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ABSTRACT

This monograph presents a new framework for learning-
based control synthesis of continuous-time dynamical sys-
tems with unknown dynamics. The new design paradigm
proposed here is fundamentally different from traditional
control theory. In the classical paradigm, controllers are
often designed for a given class of dynamical control sys-
tems; it is a model-based design. Under the learning-based
control framework, controllers are learned online from real-
time input–output data collected along the trajectories of
the control system in question. An entanglement of tech-
niques from reinforcement learning and model-based control
theory is advocated to find a sequence of suboptimal con-
trollers that converge to the optimal solution as learning
steps increase. On the one hand, this learning-based design
approach attempts to overcome the well-known “curse of
dimensionality” and the “curse of modeling” associated with
Bellman’s Dynamic Programming. On the other hand, rig-
orous stability and robustness analysis can be derived for

Zhong-Ping Jiang, Tao Bian and Weinan Gao (2020), “Learning-Based Control:
A Tutorial and Some Recent Results”, Foundations and TrendsR© in Systems and
Control: Vol. 8, No. 3, pp 176–284. DOI: 10.1561/2600000023.
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2

the closed-loop system with real-time learning-based con-
trollers. The effectiveness of the proposed learning-based
control framework is demonstrated via its applications to the-
oretical optimal control problems tied to various important
classes of continuous-time dynamical systems and practical
problems arising from biological motor control, connected
and autonomous vehicles.
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1
Introduction

The idea of learning-based control can be traced back at least to the
Ph.D. dissertation (Minsky, 1954), where Minsky for the first time
introduced the concept of reinforcement learning (RL) motivated by the
problem of gaining further insight into the learning, memorizing, and
thinking processes in human brain. Borrowing the words from Sutton
et al. (1992), RL is direct adaptive optimal control. The field of RL is
vibrant and is far from being saturated as clearly shown in numerous
review articles and books (Bertsekas, 2011, 2013; Schmidhuber, 2015;
Silver, 2015; Sutton and Barto, 2018; Szepesvári, 2010). Sixty years
later after Minsky’s original work, Google DeepMind developed perhaps
one of the most advanced artificial intelligence (AI) system based on
RL, and defeated the human world champion in the game of Go (Silver
et al., 2016, 2017). Indeed, besides Google DeepMind’s AI system, RL
has demonstrated its advantage in multiple industry applications (Barto
et al., 2017; Lorica, 2017). The recent success of RL and related methods
can be attributed to several key factors. First, RL is driven by reward
signals obtained through the interaction with the environment. Different
from other machine learning (ML) techniques, this learning architecture
is especially useful when the learning objective is to find the optimal

3
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4 Introduction

behavior or policy over a time interval. Second, RL is closely related
to the human learning behavior. It has been identified in a number of
papers that the learning behavior in the frontal cortex and the basal
ganglia is driven by the neuron spikes in dopamine neurons. These
spikes encode the temporal difference error signal (Dayan and Balleine,
2002; Doya, 2002; Glimcher, 2011; Lo and Wang, 2006; Wang et al.,
2018; Wise, 2004), which is a key element in the RL theory (Sutton
and Barto, 2018, Chapter 6). Hence, it is not surprising that we can
achieve human-level intelligence through RL. Third, RL has a solid
mathematical foundation. The main theoretical result behind RL is
the dynamic programming (DP) theory (Bellman, 1957), which is a
powerful tool for solving sequential decision making problems. The
mathematical guarantee from DP theory gives the advantage of RL
over other heuristic AI methods. Finally, RL can be incorporated with
other ML and optimization methods to build a sophisticated learning
system. For example, the learning performance of RL methods can be
significantly improved by incorporating the recently developed deep
neural network technique (Mnih et al., 2015, 2016; Schmidhuber, 2015;
Silver et al., 2016, 2017). Because of these important features, RL and its
extensions have become one of the most active research topics in AI and
ML communities. Nonetheless, conventional RL theory exhibits some
shortcomings. A common feature of most RL algorithms is that they are
only applicable for discrete environments described by Markov decision
processes (MDP) or discrete-time systems. To overcome this limitation,
several researchers Baird, III (1993, 1994), Munos (2000), Doya (2000),
Doya et al. (2002), van Hasselt and Wiering (2007), Theodorou et al.
(2010), and van Hasselt (2012), have made significant efforts in adapting
RL into the continuous environment, by discretizing and interpolating
the time-state-action spaces. Alternatively, Bradtke and Duff (1994),
Sutton et al. (1999), and Das et al. (1999) investigated RL for the
semi-Markov process, a continuous-time dynamical system equipped
with discrete state space. It should be mentioned that these methods
may suffer from high computational burden when performing the dis-
cretization and approximation for continuous-time dynamical systems
evolving in continuous state and action spaces. More recently, RL-based

