratively updated
according to

zt+1
i =

∑
j∈Ni

aij ztj +
(
rt+1
i − rti

)
, (B.4)

where aij are entries of a doubly stochastic matrix.
If the input signals rti asymptotically converge to a constant value,

then the dynamic average consensus algorithm in (B.4) is guaranteed
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to converge, i.e., for all i ∈ {1, . . . , N}, it holds

lim
t→∞
‖zti − r̄t‖ = 0,

where r̄t = 1
N

∑N
i=1 rti for all t ≥ 0.

The interested reader can find a rigorous treatment and a more
comprehensive discussion on this class of algorithms in [162, 59].
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C
Linear Programming

A Linear Program (LP) is an optimization problem with linear cost
function and linear constraints:

min
x

c>x

subj. to a>k x ≤ bk, k ∈ {1, . . . ,K},
(C.1)

where c ∈ Rd is the cost vector and ak ∈ Rd and bk ∈ R describe K
inequality constraints. In the subsequent discussion, we assume that
d ≤ K. The feasible set X of problem (C.1) is the set of vectors satisfying
all the constraints, i.e.,

X , {x ∈ Rd | a>k x ≤ bk for all k ∈ {1, . . . ,K}}.

Note that X is a polyhedron, for which the following definition of vertex
can be given.

Definition C.1. A vector x̃ ∈ Rd is a vertex of X if there exists some
c ∈ Rd such that c>x̃ < c>x for all x ∈ X with x 6= x̃. �

If problem (C.1) admits an optimal solution, it can be shown that
there exists an optimal vertex, i.e., a vertex which is an optimal solution
of the problem (see, e.g., [13, Theorem 2.7]). Let x? be an optimal vertex
of problem (C.1). Then, it is a standard result in linear programming
theory that there exists an index set {`1, . . . , `d} ⊂ {1, . . . ,K}, with
cardinality d, such that x? is the unique optimal vertex of the problem

min
x

c>x

subj. to a>`hx ≤ b`h , h ∈ {1, . . . , d},

which is a relaxed version of problem (C.1) in which only d constraints
are considered. In addition, the vectors a`h , h ∈ {1, . . . , d} are linearly
independent, so that they form a basis of Rd. By analogy, the constraints
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a>`hx ≤ b`h , h ∈ {1, . . . , d} are called a basis of the point x?. Due to the
optimality of x?, we call it also a basis of problem (C.1). To compactly
denote such basis, we introduce a matrix P ∈ Rd×d, obtained by stacking
the row vectors a>`h , and a vector q ∈ Rd, obtained by stacking the scalars
b`h , i.e.,

P =


a>`1...
a>`d

 , q =


b`1
...
b`d

 .
Then, x? = P−1q, and we say that the tuple (P, q) is a basis of (C.1).

If problem (C.1) has multiple optimal solutions, we say that the LP
is dual degenerate. In presence of dual degeneracy, it is not trivial to
guarantee convergence of distributed algorithms to the same optimal
solution. In order to overcome this issue, it is possible to rely on the
lexicographic ordering of vectors. We now give some definitions.

Definition C.2. A vector v ∈ Rn is said to be lexicographically positive
(or lex-positive) if v 6= 0 and the first non-zero component of v is
positive. In symbols:

u
L
> 0.

A vector u ∈ Rn is said to be lexicographically larger (resp. smaller)
than another vector v ∈ Rn if u − v is lex-positive (resp. v − u is
lex-positive), or, equivalently, if u 6= v and the first nonzero component
of u− v is positive (resp., negative). In symbols:

u
L
> v or u

L
< v.

Given a set of vectors {v1, . . . ,vr}, the lexicographic minimum is
the element vi such that vj

L
> vi for all j 6= i. In symbols:

vi = lexmin{v1, . . . ,vr}. �

Now, consider the optimal solution set of problem (C.1), i.e., X ? ,
{x ∈ X | c>x ≤ c>x′ for all x′ ∈ X} ⊆ X , where X is the feasible set
of problem (C.1). Among all the optimal solutions in X ?, it is possible
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to compute the lexicographically minimal one, i.e., lexmin(S?). It turns
out that finding lexmin(S?) is equivalent to finding the (unique) optimal
solution to a modified (non dual-degenerate) version of the original
problem (C.1), where the cost vector c is perturbed to c′ = c+ ∆, with
∆ a lexicographic perturbation vector:

∆> = [∆0 ∆2
0 . . . ∆d

0],

for a sufficiently small ∆0 > 0 (see [56]). Therefore, the lex-optimal
solution of problem (C.1) is the unique optimal solution of the problem
with perturbed cost

min
x

(c+ ∆)>x

subj. to a>k x ≤ bk, k ∈ {1, . . . ,K}.
(C.2)

Thus, the lex-optimal solution of problem (C.1) exists if and only
if problem (C.2) admits an optimal solution. Moreover, the optimal
solution of (C.2) is attained at a vertex of (C.1), therefore it is an
optimal vertex of problem (C.1).
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