
Pairwise Independence

and Derandomization

Full text available at: http://dx.doi.org/10.1561/0400000009

Pairwise Independence
and Derandomization

Michael Luby

Digital Fountain
Fremont, CA, USA

Avi Wigderson

Institute for Advanced Study
Princeton, NJ, USA

avi@ias.edu

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/0400000009

Foundations and Trends R© in
Theoretical Computer Science

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

A Cataloging-in-Publication record is available from the Library of Congress

The preferred citation for this publication is M. Luby and A. Wigderson, Pairwise

Independence and Derandomization, Foundation and Trends R© in Theoretical Com-
puter Science, vol 1, no 4, pp 237–301, 2005

Printed on acid-free paper

ISBN: 1-933019-76-X
c© 2006 M. Luby and A. Wigderson

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/0400000009

Foundations and Trends R© in
Theoretical Computer Science

Volume 1 Issue 4, 2005

Editorial Board

Editor-in-Chief:
Madhu Sudan
Department of CS and EE
MIT, Stata Center, Room G640
32 Vassar Street, Cambridge
Massachusetts 02139,
USA
madhu@mit.edu

Editors
Bernard Chazelle (Princeton)
Oded Goldreich (Weizmann Inst.)
Shafi Goldwasser (MIT and Weizmann Inst.)
Jon Kleinberg (Cornell University)
László Lovász (Microsoft Research)
Christos Papadimitriou (UC. Berkeley)
Prabhakar Raghavan (Verity Inc.)
Peter Shor (MIT)
Madhu Sudan (MIT)
Éva Tardos (Cornell University)
Avi Wigderson (IAS)

Full text available at: http://dx.doi.org/10.1561/0400000009

Editorial Scope

Foundations and Trends R© in Theoretical Computer Science
will publish survey and tutorial articles in the following topics:

• Algorithmic game theory

• Computational algebra

• Computational aspects of
combinatorics and graph theory

• Computational aspects of
communication

• Computational biology

• Computational complexity

• Computational geometry

• Computational learning

• Computational Models and
Complexity

• Computational Number Theory

• Cryptography and information
security

• Data structures

• Database theory

• Design and analysis of algorithms

• Distributed computing

• Information retrieval

• Operations Research

• Parallel algorithms

• Quantum Computation

• Randomness in Computation

Information for Librarians
Foundations and Trends R© in Theoretical Computer Science, 2005, Volume 1,
4 issues. ISSN paper version 1551-305X. ISSN online version 1551-3068. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/0400000009

Foundations and TrendsR© in
Theoretical Computer Science

Vol. 1, No 4 (2005) 237–301
c© 2006 M. Luby and A. Wigderson
DOI: 10.1561/0400000009

Pairwise Independence and Derandomization

Michael Luby1 and Avi Wigderson2

1 Digital Fountain, Fremont, CA, USA
2 Institute for Advanced Study, Princeton, NJ, USA, avi@ias.edu

Abstract

This article gives several applications of the following paradigm, which
has proven extremely powerful in algorithm design and computational
complexity. First, design a probabilistic algorithm for a given problem.
Then, show that the correctness analysis of the algorithm remains valid
even when the random strings used by the algorithm do not come
from the uniform distribution, but rather from a small sample space,
appropriately chosen. In some cases this can be proven directly (giving
“unconditional derandomization”), and in others it uses computational
assumptions, like the existence of 1-way functions (giving “conditional
derandomization”).

The article is based on a series of lectures given by the authors in
1995, where the notes were scribed by the attending students. (The
detailed list of scribes and other contributors can be found in the
Acknowledgements section at the end of the manuscript.) The cur-
rent version is essentially the same, with a few minor changes. We note
that this publication takes place a decade after the lectures were given.
Much has happened in the area of pseudorandomness and derandom-
ization since, and perhaps a somewhat different viewpoint, different
material, and different style would be chosen were these lectures given
today. Still, the material presented is self contained, and is a prime

Full text available at: http://dx.doi.org/10.1561/0400000009

manifestation of the “derandomization” paradigm. The material does
lack references to newer work though. We recommend the reader inter-
ested in randomness, derandomization and their interplay with compu-
tational complexity to consult the following books and surveys, as well
as their extensive bibliography: [31, 14, 36, 37, 21, 42].