Full text available at: http://dx.doi.org/10.1561/2600000023
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methods, mostly known under the name of adaptive dynamic program-
ming (ADP), have been developed for continuous learning environments
(Russell and Norvig, 2010, Chapter 2) described by ordinary differential
equations (ODEs) or stochastic differential equations (SDEs). Another
limitation of traditional RL methods is that the stability and robustness
of the controlled process is usually not considered. In fact, a common
assumption in the convergence analysis of various RL methods is that
the underlying MDP always has a steady state distribution (Bhatnagar
et al., 2009; Nedić and Bertsekas, 2003; Sutton et al., 2000; Tsitsiklis,
1994; Tsitsiklis and Van Roy, 1997). However, few results have been
proposed to guarantee this assumption, especially when there exist poli-
cies under which the MDP does not have steady state distribution. In
contrast with these limitations, experimental results have demonstrated
that biological systems exhibit the ability of learning complicated motor
movements in an unstable environment composed with high-dimensional
continuous state space (Adams, 1971; Shadmehr and Mussa-Ivaldi, 2012;
Wolpert et al., 2011). Traditional RL theory is insufficient in explaining
this type of learning process.

The purpose of this tutorial is to present a learning-based approach to
control dynamical systems from real-time data and to review some major
developments in this relatively young field. Due to space limitation, we
will focus on continuous-time dynamical systems described by ODEs
and SDEs. With input–output data at hand, we can certainly opt for
the indirect route as in model-based control theory, that is, first build
a mathematical model and then design controllers for the practical
system in question. This indirect method has proven successful for a
variety of problems arising in the contexts of engineering and sciences.
However, it is widely known that building precise mathematical models
that can describe the motion of dynamical systems is time-consuming
and costly. For certain classes of optimal control problems, especially
when the dynamical systems under consideration are strongly nonlinear,
it is very hard, if not impossible, to solve the Bellman equation. This
observation has led Bellman (1957) to state: “Turning to the succor
of modern computing machines, let us renounce all analytic tools.” In
this monograph, we aim to develop a framework for learning-based
control theory that shows how to learn directly suboptimal controllers

Full text available at: http://dx.doi.org/10.1561/2600000023



6 Introduction

from input–output data. Ultimately, these suboptimal controllers are
expected to converge to the (unknown) optimal solution to the Bellman
equation. Besides the benefit of direct vs indirect control methods, the
learning-based control theory overcomes the curse of modeling tied to
the traditional DP. There are three main challenges on the development
of learning-based control. First, there is a need to generalize existing
recursive methods, known under the names of policy iteration (PI) and
value iteration (VI), from model-based to data-driven contexts when the
system dynamics are completely unknown. Previous RL-based learning
algorithms are not directly extendable to the setting of continuous-
time dynamical systems, let alone convergence and sensitivity analyses.
Second, as a fundamental difference between learning-based control and
RL, stability and robustness are important issues that must be addressed
for the safety-critical engineering systems such as self-driving cars.
Therefore, there is a need to develop new tools and methods, beyond
the present literature of RL, that can provide theoretic guarantees
on the stability and robustness of the controller learned from real-
time data collected online along the trajectories of the control system
under consideration. Third, data efficiency of RL algorithms need be
addressed for safety-critical engineering systems. In this monograph,
we will address the first two issues and only discuss the third issue
from the perspective of numerical and experimental studies by means
of some case studies. The learning-based control theory as reviewed in
this monograph is closely tied to the literature of safe RL and ADP,
and is a new direction in control theory that is still in its infancy
and especially so for continuous-time dynamical systems described by
differential equations. For prior work of others on ADP-based optimal
control, the reader may consult (Jiang and Jiang, 2017; Lewis and
Vrabie, 2009; Lewis et al., 2012b; Liu et al., 2017; Luo et al., 2014;
Song et al., 2015; Vrabie et al., 2013; Wang et al., 2009; Werbos, 1968)
and many references therein. For recent developments in learning-based
control for other types of systems and problems, see Antsaklis et al.
(1991), Antsaklis and Rahnama (2018), Rahnama and Antsaklis (2019),
Werbos (2013, 2014, 2018), Kiumarsi et al. (2017), He and Zhong (2018),
Recht (2019), Bertsekas (2019), Kamalapurkar et al. (2018), Chen et al.
(2019), Pang et al. (2020), and references therein.
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The rest of the monograph is organized as follows. Section 2 de-
scribes the learning-based optimal control of continuous-time linear
and nonlinear systems described by (ordinary or stochastic) differential
equations. Section 3 is concerned with the learning-based optimal con-
trol of a class of large-scale dynamical systems. Section 4 deals with the
learning-based adaptive optimal tracking with disturbance rejection,
the so-called adaptive optimal output regulation problem, for classes
of linear and nonlinear control systems. Applications of the presented
learning-based control theory to autonomous vehicles and human motor
control are given in Section 5. Finally, some concluding remarks and
discussions on future work are provided in Section 6.
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