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ABSTRACT
This monograph presents for the first time a unified synthesis
on how to design robust and predictive control approaches
for (discrete-time) Linear Parameter Varying (LPV) systems.
In particular, some recent results concerning LPV state feed-
back design using the H∞ framework and Model Predictive
Control (MPC) for LPV systems are presented. Then, both
approaches are illustrated in two important cases for au-
tomotive applications. First, the lateral steering control of
autonomous vehicles is considered. Then, an application to
Advanced Driver-Assistance Systems is presented, where
MPC and LPV approaches are integrated in view of optimal
selection of the scheduling parameter.
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1
About LPV Systems and Control

1.1 A Broad Overview

Control of Linear Parameter Varying (LPV) systems has attracted more
and more attention in recent decades. Specifically, LPV systems have
been shown as a very interesting extension of the robust control theory
to a large class of dynamical systems.

Nowadays, the LPV approach is recognised as a well-suited tool to
handle system nonlinearities and to adapt control online (during the
implementation, in real-time), by means of suitable varying (scheduling)
parameters. From this, the synthesis of LPV controllers (also referred
to as gain-scheduling) is enabled - for which system stability and per-
formance can be guaranteed for a larger domain of operation.

In particular, the LPV approach has been extensively demonstrated
as very efficient for aerospace applications - since the early 1990s. More
recently, its potential has been assessed in several other important
application cases (in robotics, health, energy, automotive, and so forth).
In the recent survey by Hoffmann and Werner (2014), an extensive
overview of recent applications is presented. Furthermore, several recent
textbooks have also been concerned with the analysis and synthesis
problems using LPV tools, such as Toth (2010), Mohammadpour and

2
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1.2. Discrete-time LPV Models 3

Scherer (2012), Sename et al. (2013), Briat (2015), and Gáspár et al.
(2017).

Due to its potential to handle nonlinear systems in a linear-like
framework, researchers have been interested in developing robust and
optimal control approaches using LPV tools. Accordingly, there have
been an important number of works in the last two decades, especially
given the fact that embedding real-time control/observation strategies
becomes much easier with LPV approaches, and theoretical proofs of
stability and performances can be handily generated.

However, we must emphasise that an additional complexity arises
in the LPV context due to the varying parameters. Accordingly, spe-
cific theoretical tools are required, in particular for stability analysis.
Recent studies have been concerned with model identification, stabil-
ity/stabilisation and control design (predictive and robust approaches),
in the context of affine, polynomial or rational LPV systems. One of
the main interests of LPV control design is that it allows linear analysis
and control synthesis (H∞, H2, MPC - i.e. Model Predictive Control)
through reliable optimisation tools, such as Linear Matrix Inequalities
(LMIs) and Quadratic Programming problems (QPs).

Finally, for interested control engineers, we mention some recent
interesting toolboxes that enable LPV syntheses and analyses:

• The LPV Tools toolbox (Hjartarson et al., 2015), which imple-
ments grid-based and LFT methods;

• The LPVcore toolbox (den Boef et al., 2021), which is dedicated
to modelling, identification, and control of LPV systems.

1.2 Discrete-time LPV Models

The most well-known use of the LPV tool is actually its application to
handle nonlinear dynamics. Indeed, there are several different ways to
convert a nonlinear system into an LPV one:

• The first one is the historical method, referred to as the gain-
scheduled control, which aims at doing a Jacobian linearisation
of the nonlinear system trajectories around a set of arbitrarily
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4 About LPV Systems and Control

chosen operating conditions. This approach renders a set of LTI
models along a grid of parameter values, as addressed by Wu
(1995) and Hjartarson et al. (2015);

• The second one is to rewrite the nonlinearities as varying param-
eters. It is worth noting that if the nonlinearities involve state
variables, the system is referred to as quasi-LPV (and is of course
not equivalent to the nonlinear model). Note that this is some-
times called “nonlinearity/qLPV embedding”. The clue for qLPV
modelling is the application of the Linear Differential Inclusion
theorem, as stated in Boyd et al. (1994b).

This monograph is not concerned with modelling and identification
of LPV systems. Concerning these topics, the reader is referred to the
book by Toth (2010) or to the PhD thesis by Bruzelius (2004).

Throughout this monograph we will be interested in discrete-time
LPV models. In contrast to LTI state space models, LPV systems are
characterised by system matrices that include time-varying parameters
that evolve over time, and are defined in discrete-time (DT) as follows.