Full text available at: http://dx.doi.org/10.1561/0400000009

Contents

1 Pairwise Independence 1

1.1 Pairwise independence: Definition 2
1.2 Small families of hash functions 3
1.3 Derandomization applications 4
1.4 Dictionaries 5

2 Limited Independence Probability Spaces 9

2.1 Modulo prime space 9
2.2 Linear polynomial space 10
2.3 Mapping between {0,1}n and GF[2n] 11
2.4 Inner product space 11

3 Pairwise Independence and Complexity Classes 13

3.1 RP and BPP 13
3.2 Complexity of unique solutions 15
3.3 BPP ⊆

∑
2 16

3.4 AM = IP 18

4 Recycling Randomness 21

4.1 Deterministic amplification 21

ix

Full text available at: http://dx.doi.org/10.1561/0400000009

4.2 The Chor-Goldreich generator 23
4.3 The Nisan generator 24
4.4 The Impagliazzo-Zuckerman generator 26
4.5 The expander mixing Lemma 29
4.6 The Karp-Pippenger-Sisper generator 32
4.7 The Ajtai-Komlós-Szemerédi generator 32

5 Pseudo-Random Generators 35

5.1 One-way functions 35
5.2 Hidden Bit Theorem 38
5.3 Pseudo-random generators 44

6 Deterministic Counting 47

6.1 #P and approximate counting 47
6.2 DNF counting 50
6.3 GF[2] polynomial counting 51
6.4 Bounded depth circuit counting 55

Acknowledgements 63

References 65

Full text available at: http://dx.doi.org/10.1561/0400000009

1

Pairwise Independence

In this chapter, and indeed in much of the rest of this article, we will
be considering randomized algorithms, and their performance when
their input is not “purely” random. To set the stage, let us consider
an algorithm A that on input x wishes to evaluate some function f at
x. A randomized algorithm for this task may use an input a sequence
of random variables Z1, . . . ,Zn where the Zi’s take their value from
some finite set T . Informally, A would be considered good for com-
puting f , if it is very likely to output f(x), when the Zi’s are drawn
independently and uniformly from the set T . But what happens, when
the random variables are not chosen uniformly, and especially, inde-
pendently. Depending on the level of independence, the support of the
joint distribution on Z1, . . . ,Zn could be much smaller than the support
of the independent uniform distribution. In turn this allows for efficient
calculation of the probability of various events (or to compute the most
likely output of A on input x). In this section, we introduce definitions
that study distributions that are not fully independent, and show some
algorithmic uses.

1

Full text available at: http://dx.doi.org/10.1561/0400000009

2 Pairwise Independence

1.1 Pairwise independence: Definition

Consider a set of N random variables indexed by a set U , i.e., {Zx :
x ∈ U} with |U | = N , that take on values from a set T , (i.e., Zx ∈ T).
Let D : TU → [0,1] denote their joint distribution function, i.e., for α =
{αx ∈ T |x ∈ U} let Pr[∀x ∈ U,Zx = αx] = D(α).

For finite t = |T |, a uniform distribution (i.e., D(α) = 1/tn) assigns
Pr[Zx = αx] = 1/t, for all x ∈ U , αx ∈ T . If this distribution satisfies,
for all x 6= y ∈ U and for all α,β ∈ T ,

Pr[Zx = α,Zy = β] = Pr[Zx = α] · Pr[Zy = β] = 1/t2,

then we refer to this distribution as pairwise independent.
Pairwise independence is not the same as complete independence.

For example, consider following set of three pairwise-independent
binary variables (U = {1,2,3},T = {0,1}, t = 2), where each row gives
an assignment to the three variables and the associated probability.
(The leftmost column gives an index s ∈ {0,1}2 for each row.)

s Z1 Z2 Z3 D(·)
00 0 0 0 1

4

01 0 1 1 1
4

10 1 0 1 1
4

11 1 1 0 1
4

The above distribution has its support on only four elements of TU ,
whereas the uniform distribution has support on all eight elements.
(The support of a distribution D() is the set of elements α ∈ TU for
which D(α) > 0.) Shortly, we will see that the support of pairwise
independent distrubtions can get much smaller than the support of the
uniform distribution, as N = |U | → ∞.

The notion of pairwise independence emerged first in the context of
“hash functions”. To describe this context, notice that each row s above
can be thought of as a function hs : U → T , where hs(x) = Zx. Let S
be the set of indices s for these functions. So, in this case, S = {0,1}2.
For all x 6= y ∈ U , for all α,β ∈ T , we have

Pr
s∈

RS
[hs(x) = α ∧ hs(y) = β] = 1/4 = 1/t2

Full text available at: http://dx.doi.org/10.1561/0400000009

1.2. Small families of hash functions 3

(where the notation s ∈R S denotes that s is chosen uniformly at ran-
dom from the set S). (Notice in particular that Prs∈

RS
[hs(x) = hs(y)] =

1/2 = 1/t.) Any set of functions satisfying this condition is a 2-universal
family of hash functions. Definitions and explicit constructions of 2-
universal hash functions were first given by Carter-Wegman [40]. The
original applications described in Carter-Wegman [40] were straight-
forward, similar to those described in the later section on dictionaries
based on hashing. As these notes indicate, subsequently 2-universal
hashing has been applied in surprising ways to a rich variety of
problems.

1.2 Small families of hash functions

In the last section we saw how to construct N = 3 pairwise indepen-
dent random variables with a smaller support than needed for 3 fully
independent random variables. (Of course, we couldn’t have picked a
smaller choice of N to demonstrate this difference!) But to get a true
sense of the difference, it is useful to let N →∞. In this section we
will show how to construct N = 2n random variables, indexed by the
set U = {0,1}n taking on values in the set T which is also chosen to be
{0,1}n.

One simple way to construct a family of hash functions mapping
{0,1}n→ {0,1}n is to let S = {0,1}n × {0,1}n, and then for all s =
(a,b) ∈ S, for all x ∈ {0,1}n define hs(x) = ax + b, where the arithmetic
operations are with respect to the finite field GF[2n]. Thus, each hs

maps {0,1}n→ {0,1}n and S is the index set of the hash functions.
For each s = (a,b) ∈ S, we can write:(

hs(x)
hs(y)

)
=
(

x 1
y 1

)(
a

b

)
When x 6= y, the matrix is non-singular, so that for any x,y ∈ {0,1}n,
the pair (hs(x),hs(y)) takes on all 22n possible values (as s varies
over all S). Thus if s is chosen uniformly at random from S, then
(hs(x),hs(y)) is also uniformly distributed. This property of hash func-
tions is called 2-universal.

Full text available at: http://dx.doi.org/10.1561/0400000009

4 Pairwise Independence

We can view S as the set of points in a sample space on the
set of random variables {Zx : x ∈ {0,1}n} where Zx(s) = hs(x) for all
s ∈ S. With respect to the uniform distribution on S, these random
variables are pairwise independent, i.e., for all x 6= y ∈ {0,1}n, for all
α,β ∈ {0,1}n

Pr
s∈

RS
[Zx(s) = α ∧ Zy(s) = β]

= Pr
s∈

RS
[Zx(s) = α] · Pr

s∈
RS

[Zy(s) = β] = 1/22n.

To obtain a hash function that maps to k < n bits, we can still use S as
the function index family: The value of the hash function indexed by s

on input x is obtained by computing hs(x) and using the first k bits.
The imporant properties of these hash functions are:

• Pairwise independence.
• Succinctness – each function can be described as a 2n-bit

string. Therefore, randomly picking a function index requires
only 2n random bits.
• The function hs(x) can easily be computed (in

LOGSPACE, for instance) given the function index s

and the input x.

In the sequel, unless otherwise specified we are referring to this set
of pairwise independent hash functions and S denotes the set of indices
for the hash family.

1.3 Derandomization applications

Consider, for example, the MAXCUT problem: given a graph G =
(V,E), find a two-coloring of the vertices χ : V → {0,1} so as to maxi-
mize c(χ) = |{(x,y) ∈ E : χ(x) 6= χ(y)}|. We describe a solution to this
problem that is guaranteed to produce a cut where at least half the
edges cross the cut.