Definition 1.1 (Discrete-time state-space representation of LPV systems).
Given a vector of time-varying parameter ρ ∈ Rm and matrices A(ρ) ∈
Rnx×nx , B(ρ) ∈ Rnx×nw , C(ρ) ∈ Rnz×nx and D(ρ) ∈ Rnz×nw , the DT
dynamics of an LPV system Ξ(ρ) are given through the following
representation:

Ξ(ρ) =
{
x+ = A(ρ)x+ B(ρ)w ,
z = C(ρ)x+ D(ρ)w ,

(1.1)

where x ∈ Rnx is the state-vector, w ∈ Rnw is the vector of exogenous
inputs, and z ∈ Rnz is the vector of performance outputs. The time
difference elapsed in the transition from state x to its successor (i.e.,
x+) is given by a constant sampling time denoted Ts. We also consider
an equivalent notation using k ∈ (N ∪ {0}) as the discrete-time sample
stamp. Thus, x(k + 1) represents the successor to x(k).

Remark 1.1. In the LPV setting, the time-varying (scheduling) param-
eter vector - i.e. ρ ∈ Rnρ in (1.1) - is considered to be known (measured
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1.3. A Brief State-of-the-art 5

or estimated) and to satisfy several assumptions. The most typical ones
(Assumptions 1 and 2) are recapped next.

Assumption 1. Each varying parameter value ρi(k) is known and is
bounded by extremal values ρ

i
and ρi such that ρ

i
≤ ρi(k) ≤ ρi, ∀k.

The joint set of bounds on ρi, i = 1, . . . ,m, then form the varying
parameter admissible space Ω ∈ Rnρ , such that ρ(k) ∈ Ω, ∀k.

Assumption 2. The rate of variation δρi(k) := ρi(k) − ρi(k − 1) for
each varying parameter ρi between two consecutive sampling times k
and k + 1 is bounded by δρ

i
and δρi such that δρ

i
≤ δρi(k) ≤ δρi, ∀k.

In this monograph, we particularly consider the class of LPV sys-
tems whose matrices are defined as affine on some basis function with
dependency on the varying parameter vector. The definition of an affine
LPV representation is recapped below.

Definition 1.2 (Affine LPV description). Consider an LPV system given
as in Definition 1.1. We say that it is affine with respect to a basis
function θ(ρ) if the system matrices can be expressed as follows:

A(ρ) = A0 +
∑N
n=1 θn(ρ)An , B(ρ) = B0 +

∑N
n=1 θn(ρ)Bn

C(ρ) = C0 +
∑N
n=1 θn(ρ)Cn , D(ρ) = D0 +

∑N
n=1 θn(ρ)Dn

(1.2)

being A0, . . . ,An, B0, . . . ,Bn, C0, . . . , Cn and D0, . . . ,Dn are constant
matrices. In particular, the vector θ(ρ) = (1, θ1(ρ), . . . , θN (ρ)) forms the
parameter-dependent basis function, beingθn(ρ) ∈ R a scalar function.

1.3 A Brief State-of-the-art

As mentioned previously, LPV systems have attracted more and more
attention recently either in robust control approaches or in MPC ones.
In addition to the aforementioned books, several survey papers have
been concerned with these approaches, for control and/or observation
purposes.

1.3.1 Robust Methods

Released in the 1990s, LPV synthesis allows a controller to be sequenced
by the parameters of the dynamical system if these parameters can
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6 About LPV Systems and Control

be measured at each instant.1 Due mainly to their scalability, these
controllers can meet an increased level of performance when compared
to conventional robust robust controllers (of LTI format). Furthermore,
they provide stability and performance in a global perspective, along
all possible system trajectories, rather than a local stability only linked
to the operating point. These gain-scheduling methods, based on the
linearisation at different operating points, have been extensively inves-
tigated in the literature, see e.g. Leith and Leithead (2000), Shamma
(2012), and Shamma (1988). We emphasise that the robustness property
relating to these techniques has been studied in Apkarian and Adams
(1998).

The Linear Parameter Varying (LPV) control concept has been suc-
cessfully developed to achieve stable gain-scheduling schemes (Apkarian
and Gahinet, 1995), self-scheduling controllers (Apkarian et al., 1995)
and even interpolated controllers, given with respect to (linearised) LTI
models obtained at different operating points. However, LPV control
methods mainly differ from classical gain-scheduling since, in the general
case, the controller depends not only on the varying parameters, but
also on the derivative of such parameters (Wu et al., 1996; Apkarian
and Adams, 1998). In practice, this issue can render the corresponding
implementation quite intricate.