If the vertices are colored randomly (0 or 1 with probability 1/2) by
choosing χ uniformly from the set of all possible 2|V | colorings, then:

E[c(χ)] =
∑

(x,y)∈E

Pr[χ(x) 6= χ(y)] =
|E|
2

Full text available at: http://dx.doi.org/10.1561/0400000009

1.4. Dictionaries 5

Thus, there must always be a cut of size at least |E|
2 . Let S be the

index set for the hash family mapping V → {0,1}. Since the summation
above only requires the coloring of vertices to be pairwise-independent,
it follows that E[c(hs)] = |E|

2 when s ∈R S. Since |S| = |V |2, we can
deterministically try hs for all s ∈ S in polynomial time (even in the
parallel complexity class NC), and for at least one s ∈ S,hs defines a
partition of the nodes where at least |E|

2 edges cross the partition.
This derandomization approach was developed and discussed in

general terms in the series of papers Chor-Goldreich [10], Luby [28],
Alon-Babai-Itai [5]. There, the approach was applied to derandomize
algorithms such as witness sampling, a fast parallel algorithm for find-
ing a maximal independent set, and other graph algorithms.

1.4 Dictionaries

One application that uses hashing is in building “dictionaries”. A dic-
tionary is a data structure that represents a subset N of size |N | = n

from some universe of possible words U so as to be able support queries
of the form “x ∈ N?”, for x ∈ U . (This is a natural abstraction of the
classical notion of a “dictionary” for, say, English where U may be
thought of as all sequences of upto 20 English letters, while N is the
subset which are actually words in English.) Deterministic schemes
based on balanced tree data structures build such data structures in
time O(n logn) and subsequent look-ups in time O(logn) each.

Random hashing can speed this up considerably. The simple use
of hashing would be as follows. Let T = {1, . . . , t} be a set of suffi-
ciently large cardinality, and let h be some “hash” function mapping
U → T . We will store the elements of N in an array D[1, . . . , t], with
elements being indexed by elements of T . Our intent would be to set
D[h(x)] = x for every x ∈ N . Of course this would not be possible if
we had “collisions”, i.e., if h(x) = h(y) for x 6= y ∈ N . Assuming h is
collision-free on N , easy to describe, that h(x) can be computed in
“constant” time, and assuming further that D[1, . . . , t] is initialized
properly when we start, insertions and lookups take constant time.
It turns out that by picking the hash function h randomly from a small
set (as described in Section 1.2) can now be used to remove most of

Full text available at: http://dx.doi.org/10.1561/0400000009

6 Pairwise Independence

these assumptions. In particular if we choose s ∈R S, and use h = hs

then the expected number of colliding pairs C may be bounded from
above as follows:

E[C] =
∑

x6=y∈N

Pr
s∈RS

[hs(x) = hs(y)] =
(

n

2

)
· 1

t

For instance, if t = n2, then E[C] ≤ 1
2 (and so the probability that

h is 1-to-1 is ≥ 1
2). (If t = n, then E[C] ≤ n

2 .) Thus this yields a sim-
ple hashing scheme in which insertions and look-ups cost a unit time,
though the size of the data structure representing N is of size O(n2)
(assuming that the table D of size n2 is initialized properly). Below we
see how to improve upon the space complexity.

The following two-level hashing scheme, due to Fredman-Komlós-
Szemerédi [12], also takes time O(n) to construct the dictionary and
constant time for each look-up, but the advantage is that it uses only
O(n) cells in total. Let T = {1, . . . ,n}.

(1) Pick s ∈R S and map N into T . For each i ∈ T , let Ni be
the subset of N mapped to i by hs, and let ni = |Ni|. Let
C =

∑
i∈T

(
ni
2

)
be the number of colliding pairs. If C > n then

start over at step (1), else go on to step (2).
(2) For each i ∈ T , if ni ≥ 1 then we allocate a table Ti of n2

i

cells, and let Si denote the index set for the pairwise inde-
pendent hash family (as in Section 1.2) mapping U → Ti.
Pick si ∈R Si, and use hsi to map Ni to Ti. If hsi maps Ni 1
to-1 into Ti then this is a good choice for si, else rechoose si

independently and try again until hsi does describe a 1-to-1
mapping.

Because E[C] ≤ n/2 in step (1), Pr[C ≤ n] ≥ 1/2, and thus the
expected number of times step (1) is repeated is at most 2. Similarly, in
step (2), for each i ∈ T , the expected number of times till the mapping
of Ni into Ti is 1-to-1 is at most 2. Thus, the overall expected time to
construct the dictionary is O(n). The total number of cells used to store
N is D =

∑
i∈T n2

i . Noting that D − 2C = |N | = n, and that C ≤ n, it

Full text available at: http://dx.doi.org/10.1561/0400000009

1.4. Dictionaries 7

follows that at most 3n cells are used to store N . Note that we need
to also store s and all si for all i ∈ {1, . . . ,n}, but this takes at most
2(n + 1) additional cells, since the description of each hash function
takes two cells.