The importance of the LPV approach to control general nonlinear
systems comes from the interesting characteristic to rewrite it in the
form of a quasi-LPV structure, where the parameters arise as known
functions of states, inputs or outputs variables, and not only exogenous
inputs. This approach has been followed in a lot of recent studies, such
as in the books by Mohammadpour and Scherer (2012) and Sename
et al. (2013), and in the survey paper by Hoffmann and Werner (2014) -
c.f. references cited therein.

Remark 1.2. It is worth noting that, while early synthesis methods
have been limited to slow parameter variations (Shamma, 2012), today
there are several ways to handle arbitrarily fast as well as rate-limited
parameter variations to reduce the design conservatism, c.f. Apkarian
et al. (1995) and Wu (1995).

1We note that the most widely used technique is to consider gain sequencing by
interpolating poles and zeros or state matrices.
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1.3. A Brief State-of-the-art 7

As known today in the LPV context, the formulation of an LPV
control problem - for instance in the H∞ framework - requires, in general,
to solve an infinite number of LMIs, given the scheduling parameter
space. Methods have been proposed to reduce the problem to a finite
set of LMIs. Accordingly, we mention the three main approaches to
handle this issue:

• The use of Linear Fractional Transformations (LFTs) has been
largely studied in relation to aerospace applications (Apkarian and
Gahinet, 1995; Pfifer, 2013). This technique consists of formulating
the LPV system as a Linear Fractional Representation (LFR)
containing the nominal LTI system and a model uncertainties
block (which, given the LPV setting, encompasses the effects
of scheduling parameters). LFT theory makes use of (D, D-G,
...) scalings, application of (full-block) S-procedures and, more
recently, the use of Integral Quadratic Constraints (IQCs) for the
design of gain-scheduling controllers, c.f. Scherer (2001), Veenman
and Scherer (2014), and Morato et al. (2023a);

• The polytopic approach, c.f. Apkarian et al. (1995), Li et al.
(2021), and López-Estrada et al. (2019), represents, today, the
most popular among the LPV control approaches. In particular,
it is widely applied due to its simplicity and stability guarantees
enabled within the design process. However, the application of
this approach is limited to only a few scheduling parameters, due
to the exponential growth of the polytope vertices with respect
to the number of parameters. Some methods to reduce this over-
bounding of parameter regions have been developed, as presented
in Li et al. (2021) and Casavola et al. (2012).

• The gridding technique, e.g. Wu (1995), is the historical method.
This approach is based on the definition of a mesh over the param-
eter space. A grid-based LPV system is formulated using a linear
or nonlinear interpolation between the corresponding LTI systems
at the grid (operating) points. It is known that a higher density
of grid points is required for better interpolation performance. An
advantage of this technique is that it is applicable for any LPV
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8 About LPV Systems and Control

plants (with general parameter-dependency), requiring neither
polytopic nor LFT representations. The implementation of the
controller is computationally inexpensive, but may require large
amounts of memory in order to store the local controllers.

Remark 1.3. We highlight that, recently, these mentioned techniques
have also been extended to the context of interpolation-based LPV
controllers, as described in the survey paper by Atoui et al. (2022).

1.3.2 Predictive Control Schemes

Dating from the original algorithms proposed by the process industry
in the 1980s (e.g. Cutler and Ramaker, 1980; Clarke et al., 1987), MPC
has since become a widely used control technique for the regulation
of constrained systems (Camacho and Bordons, 2013). Over the last
decades, a considerable amount of research has been devoted to the
study of MPC algorithms, considering different system models and
settings, e.g. Alamir (2012), Allgöwer and Zheng (2012), Limon et al.
(2018), and Morato et al. (2020a). Corresponding theoretical certificates
for closed-loop stability (and recursive feasibility of the (recurrent)
optimisation problem) have been established since the seminal results
provided by Mayne et al. (2000) - which recently have been extended
to broader settings by means of dissipativity theory in Morato et al.
(2023a). In fact, predictive control is rather well-established due to a
quite simple property: it has the ability to jointly consider performance
optimisation and constraint satisfaction under a relatively intuitive
synthesis framework.