Each find operation takes constant time.

Full text available at: http://dx.doi.org/10.1561/0400000009

References

Abbreviations

• STOC: Proceedings of the ACM Symposium on Theory of Computing

• FOCS: Proceedings of the IEEE Foundations of Computer Science

[1] L. Adleman, “Two theorems on random polynomial time,” FOCS, pp. 75–83,
1978.

[2] M. Ajtai, “
∑1

1-Formulae on finite structures,” Annals of Pure and Applied
Logic, vol. 24, pp. 1–48, 1983.

[3] M. Ajtai, J. Komlos, and E. Szemeredi, “Deterministic simulation in
LOGSPACE,” STOC, p. 132, 1987.

[4] W. Alexi, B. Chor, O. Goldreich, and C. Schnorr, “RSA/Rabin functions: Cer-
tain parts are as hard as the whole,” SIAM J. on Computing, vol. 17, no. 2,
pp. 194–209, April 1988.

[5] N. Alon, L. Babai, and A. Itai, “A fast and simple randomized parallel algo-
rithm for the maximal independent set problem,” Journal of Algorithms, vol. 7,
pp. 567–583, 1986.

[6] N. Alon and F. R. K. Chung, “Explicit construction of linear sized tolerant
networks,” Discrete Math, vol. 72, pp. 15–19, 1989.

[7] C. Bennett and J. Gill, “Relative to a random oracle A, PA 6= NPA 6= co −
NPA with probability one,” Siam J. on Computing, vol. 10, pp. 96–113, 1981.

[8] M. Blum and S. Micali, “How to generate cryptographically strong sequences
of pseudo-random bits,” SIAM J. on Computing, vol. 13, pp. 850–864, A pre-
liminary version appears in FOCS, 1982, pp. 112–117, 1984.

65

Full text available at: http://dx.doi.org/10.1561/0400000009

66 References

[9] J. Cai, “With probability one, a random oracle separates PSPACE from the
polynomial-time hierarchy,” J. of Computer and System Sci., vol. 38, pp. 68–85,
A preliminary version appears in STOC, 1986, pp. 21–29, 1989.

[10] B. Chor and O. Goldreich, “On the power of two-point sampling,” Journal of
Complexity, vol. 5, pp. 96–106, 1989.

[11] A. Cohen and A. Wigderson, “Dispersers, deterministic amplification, and weak
random sources,” FOCS, pp. 14–19, 1989.

[12] M. Fredman, J. Komlos, and E. Szemeredi, “Storing a sparse table in O(1)
worst case access time,” Journal of the ACM, vol. 31, pp. 538–544, 1984.

[13] M. Furst, J. Saxe, and M. Sipser, “Parity, circuits and the polynomial time
hierarchy,” FOCS, pp. 260–270, 1981.

[14] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random func-
tions,” J. of ACM, vol. 33, no. 4, pp. 792–807, A preliminary version appears
in FOCS, 1984., 1986.

[15] O. Goldreich and L. Levin, “A hard-core predicate for any one-way function,”
STOC, pp. 25–32, 1989.

[16] S. Goldwasser and S. Micali, “Probabilistic encryption,” J. of Computer and
System Sci., vol. 28, pp. 270–299, A preliminary version appears in STOC,
1982, pp. 365–377., 1984.

[17] S. Goldwasser and M. Sipser, “Private coins vs public coins in interactive proof
systems,” STOC, pp. 59–68, 1986.

[18] J. H̊astad, Computational limitations for small depth circuits. Ph.D. thesis,
1986. MIT press.

[19] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby, “A pseudo-random gener-
ator from any one-way function,” SIAM Journal on Computing, vol. 28, no. 4,
pp. 1364–1396, 1999.

[20] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their applica-
tions,” Bulletin of the AMS, to appear.

[21] R. Impagliazzo, L. Levin, and M. Luby, “A pseudo-random generator from any
one-way function,” STOC, pp. 12–24, 1989.

[22] R. Impagliazzo and D. Zuckerman, “How to recycle random bits,” FOCS,
pp. 248–253, 1990.

[23] R. Karp and M. Luby, “Monte-carlo algorithms for the planar multiterminal
network reliability problem,” J. of Complexity, vol. 1, pp. 45–64, 1985.

[24] R. Karp, M. Luby, and N. Madras, “Monte-carlo approximation algorithms for
enumeration problems,” J. of Algorithms, vol. 10, no. 3, pp. 429–448, 1989.

[25] R. Karp, N. Pippenger, and M. Sipser, “Expanders, randomness, or time
versus space,” First Annual Conference on Structure in Complexity Theory,
pp. 325–329, 1986.

[26] M. Karpinski and M. Luby, “Approximating the number of solutions to a GF[2]
formula,” Journal of Algorithms, vol. 14, no. 2, pp. 280–287, March 1993.

[27] A. Lubotzky, R. Phillips, and P. Sarnak, “Explicit expanders and the ramanu-
jan conjectures,” STOC, pp. 240–246, (See also: A. Lubotzky, R. Phillips,
P. Sarnak. “Ramanujan graphs,” Combinatorica, vol. 8, 1988, pp. 261–277).,
1986.

Full text available at: http://dx.doi.org/10.1561/0400000009

References 67

[28] M. Luby, “A simple parallel algorithm for the maximal independent set prob-
lem,” SIAM J. on Computing, vol. 15, no. 4, pp. 1036–1053, November 1986.

[29] G. Margulis, “Explicit group-theoretical constructions of combinatorial schemes
and their application to the design of expanders and superconcentrators,” Prob-
lemy Peredachi Informatsii, vol. 24, pp. 51–60, (in Russian). (English transla-
tion in Problems of Information Transmission, vol. 24, 1988, pp. 39–46)., 1988.

[30] N. Nisan, “Pseudorandom bits for constant depth circuits,” Combinatorica,
vol. 1, pp. 63–70, 1991.

[31] N. Nisan, “RL⊆SC,” STOC, pp. 619–623, 1992.
[32] N. Nisan and A. Wigderson, “Hardness vs. randomness,” J. of Comp. Sci. and

Sys., vol. 49, no. 2, pp. 149–167, 1994.
[33] N. Nisan and D. Zuckerman, “More deterministic simulation in logspace,”

STOC, pp. 235–244, 1993.
[34] C. H. Papadimitriou, Computational complexity. 1993. Addison Wesley.
[35] A. Renyi, Probability theory. 1970. North-Holland, Amsterdam.
[36] M. Sipser, “A complexity theoretic approach to randomness,” STOC,

pp. 330–335, 1983.
[37] M. Sipser, Introduction to the theory of computation. PWS Publishing, 1997.
[38] L. Valiant, “The complexity of computing the permanent,” Theoretical Com-

puter Science, no. 8, pp. 189–201, 1979.
[39] L. Valiant and V. Vazirani, “NP is as easy as detecting unique solutions,”

Theoretical Computer Science, vol. 47, pp. 85–93, 1986.
[40] M. Wegman and J. Carter, “New hash functions and their use in authentication

and set equality,” Journal of Computer and System Sciences, vol. 22, no. 3,
pp. 265–279, 1981.

[41] A. Yao, “Theory and applications of trapdoor functions,” FOCS, pp. 80–91,
1982.

[42] A. Yao, “Separating the polynomial-time hierarchy by oracles,” FOCS,
pp. 1–10, 1985.

Full text available at: http://dx.doi.org/10.1561/0400000009

Full text available at: http://dx.doi.org/10.1561/0400000009

	Pairwise Independence
	Pairwise independence: Definition
	Small families of hash functions
	Derandomization applications
	Dictionaries

	Limited Independence Probability Spaces
	Modulo prime space
	Linear polynomial space
	Mapping between {0,1}n and GF[2n]
	Inner product space

	Pairwise Independence and Complexity Classes
	RP and BPP
	Complexity of unique solutions
	BPP 2
	AM = IP

	Recycling Randomness
	Deterministic amplification
	The Chor-Goldreich generator
	The Nisan generator
	The Impagliazzo-Zuckerman generator
	The expander mixing Lemma
	The Karp-Pippenger-Sisper generator
	The Ajtai-Komlós-Szemerédi generator

	Pseudo-Random Generators
	One-way functions
	Hidden Bit Theorem
	Pseudo-random generators

	Deterministic Counting
	#P and approximate counting
	DNF counting
	GF[2] polynomial counting
	Bounded depth circuit counting

	Acknowledgements
	References