Before detailing LPV design approaches to MPC, we provide an
overview of the predictive control framework: at each (discrete-time)
sampling instant, an (optimal) control action is generated through
the solution of a constrained optimisation problem, which embeds the
performance objectives along a future horizon window, as well as the
considered constraints. The general form of this optimisation, at each
discrete time sample k, is given, generically, by:

Full text available at: http://dx.doi.org/10.1561/2600000032



1.3. A Brief State-of-the-art 9

min
Uk

(
Np−1∑

j=0

ℓ(x(k + j|k), u(k + j|k))

)
+ V (x(k +Np|k)) ,

s.t.: x(k + j + 1|k) = f (x(k + j|k), u(k + j|k)) ,∀ j ∈ N[0,Np−1],

x(k + j|k) ∈ X ,∀ j ∈ N[1,Np],

u(k + j − 1|k) ∈ U ,∀ j ∈ N[1,Np],

x(k +Np|k) ∈ Xf ,

where x and u denote, respectively, the (predicted) process state and
input variables, while

Uk :=
[
uT (k|k) uT (k + 1|k) . . . uT (k +Np − 1|k)

]T
represents the optimisation2 decision variable, i.e. the sequence of control
actions along the prediction window Np. From the optimal solution U⋆k ,
the first entry u⋆(k|k) is applied to the system.

MPC has great theoretical and practical value. Yet, the methodology
requires a process model at its core - thus “MPC”. Accordingly, this
model3 is used to map predictions related to the future behaviour of
state (or output) variables - which are incorporated within a sampled op-
timisation problem, considering a rolling prediction horizon window. In
broad terms, nonlinear MPC (NMPC) schemes are particularly relevant
when nonlinear systems are controlled over larger operating conditions -
or when the process heavily depends on external parameters. However,
the inclusion of nonlinear predictions to the sampled optimisation is not
trivial and increases the resulting algorithm’s complexity, c.f. Allgöwer
and Zheng (2012). In practice, such increased numerical burden becomes
an impediment for many real-time applications.

2In the (generic) MPC optimisation above, X and U are known sets used to
represent the process constraints, while Xf is a terminal set used for stability-related
features. The optimisation cost J(x(k), Uk) comprises a performance-related stage
cost ℓ(·, ·), summed along the future horizon, and a terminal cost V (·), related to the
state prediction at the end of the horizon. We note the MPC optimisation procedure
is initialised with the current sampled state measurement x(k); accordingly, its
solution is the minimiser U⋆

k .
3If a trustworthy model is not available, the derived control law may simply be

unrealistic and thereby the controller may be insufficiently robust to counter-act the
uncertainties caused by the prediction mismatches (even stability may be lost, in
some dramatic settings).
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10 About LPV Systems and Control

Accordingly, several recent studies have investigated how LPV mod-
els can be used in this regard, as presented in the survey paper by
Morato et al. (2020a). With regard to the scope of this work - and
given that nonlinear mappings can be re-cast as LPV models - recent
literature has consistently shown that it is quite natural and direct to
develop NMPC algorithms by exploiting LPV realisations. In particular,
LPV models are especially interesting (in the context of MPC synthesis)
because they retain the linearity property along the inputs-outputs
channels, which means that computationally efficient design procedures
can be rendered. Conversely, this means that the drawbacks of full-
blown NMPC algorithms are avoided (the use of nonlinear programs),
without any need to approximate the solution of the optimisation prob-
lem - as do the most modern fast NMPC solutions, such as real-time
iteration schemes, c.f. Gros et al. (2020) and Verschueren et al. (2022)
and gradient-based methods, c.f. Käpernick and Graichen (2014).

In the context of MPC, a full-horizon prediction model is required.4
Nevertheless, when an LPV prediction model is used, this problem
depends not solely on the future inputs (to be determined by the
optimisation), but also on the future scheduling parameters which are,
a priori, typically unknown.

Therefore, the control community has presented several recent works
on the topic of MPC design for LPV systems, handling the scheduling
prediction uncertainty issue, as surveyed in Morato et al. (2020a). Next,
we emphasise the two main classes of LPV MPC algorithms:

• Robust methods, e.g. Jungers et al. (2011), Bumroongsri and
Kheawhom (2012), Hanema et al. (2017), and Abbas et al. (2018),
which consider the worst-case closed-loop performances implied
by the unknown future scheduling parameters. Accordingly, the
optimisation is rewritten in order to take into account the bounds
of all possible future parameter variations, which can render
usually conservative results.

4By this, we mean to describe (i.e. predict) the system variables along the future
horizon of Np steps ahead of each discrete-time sample. The notion of a rolling
prediction horizon is implied: at each sample k, the future k+Np variables instances
are taken into account to generate the sampled predictive control law.
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1.4. Monograph Objectives and Organisation 11

• Gain-scheduling methods, e.g. Brunner et al. (2017), Cisneros and
Werner (2017), Mate et al. (2019), and Alcalá et al. (2019). In these
works, the LPV model is replaced by an LTV one (or a sequence of
LTI realisations) that, at each sampling instant, is evaluated as a
local LTI model based on a guess for the scheduling trajectory. In
many cases, this guess is simply an assumption that the scheduling
parameters will remain constant along the prediction horizon.
While these methods operate quite fast (they exhibit reduced
numerical burden), sub-optimality may be implied. Nevertheless,
when the scheduling trajectory is accurate (as seen for the qLPV
case in Cisneros and Werner, 2017; 2019; 2020), an exact nonlinear
MPC solution is obtained by the means of quadratic optimisation
programs, thus rendering a solution comparable to state-of-the-
art solver-based NMPC solutions (such as ACADO; Verschueren
et al., 2022 and CasADi; Andersson et al., 2019).

1.4 Monograph Objectives and Organisation

Taking into account the detailed context regarding LPV systems and
control, the aim of this monograph is to present some of the advantages
of considering LPV approaches. Here, we advocate for the use of LPV
design in both robust and predictive control settings. In particular, we
focus on the case of the lateral control problem in (automated, assisted
and autonomous) vehicles.

For the reason of homogeneity, we will consider here discrete-time
LPV systems and present some results on state feedback control ap-
proaches in the context of robust LPV control and MPC. With regard
to this context, two cases are illustrated:

• First, MPC and LPV state feedback control of the lateral motion
of autonomous vehicles is detailed;

• Second, an application to Advanced Driver-Assistance Systems
is presented, where MPC and LPV approaches are integrated in
order to optimally select scheduling parameters (using MPC) used
in an LPV steering control.
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12 About LPV Systems and Control

It is worth noting that such automotive applications are described
in a unified way through the use of the same vehicle across this work,
namely, the Renault Megane car, detailed in Fergani (2014), for which a
realistic validated full car nonlinear model is considered for time-domain
simulations.

The remaining content of the monograph is divided into sections on
the following topics:

• Section 2: A recap on fundamental results related to robust LPV
control synthesis and stability analyses;

• Section 3: A broad overview of LPV predictive control design
approaches and problems;

• Section 4: Lateral control: application of LPV approaches to
steering control of autonomous vehicles;

• Section 5: LPV control for Advanced Driver-Assistance Systems
(ADAS);

• Section 6: Concluding remarks.

1.5 Notations

We denote N (N0) as the set of positive (non-negative) integers and
abbreviate the set {i ∈ N0 | a ≤ i ≤ b} by N[a,b]. Sn stands for the
set of symmetric matrices in Rn×n and ℓm2e for the space of sequences
with elements in Rm. The j × j identity matrix is denoted by Ij and
Ij,{i} denotes its i-th column. col(v1, . . . , vm) := (v⊤

1 , . . . , v
⊤
n )⊤ denotes

the vectorisation operation and diag(V1, . . . , Vn) denotes the block di-
agonal matrix with V1, . . . , Vn on its diagonal. The predicted value of
a given variable v(k) at time instant k + i, computed based on the
information available at instant k, is denoted as v(k+ i|k); in particular,
v(k|k) = v(k). Furthermore, in matrix inequalities, (⋆) denotes the
corresponding symmetrical transpose; moreover, M > 0 indicates the
positive definiteness of matrix M.

K : R≥0 7→ R≥0 refers to the class of continuous, positive and strictly
increasing scalar functions that pass through the origin. A C1 function
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1.5. Notations 13

f : Rm → Rn is such that it is differentiable with continuous derivatives.
In this case, ∇T f : Rm → Rn×m denotes its Jacobian matrix. Consider
sets A,B ⊂ Rn, C ⊂ Rm and a matrix R ∈ Rn×m. The Minkowski
set addition is defined by A ⊕ B := {a + b | a ∈ A , b ∈ B}, while
the Pontryagin set difference is defined by A ⊖ B := {a | a⊕B ⊆ A}.
A linear mapping is RA = {y ∈ Rn : y = Ra, a ∈ A}, while the
Cartesian product holds as A × C = {z ∈ Rn+m : z = (aT cT )T , a ∈
A, c ∈ C}. ∥ · ∥ denotes the 2-norm, unless mentioned otherwise.

In terms of (LPV) state-space descriptions, we use x to denote the
system states, ρ the scheduling variables, u the control inputs, z the
performance outputs, y the measured outputs, and w the system’s exoge-
nous inputs (i.e. disturbances). Moreover, for discrete-time realisations,
we refer to the successive state either as x+ or as x(k + 1) (analogous).
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